

A

B
A. Three azurite crystals from Tsumeb, in parallel position, altering to malachite.
B. Pseudomorph of malachite after azurite from Bisbee, partially covered by second generation of azurite.
The American Mineralogist
JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA
Vol. 12APRIL, 1927No. 4
CRYSTALLOGRAPHY OF AZURITE FROM TSUMEB, SOUTHWEST AFRICA, AND THE AXIAL RATIO OF AZURITE
Charles Palache and Lyman W. Lewis.
CONTENTS
Page
Summary 102
Methods 102
The Axial Ratio of Azurite 104
Azurite Angle Table on the Base, $c(001)$ 106
Azurite Angle Table on the Side Pinacoid, $b(010)$ 110
The Angles of Azurite Crystals from other Localities:
Chessy, France 113
Bisbee, Arizona 114
Laurium, Greece 115
Kelly Mine, New Mexico 116
Broken Hill, New South Wales 118
Copiapó, Chile 118
Conclusions Concerning the Axial Ratio of Azurite 119
The Habit of Azurite from Tsumeb. 121
Discussion of Forms observed on Tsumeb Azurite 130
Malachite Pseudomorphs after Azurite 133
Habit of Azurite Crystals from other Localities, and Forms Observed:
Laurium, Greece 134
Kelly Mine, New Mexico 138
Bisbee, Arizona 141
Barnaul, Siberia 143
Copiapó, Chile 143
Chessy, France. 143

Explanation of Plates and Figures

Frontispiece.
A. Three azurite crystals from Tsumeb, in parallel position, altering to malachite. The concentric, radiating structure of the invading malachite fibers is well shown. The reproduction is natural size.
B. A large pseudomorph of malachite after azurite from Bisbee partially covered by a second generation of sub-parallel crystals of azurite. The later azurite is oriented parallel to the malachite pseudomorph. Natural size.

Explanation of Figures.

Figure 1. Azurite. Projections, in normal position, of crystal of type 1.
Figure 2, Pl. I. Azurite of type 1. Mag. 5 diam.
Figure 3. Orthographic and clinographic projections of azurite crystal, transitional between 1 and 2, due to the equal development of prism and front pinacoid.
Figure 4, Pl. I. Azurite transitional between types 1 and 2.
Figure 5, Pl. I. Crystal transitional between types 2 and 3. Mag. 2 diam.
Figure 6, Pl. I. Azurite of type 3. Mag. 5 diam.
Figure 7, PI. II. Pseudo-rhombohedral aspect of one modification of type 4. Mag. 5 diam.
Figure 8, Pl. II. Simple modification dominated by base and unit prism.
Figure 9, Pl. II. Azurite of pyramidal habit. Mag. 5 diam.
Figure 10. Orthographic projection of a crystal of type 5.
Figure 11. Orthographic projection of a crystal of type 5 with important development of clinodomes and negative pyramids.
Figure 12, PI. II. Azurite of type 6. Mag. 4 diam.
Figure 13, Pl. III. Azurite of type 7 with few forms. Mag. 5 diam.
Figure 14, Pl. III. Doubly terminated crystal of type 7. Mag. 10 diam.
Figure 15, PI. III. Crystal of type 7 with complex terminations. Mag. 2 diam.
Figure 16, Pl. III. Crystal of type 7 dominated by the unit prism in the truncation.
Figure 17. Type 7. Orthographic projection on the side pinacoid, and clinographic projection in normal position, of crystal of azurite.
Figure 18. Type 7. Orthographic projection, on the side pinacoid, of azurite crystal, shown in figure 16.
Figure 19. Type 8. Orthographic projection, on the side pinacoid, of crystal shown in figure 20.
Figure 20, Pl. IV. Doubly terminated crystal of type 8 showing the prominent development of σ (101), m (110), c (001), and the clinodome zone.
Figure 21, Pl. IV. Simple representative of type 8 showing the typical striated appearance of the negative orthodome zone. Also the important development of λ (2.18.3). Mag. 5 diam.
Figure 22, Pl. IV. Crystal tabular parallel to c (001) and μ (105), truncated by m (110). Mag. 5 diam.
Figure 23. Orthographic projection, on the side pinacoid, of a crystal of type 9, with m (110) the dominant truncation.

Figure 24. Orthographic projection, on the side pinacoid, of a crystal of type 9, with λ (2.18.3) the dominant truncation.
Figure 25. Type 10. Orthographic projection, on the side pinacoid, and clinographic projection in normal position, of azurite crystal. This habit is very common in the collection, and includes the most perfect crystallographic material.
Figure 26, P1. IV. Photograph illustrating the terminations of azurite shown in figure 25.
Figure 27. Type 10. Orthographic projection, on the side pinacoid, of a crystal of type 10. The modification is very striking where the flat pyramid λ (2.18.3) forms the only important truncation.
Figure 28. Type 11. Orthographic and clinographic projections of a crystal of type 11. The symmetry of the ring of forms surrounding the base is not exaggerated.
Figure 29, Pl. IV. Crystal of type 12. It is interesting to compare this illustration with figures 5,6 and 9 to note the change of habit resulting from variation in the relative development of m (110), h (221) $c(001)$ and the clinodome zone.
Figure 30. Type 11. Orthographic and clinographic projections. The clinographic projection is turned 20° from the b axis to show more clearly the grouping of the faces at this end of the crystal.
Figure 31, Pl. V. Specimen containing unaltered azurite and completely malachitized azurite in contact.
Figure 32, Pl. V. Large azurite crystal of type 8 with bayldonite.
Figure 33. Orthographic and clinographic projections of a malachite pseudomorph of type 10 partially surrounded by a later azurite crystal of the same type in parallel position.
Figure 34, Pl. VI. Azurite altering to malachite.
Figure 35, Pl. VI. Pseudomorph group of malachite after azurite. The crystals are perfectly sharp, and the azurite forms can be positively identified. The color is lighter than many of the pseudomorphs, and on the velvety, apple-green faces the radiating structure is very conspicuous.
Figure 36, Pl. VII. Large pseudomorph of malachite after azurite. The sheaf-like structure of the malachite is well shown.
Figure 37, Pl. VII. Malachite pseudomorph after azurite, All the fibers on the front pinacoid radiate from one center. On the prism face there are many centers of radiation.
Figure 38. Orthographic projection, on the side pinacoid of an azurite crystal from Laurium, Greece, showing the new forms.
Figure 39. Clinographic projection and orthographic projection on the side pinacoid of azurite from Bisbee, Arizona, of the type shown on the pseudomorph in the color plate.
Figure 40. Gnomonic projection, on $b(010)$, of all reported forms for azurite. In the negative orthodome zone no letter has been assigned to forms reported without one, but may be readily identified from the tables where the forms are listed in order of decreasing ϕ.

- New azurite forms.
- Azurite forms commonly observed on Tsumeb specimens.
- Other reported forms.

SUMMARY

It has repeatedly been asserted that the elements determined by Schrauf for azurite from Chessy, France, and used as the basis of calculated angles by Dana, Goldschmidt, and Groth are not in harmony with later measurements on specimens from other localities.

In the belief that the lack of agreement between measured and calculated angles was due to inferior crystals available for measurement by Schrauf, the present study was undertaken. New elements and angles have been calculated from measurements of many excellent crystals which furnish values more nearly in accord with observed angles. The material studied was chiefly a suite of minerals secured at the Tsumeb mine in 1922 by the senior author while a member of the Shaler Memorial Expedition to S. W. Africa. In this collection were over 1500 specimens containing crystallized azurite, or malachite pseudomorphs after azurite. Of this number 170 hand specimens of the most perfect or interesting types were chosen for careful study. Most of these were covered with brilliant, transparent azurite crystals well suited for crystallographic measurement.

METHODS

All the measurements were made on a Goldschmidt two-circle goniometer. Of the 28 crystals measured from Tsumeb, 15 were perfect enough to be used in the calculations, and had from 25 to 38 faces each. These were elongated parallel to the b axis and were measured with the orthodome zone parallel to the axis of the vertical circle. This allowed measurement of all the faces, (usually two of each form), of singly terminated crystals with one mounting. Only single, strong signals, observable with low magnification were considered of sufficient perfection to be used in computing the averages. The following table gives the weighted average, measured angles, in side pinacoid position, of the important faces.

A projection was made on the clinopinacoid, $b(010)$, the symbols for this position were determined graphically, and the elements

Azurite Angle-Table Measured on (010) Used in Calculating Elements

$\begin{aligned} & \text { 苞 } \\ & 0 \end{aligned}$	$\begin{gathered} \text { Miller } \\ \text { Symbol** }^{*} \\ 001 \end{gathered}$	$\begin{gathered} \text { Miller } \\ \text { Symbol } \\ 010 \end{gathered}$	Variation of ϕ ϕ to ϕ		$\begin{gathered} \text { Average } \\ \phi \end{gathered}$	$\begin{gathered} \text { Variatic } \\ \rho \text { to } \end{gathered}$	$\begin{aligned} & \text { on of } \rho \\ & 0 \quad \rho \end{aligned}$	$\begin{gathered} \text { Average } \\ p \end{gathered}$	
c	(001)	(100)	$87^{\circ} 33^{\prime}$	$87^{\circ} 37^{\prime}$	$87^{\circ} 35^{\prime}$	$89^{\circ} 57^{\prime}$	$90^{\circ} 02^{\prime}$	$90^{\circ} 00^{\prime}$	14
θ	(101)	(110)	4507	$\overline{45} 14$	4511	8957	9001	"	8
v	(201)	(120)	$\overline{26} 06$	$\overline{26} 35$	$\overline{26} 22$	8958	9000	"	12
η	(302)	(230)	$\overline{33} 06$	$\overline{33} 48$	$\overline{3} \overline{3} 30$	9000	9001	"	9
${ }_{\sigma}$	(101)	(110)	4238	4259	4254	9000	9000	"	13
w	(120)	(012)	000	000	000	3015	3020	3018	7
m	(110)	(011)	"	"	"	4919	4932	4927	13
λ	(2.18.3)	(3.2.18)	$5 \overline{7} 04$	$5 \overline{7} 24$	$5 \overline{7} 15$	1240	1244	1241	10
R	(241)	(124)	$\overline{26} 10$	$\overline{26} 20$	2617	3232	3234	3233	11
,	(221)	(122)	$\overline{26} 13$	2620	2617	5154	5158	5156	13
h	(221)	(122)	2519	2526	2523	5250	5258	5252	12
s	(111)	(111)	4254	4257	4255	5855	5858	5857	5
P	(223)	(322)	5348	5358	5352	6431	6439	6434	9
γ	(121)	(112)	4245	4255	4252	3941	3947	3943	6
p	(021)	(102)	8732	8741	8735	2928	2933	2930	18
,	(023)	(302)	8732	8740	8735	5928	5932	5930	19
f	(011)	(101)	8732	8736	8734	4830	4834	4832	11

${ }^{*} p q r(001)=r p q(010)$.
were then calculated according to the accepted practice. ${ }^{1}$ From the averaged measured angles given in the above table the elements calculated on a representative number of faces is shown below:
${ }^{1}$ Charles Palache, Am. Mineral., Vol. 5, No. 10, p. 177. The following formulas were used in the calculation and transformation:

$$
\begin{aligned}
& x=\sin \phi \tan \rho=p p_{0} \sin \mu \\
& y=\cos \phi \tan \rho=q q_{0}+p p_{0} \cos \mu \\
& \tan \mu=\frac{p p_{0} \sin \mu}{p p_{0} \cos \mu}=\frac{x}{y-p p_{0}} \\
& p_{0}(001)=\frac{q_{0}}{p_{0}}(010) \\
& q_{0}(001)=\frac{1}{p_{0}}(010) \\
& a=\frac{q_{0}}{p_{0} \sin \mu} \\
& c=\frac{q_{0}}{\sin \mu}
\end{aligned}
$$

Letter	Goldschmidt Symbol (010)		ϕ		-	$p p_{0}{ }^{\prime \prime}$	$p 0^{\prime \prime}$	$q q_{0}{ }^{\prime \prime}$	$90^{\prime \prime}$
R	$\frac{1}{4} \frac{1}{3}$	26°		32°		. 2829	1.1316	. 5840	1.1680
k	$\frac{1}{2} 1$	26	17	51	56	. 5659	1.1318	1.1688	1.1688
h	$\frac{1}{2} 1$	25	23	52	52	. 5666	1.1332	1.1692	1.1692
s	1	42	55	58	57	1.1320	1.1320	1.1689	1.1689
P	$\frac{3}{2} 1$	53	52	64	34	1.7000	1.1322	1.1683	1.1683
p	$\frac{1}{2} 0$	87	35	29	30	. 5653	1.1306		
l	$\frac{3}{2} 0$	87	35	59	30	1.6961	1.1307		
f	10	87	35		32	1.1306	1.1306		

$\mu($ measured $)=87^{\circ} 35^{\prime}$. Average $p_{0}{ }^{\prime \prime}=1.1316$. Average $q_{0}{ }^{\prime \prime}=1.1687$. The measured value of μ was confirmed by calculation. Transformation to the normal position followed. (See footnote preceding).

$$
p_{0}=1.0326 . \quad q_{0}=0.8836 . \quad a=0.8565 . \quad c=0.8844 . \quad \beta=87^{\circ} 35^{\prime},
$$

THE AXIAL RATIO OF AZURITE
Anderson ${ }^{2}$ has pointed out the unsettled question regarding the values to be assigned to the elements of azurite. He publishes the following table to show "that Schrauf's elements, though correct no doubt for the azurite of Chessy, are not the best for crystals from other localities-."

Author	Locality	a	c	β	
Schrauf	Chessy	. 85012	. 88054	87°	36^{\prime}
Lacroix	"	. 8469	. 8789	87	39
Gonnard	"	. 8477	. 8792	.	\cdots
Farrington	Arizona	. 85676	. 88603	87	$3636{ }^{\prime \prime}$
Cohen	Broken Hill	. 85608	. 88585	87	38
Manasse	Calabonna	. 85755	. 88803	87	41
Anderson	Mineral Hill	. 85721	. 88581	87	34
To this list may be added:					
Toborffy	Tsumeb			87	38
Thomson	,	. 8549	. 8853	87	34
Aminoff	Bisbee	. 8561	. 8842	87	35
"	Broken Hill	. 8563	. 8850	87	41
Smith*	" "	. 8565	. 8850	87	36
Palache**	$\left\{\begin{array}{l}\text { Bisbee } \\ \text { Broken Hill } \\ \text { Kelly, N. M. }\end{array}\right\}$. 8568	. 8841	87	36
Palache \& Lewis	Tsumeb	. 8564	. 8844	87	35

[^0]This table shows that the Chessy values are materially smaller for both a and c than corresponding values derived from later studies, and that the elements presented in this paper are intermediate between the highest and lowest derived from other localities. This small difference in the elements is magnified to significant discrepancies in the calculated angles as illustrated in a comparison of the values for the unit prism :

$$
\begin{aligned}
m \wedge m & =81^{\circ} 06^{\prime} \quad \text { Calculated from our elements. } \\
m \wedge m & =80^{\circ} 41^{\prime} \\
\Delta & =0^{\circ} 25^{\prime}
\end{aligned}
$$

It was considered more desirable to base a new angle table on the elements derived from our study of the excellent Tsumeb crystals than on an average for all reported elements. Measurements subsequently made on crystals from other localities show very close agreement with our calculated angles, and indicate that the choice was justified. The confirmatory measurements are presented later in this paper.

The following angle table for all reported forms is based on the new elements. In the calculations Goldschmidt's formulas and system of checks were used, and the arrangement follows the system used in the Winkeltabellen.

Azurite Angle Table for Measurements on the Base-(001)

$a=0.8565$	$\log a=9.93273$	$\log a_{0}=9.98608$
$c=0.8844$	$\log c=9.94665$	$\log b_{0}=0.05335$
$\left.\begin{array}{c} \mu= \\ 180^{\circ}-\beta \end{array}\right\} 87^{\circ} 35^{\prime}$	$\left.\begin{array}{l} \log h= \\ \log \sin \mu \end{array}\right\} .99961$	$\left.\begin{array}{l} \log e= \\ \log \cos \mu \end{array}\right\} 8.62497$
$\log p_{0}=0.01396$	$a_{0}=0.9684$	$p_{0}=1.0326$
$\log q_{0}=9.94627$	$b_{0}=1.1307$	- $q_{0}=0.8836$
$\log \frac{q_{0}}{p_{0}}=0.06769$	$h=0.9998$	$e=0.0422$

			ϕ	ρ	ξ_{0}	η_{0}	ξ	η	x^{\prime}	y^{\prime}	d^{\prime}
1	c	001	$90^{\circ} 00^{\prime}$	$2^{\circ} 25^{\prime}$	$2^{\circ} 25^{\prime}$	$0^{\circ} 00^{\prime}$	$2^{\circ} 25^{\prime}$	$0^{\circ} 00^{\prime}$		0	
2	b	010	000	9000	000	9000	000	9000	0	∞	∞
3	a	100	9000	"	9000	000	9000	000	∞	0	
4	u	310	7405			9000	7405	1555		∞	
5	g	210	6650	"	*	9000	6650	2310		"	u
6	i	320	6018	"	"		6018	2942		"	
7	m	110	4927	"	"		4927	4033		"	
8	w	120	3018	${ }^{4}$	¢	${ }^{\circ}$	3018	5942		"	a
9	e	0.1.10	2531	536	225	503	224	503	0.0422	0.0884	0.0980
10	C	018	2054	645	225	619	224	618	0.0422	0.1106	0.1183
11	G	016	1559	843		823	223	822	" 0	0.147	0.1533
12	Λ	015	1325	1018	"	1002	223	1001	" 0	0.1769	0.1818
13	5	014	1048	1241	"	1228	222	1227	4	0.2211	0.2251
14		027	733	1747	"	1759	218	1738	" 0	0.31	0.3209
15	q	025	647	1936	"	1929	217	1928	" 0	0.3538	0.3563
16	E	012	527	2357	"	2351	213	2350	" 0	0.442	0.4442
17	l	023	405	3035	"	3032	205	3030	" 0	0.6033	0.5911
18	\%	034	338	3337	"	3334	201	3332	"	0.6610	0.6647
19	3	045	325	3405	"	3517	200	3552	" 0	0.7075	0.6769
20	f	011	244	4131	"	4129	149	4127	a	0.884	0.8854
21		076	220	4555	"	4554	141	4553	4	1.0318	1.0327
22	K	032	149	5300	"	5300	127	5258	4	1.3266	11.3273
23	p	021	122	6032	"	6031	111	6030	"	1.7688	1.7693
24	L	031	055	6921	"	6921	051	6919	4	2.6532	2.6536
25	Ω	301	9000	7221	7221	000	7221	000	3.1428	0	3.1428
26	ϕ	201	9000	6438	6438	000	6438	000	2.1093	"	2.1093

$\begin{aligned} & \text { 華 } \\ & \frac{1}{7} \\ & \text { Z } \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{4} \\ & \end{aligned}\right.$		¢	p	$\xi{ }_{5}$	no	ξ	η	x^{\prime}	y^{\prime}	d^{*}
27		905	$90^{\circ} 00^{\prime}$	$62^{\circ} 17^{\prime}$	$62^{\circ} 17^{\prime}$	$0^{\circ} 00^{\prime}$	$62^{\circ} 17^{\prime}$	$0^{\circ} 00^{\circ}$	1.9026	0	1.9026
28	σ	101	"	4706	4706	"	4706	"	1.0758	,	1.0758
29	5	203	"	3611	3611	"	3611	"	0.7313	"	0.7313
30	ζ	102	"	2913	2913	"	2913	"	0.5590	"	0.5590
31	r	307	"	2553	2553	"	2553	"	0.4852	"	0.4852
32		205	"	2430	2430	"	2430	"	0.4556	"	0.4556
33	M	104	"	1644	1644	"	1644	"	0.3006	"	0.3006
34	r	108	$\overline{9} 000$	458	458	000	458	000	¢0. 0870	0	0.0870
35		107	,	601	$\overline{6} 01$,	$\overline{6} 01$	"	$\overline{0} .1054$	${ }^{\circ}$	0.1054
36		106	"	724	$\overline{7} 24$		$\overline{7} 24$	"	Ö. 1300	"	0.1300
7		2.0.11	"	817	$\overline{8} 17$	"	$\overline{8} 17$	"	0.1456	"	0.1456
8	${ }^{\mu}$	105	"	921	$\overline{9} 21$	"	$\overline{9} 21$	"	$\overline{0} .164 \bar{\square}$	"	0.1645
9		4.0.19	"	957	$\overline{9} 57$	"	$\overline{9} 57$	"	$\overline{0} .1754$	"	0.1754
0		3.0 .14	"	1010	10 10	"	1010	"	$\overline{0} .1793$	"	0.1793
41	D	I04	"	1212	1212	"	I2 12	"	$\overline{0} .2162$	"	0.2162
42	F	$\overline{2} 07$	"	1412	T4 12	"	1412	"	$\overline{0} .2531$	"	0.2531
43		3.0.10	"	1500	$\overline{15} 00$	"	$\overline{15} 00$	"	$\overline{0} .2678$	"	0.2678
4		4.0.13	"	1601	1601	"	1601	4	$\overline{0} .2758$	u	0.2758
45	A	103	"	1649	$\overline{16} 49$	"	$\overline{16} 49$	"	$\overline{0} .3023$	"	0.3023
46		4.0.11	${ }_{4}$	1827	$\overline{18} 27$		$\overline{18} 27$	"	0.3336	"	0.3336
47	J	$\overline{2} 05$	"	2022	2022	"	2022	"	$\overline{0} .3712$	"	0.3712
48	n	102	"	2523	$\overline{25} 23$	"	$\overline{25} 23$	"	O .4745	"	0.4745
49		203	"	3254	$\overline{32} 54$	"	$\overline{32} 54$	"	̄ 0.6468		0.6468
50	N	507	"	3450	3450	"	3450	"	$\overline{0} .6959$	"	0.6959
1	T	405	"	3807	$\overline{38} 07$	"	$\overline{38} 07$	"	0. 7846	"	0. 7846
52		11.0.13	"	3946	3846		3946	"	$\overline{0} .8322$		0.8322
3		101	"	4445	4445	"	4445	"	$\overline{0} .9913$	"	0.9913
54	\mathfrak{B}	908	"	4815	4815	"	4815	"	T.1202	"	1.1203
55	W	605	"	5009	5009	"	$5 \overline{0} 09$	"	T. 1970		1. 1970
56	B	504	"	5116	5116	"	5106	"	1.2470	"	1.2470
57	κ	403	"	5311	5311	"	5311	4	T. 3358	"	1.3358
58	η	302	"	5624	5624	"	5624	"	T. 5045	"	1.5045
9		503	"	5915	5915	"	5915	4	1. $680{ }^{2}$	"	1.6803
60	\mathfrak{F}	704	"	6029	8029	"	$\overline{6} \overline{0} 29$	"	T. 7664	"	1.7664
61		$\overline{15} .0 .8$	"	6211	6211	"	6211	"	T. $895 ¢$	"	1.8956
62	v	$\overline{2} 01$	"	6343	63 43	"	$\overline{63} 43$	${ }^{\prime}$	2.0249	"	2.0249
63	\mathfrak{M}	$\overline{13.0 .6}$	"	6532	8532	"	6532	"	2.1980	"	2.1980
64	\mathfrak{X}	$\overline{7} 03$	"	6707	6707	"	6707	"	2.3694	"	2.3694
65		$1 \overline{9} .0 .8$	"	6730	67 30	"	$\overline{67} 30$	"	2.4128	"	2.4128
66	ψ	301	"	7154	71 54	"	$\overline{71} 54$	"	3.0585	"	3.0585
67		$\overline{7} 02$	"	7423	$\overline{74} 23$	"	7423	"	3. 5751	"	3.5751
68	h	221	5001	7002	6438	6031	4604	3709	2.1091	1.7682	2.7526
69	s	111	5035	5419	14705	4129	13846	3103	1.0757	0.8844	41.3925

落	$\stackrel{\rightharpoonup}{0}$	受 会领	ϕ		ξ_{0}	$\eta 0$	ξ	η	x^{\prime}	y^{\prime}	d^{\prime}
70	I	223	51°		$36^{\circ} 10^{\prime}$	$30^{\circ} 32^{\prime}$	$32^{\circ} 12^{\prime}$	$25^{\circ} 27^{\prime}$			
71	p	112	5139	3528	2912	2351	2705	2106			
72	t	225		27		19	$\overline{19} 17$	1755	0 .3711		27
73	Q	112	4653	32	$\overline{25} 17$	2351	$\overline{23} 22$	2148			71
74	z	447	4716	3645	28.44	2649	2604	2357	O .5484		7465
75	u	223	4739	4111	32	30	$\overline{29}$	2620	0． 6468	0	52
76	x	111	\％ 18	5302	4445	4129	36 36	3208	0̄．9913	0.	1.3284
77	k	221	4852	6936	63	603	44	3804	2.0242	1.	2.6822
78	π	441	4920	7932	76	74	47.5	3956	4．1763	3.	370
79	¢	771	4917	8359	82	80	485	4027			
80	a	212	6739	4919	4705	235	2616	1645	01076		1.1631
81	γ	121	31	64	4705	6028	2753	5018	1.0757	1	． 0710
82	Σ	232	36	5853	4445	5259	$\overline{30} 49$	4318	0．9913		47
83		$\overline{3} 53$	3356	6037	4445	5550	2902	4618	$\overline{0} .9913$	1.4735	1.7758
84	α	121	2916	63		60	$\overline{26}$	5129	$\overline{0}$	1.	2.0277
85	m	525	70	46	44	1929	43	14	0.9913	0.3537	09
86		13	2029	7033	4445	6921	1916	6203	0.9913	2	2.8324
87	r	122	321	46	29	4130	3128	3126	0.5590		63
88		322	59	60	56	41	48	26	1． 5081		1.7482
89	y	211	6624	65	¢ 3	4129	56	2124	2.02	0.8844	2.2096
90	z	411	7746			4129	71	1154	4.08		764
91	ω	241	30	7621	64	7413	2950	5635	2.1091		． 1193
92	t	683	4039	7210	63	6701	$\overline{3} 819$	4614			
93	R	241	2947	7613	6343	74	285	5727	$\overline{2}$.		4.0764
94	t	$\overline{261}$	2053	80	63	7920	20	6657	$\overline{2}$		96
95		472	3311	74	63	7206	3154	5353			
96	\mathfrak{G}	$\overline{2} .10 .1$	1325	83	64	833	I3	7513	2． 1093		9.0922
97	ξ	321	6038	74	72	6031	57	28			61
98	G	$\overline{3} 21$	5957	7412	7153	6031	56 24	2848			
99	u	351	3440	7928	7154	7715	34	5357			
	i	681	41	83		82	40	4835			9.3806
	b	4.10	2450	8408	7616	8333	24	6432	4.		0，
	f	6．10．1	3513		8054	8333	3503	5426	6，24		8260
	K	$\overline{12.10 .5}$	5403	71	$\overline{67} 42$	6031	5012	3552			． 123
	J	132	2251	55	2912	5300	18	4911			1.4396
	χ	1.11 .2	633	7828	2912	7823	625	7645	0．5		1
	i	I．10．2	607	7720	$25 \quad 23$	7715	559	7557	$\overline{0} .47$		4474
	β	362	2937	7152	56 27	6921	2801	5542			52
	B	4.12 .3	2152	7518	5452	7413	2107	6351	1.4203	3．53	8122
		I34	1817	3435	I2 12	3312	IO 15	3236	ō． 21	，	． 6892
	b		6953		3107	1228	उ0 31	1043	Ø̄． 60		6429
	S	125	2453	2119	$\overline{9} 19$	1927	$\overline{8} 48$	1915	$\overline{0} .16$	0．35	． 3900
	λ	2．18．3	6 57	17924	32 54	17920	650	7721			，

$\begin{aligned} & \text { "ँ } \\ & \text { है } \\ & \text { B } \end{aligned}$	$$		ϕ	p	ξ_{0}	70	ξ	η	x^{\prime}	y^{\prime}	d^{\prime}
11	δ	24	$31^{\circ} 42^{\prime}$	$54^{\circ} 11^{\prime}$	$36^{\circ} 03^{\prime}$	$49^{\circ} 42^{\prime}$	$25^{\circ} 13^{\prime}$	$47^{\circ} 38^{\prime}$	0. 7279	1.1789	
11	d	243	2845	5322	52 54	4942	2242	4443	$\overline{0} .6468$	1.1789	1.3447
11	Δ	2.10.3	1223	7140	3254	7116	I1 44	6800	$\overline{0} .6468$	2.9478	3.0179
11	D	9.12.8	4215	6050	5018	5300	$35 \quad 57$	4016	1.2049	1.3266	1.7919
117	e	245	$2 \overline{7} 41$	3838	2022	3517	1652	3334	O .3712	0.7075	0.7990
11	H	4.10.7	2636	5443	3220	5138	2126	4652	0.63	1.2634	1.4131
9	-	685	4211	6222	5203	5445	3630	4102	1.282	1.4151	1.9097
120	g	283	1713	6757	3640	6701	1556	6217	0.7312	2.3585	2.4693
121	Φ	273	İ7 24	6511	32 54	6409	1545	6040	0]. 64	2.0637	2.1627
2	i	476	"32 05	5036	32 54	4554	2414	$40 \quad 54$	00. 6468	1.0319	11.2178
123	,	153	1442	5644	2109	5551	1215	5358	0.3867	1.4741	1.5240
12	1	$\overline{7} 43$	6532	6918	87 07	4942	5650	2438	2,369	1.1793	2.6465
125	子	287	1828	4649	1839	4518	1321	4346	0.337	1.0108	1.0657
126	\underline{x}	573	3909	6924	5914	6409	36 14	4633	1. 680	2.0637	2.6613
127	5	245	3258	4009	2439	3517	2032	3245	0.458	0.70750	0.8434
128	\mathfrak{U}	564	4510	6201	5309	52.59	3846	3831	1,3341	1.3266	1.8814
129	\mathfrak{D}	453	4356	6358	5451	55.51	3834	4019	1.4203	1.4741	2.0468
130	n	231	3829	7334	6438	6920	3639	4840	2.1093	2.653313	3.3896

As azurite is commonly enlongated parallel to the b axis, it is often desirable to measure crystals with the orthodome zone prismatic. The following table gives the calculated angles for this position. The numbering and arrangement follows the first table to lessen confusion between the two positions.

The transformation of angles and symbols is effected by use of the relationship:

$$
\begin{aligned}
\phi(010) & =90-\xi_{0}(001) \\
\rho(010) & =90-\eta(001) \\
p q r(001) & =r p q(010)
\end{aligned}
$$

Azurite Angle Table for Measurements on the Side Pinacoid-(010)

Number	Letter	Miller Symbol (010) (010)	Miller Symbol (001)	ϕ	ρ
1	c	100	001	$87^{\circ} 35^{\prime}$	$90^{\circ} 00{ }^{\prime}$
2	b	001	010	$0 \quad 00$	000
3	a	010	100	000	$90 \quad 00$
4	u	031	310	$0 \quad 00$	$74 \quad 05$
5	g	021	210	$0 \quad 00$	6650
6	i	032	320	$0 \cdot 00$	$60 \quad 18$
7	m	011	110	$0 \quad 00$	$49 \quad 27$
8	w	012	120	© 00	$30 \quad 18$
9	e	10.0.1	0.1.10	8735	$84 \quad 57$
10	C	801	018	"	8342
11	G	601	016	"	8138
12	A	501	015	"	$79 \quad 59$
13	S	401	014	"	7733
14		702	027	"	$72 \quad 22$
15	q	502	025 *	"	$70 \quad 32$
16	E	201	012	"	6610
17	l	302	023	"	5930
18	\Re	403	034	"	$56 \quad 28$
19	j	504	045	"	54
20	f	101	011	"	$48 \quad 33$
21		607	076	"	$\begin{array}{ll}44 & 07\end{array}$
22	K	203	032	"	3702
23		102	021	"	2930
24	L	103	031	"	2041
25	Ω	130	301	$17 \quad 39$	$90 \quad 00$
26	ϕ	120	201	$25 \quad 22$	a
27		590	905	2743	"
28	σ	110	101	4254	-
29	5	320	203	5349	
30	ζ	210	102	6047	"
31	r	730	307	$64 \quad 07$	"
32		520	205	6530	"
33	M	410	104	7316	"
34	r	$\overline{8} 10$	108	$\begin{array}{ll}\overline{8} 5 & 02\end{array}$	"
35		$\overline{7} 10$	107	$\overline{83} 59$	"
36		$\overline{6} 10$	106	$\begin{array}{lll}\overline{8} \overline{2} & 36\end{array}$	"
37		$\overline{11.2 .0}$	2.0.11	$\overline{81} 43$	"
33	${ }^{\mu}$	510	105	$\begin{array}{lll}\overline{80} & 39\end{array}$	"
89		19.4.0.	4.0.19	$\overline{80} 03$	"

Number	Letter	Miller Symbol	Miller Symbol	ϕ	σ
40		14.3 .0	3.0.14	$\overline{79}{ }^{\circ} 50{ }^{\prime}$	$90^{\circ} 00^{\prime}$
41	D	410	104	$\overline{77} 48$	-
42	F	$\overline{7} 20$	$\overline{2} 07$	$\overline{75} 48$	"
43		10.3.0.	3.0.10	$\overline{75} 00$	"
44		13.4.0	4.0.13	$73 \quad 59$	"
45	A	$\overline{3} 10$	$\overline{103}$	$\overline{7} \overline{3} \quad 11$	"
46		İ.4.0	4.0.11	$\begin{array}{lll}71 & 33\end{array}$	"
47	J	$\overline{5} 20$	$\overline{2} 05$	69 98	"
48	n	210	102	$\begin{array}{ll}64 & 37\end{array}$	"
49		$\overline{3} 20$	203	$5 \overline{7} 06$	"
50	N	750	507	$55 \quad 10$	"
51	T	540	405	5153	"
52		13.11 .0	$\overline{11.0 .13}$	$\begin{array}{ll}\overline{5} \overline{0} & 14\end{array}$	"
53	θ	110	101	$\begin{array}{ll}45 & 15\end{array}$	"
54	$\mathfrak{}$	$\overline{8} 90$	$\overline{9} 08$	4145	"
55	W	650	605	$\overline{3} 951$	"
56	B	450	$\overline{5} 04$	$\overline{3} 8 \quad 44$	"
57	κ	$\overline{3} 40$	403	$\overline{36} 49$	"
58	η	230	$\overline{3} 02$	$33 \quad 36$	"
59		$\overline{350}$	$\overline{5} 03$	$\begin{array}{ll}\overline{3} \overline{0} & 45\end{array}$	"
60	\mathfrak{F}	470	704	$\overline{29} \quad 31$	"
61		$\overline{8} .15 .0$	15.0 .8	$2 \overline{7} 49$	"
62	v	$\overline{120}$	$\overline{2} 01$	$\overline{26} \quad 17$	"
63	\mathfrak{M}	6;13;0	$\overline{1} \overline{3} ; 0 ; 6$	$24 \quad 28$	"
64	\mathfrak{X}	370	$\overline{7} 03$	$\overline{22} \quad 53$	"
65		$\overline{8} .19 .0$	$\overline{19} .0 .8$	$\overline{22} \quad 30$	"
66	ψ	I30	$\overline{3} 01$	$\begin{array}{ll}\overline{1} 8 & 06\end{array}$	"
67		270	$\overline{7} 02$	$\begin{array}{ll}15 & 37\end{array}$	"
68	h	122	221	$25 \quad 22$	5251
69	s	111	111	4255	5857
70	P	322	223	5350	$64 \quad 33$
71	p	211	112	$60 \quad 48$	$68 \quad 54$
72	,	522	225	$\overline{6} \overline{9} \quad 39$	7205
73	Q	$\overline{2} 11$	I12	$64 \quad 43$	$68 \quad 12$
74	z	$\overline{7} 44$	447	6116	6603
75	u	$\overline{3} 22$	223	$57^{\circ} 06^{\prime}$	$63^{\circ} 40^{\prime}$
76	x	111	$\overline{111}$	$45 \quad 15$	$57 \quad 52$
77	k	$\overline{122}$	$\overline{2} 21$	$\overline{26} 17$	5156
78	π	144	441	$13 \quad 45$	$50 \quad 04$
79	5	177	$\overline{7} 71$	$\overline{7} \quad 55$	4933
80	q	221	212	4255	7315
81	γ	112	121	4255	3942
82	Σ	223	232	$45 \quad 15$	$46 \quad 42$
83	ν	$\overline{3} 35$	$\overline{3} 53$	*	4342
84	α	I12	121	"	$38 \quad 31$

Number	Letter	Miller Symbol (010)	Miller Symbol (001)	ϕ	o
85	m	$\overline{5} 52$	525	$\overline{45}{ }^{\circ} 15^{\prime}$	$75^{\circ} 55^{\prime}$
86	e	113	$\overline{1} 31$	"	$27 \quad 57$
87	r	212	122	$60 \quad 48$	5834
88		232	322	$33 \quad 33$	$65 \quad 57$
89	y	T21	211	$\begin{array}{ll}26 & 17\end{array}$	6836
90	z	141	411	$\overline{13} 46$	7806
91	ω	124	241	$25 \quad 22$	3325
92	τ	$\overline{3} 68$	683	$26 \quad 17$	4546
93	R	I24	241	"	3233
94	t	126	261	"	2303
95	t	$\overline{2} 47$	472	"	3605
96	\mathfrak{G}	1.2.10	$\overline{2} .10 .1$	"	1409
97	ξ	132	321	$\begin{array}{lll}17 & 39\end{array}$	6126
98	G	132	321	$\overline{18} \quad 07$	$61 \quad 12$
99	1	$\overline{1} 35$	351	"	3603
100	t	168	681	$\begin{array}{ll}\overline{9} & 13\end{array}$	4125
101	0	1.4.10	4.10.1	$\overline{13} 44$	$25 \quad 28$
102	1	1.6.10	6.10 .1	906	$35 \quad 34$
103	K	5.12.10	$\overline{12.10 .5}$	$22 \quad 18$	5408
104	J	213	132	$60 \quad 48$	$40 \quad 49$
105	χ	2.1.11	1.11.2	«	1315
106	i	2.1.10	1.10 .2	$\begin{array}{ll}64 & 37\end{array}$	1413
107	β	$\overline{236}$	362	$\overline{3} 3$	3418
108	T	3.4.12	4.12 .3	3508	2509
109	ρ	$\overline{4} 13$	I 34	$\begin{array}{ll}\overline{77} & 48\end{array}$	$57 \quad 24$
110	b	$\overline{8} 52$	528	$\begin{array}{lll}5 \overline{8} & 53\end{array}$	$\begin{array}{ll} 79 & 17 \end{array}$
111	S	512	125	$\overline{80} \cdot 41$	$70 \quad 45$
112	λ	3.2.18	2.18.3	$\overline{57} 06$	1239
113	δ	324	243	5357	$46 \quad 22$
114	d	$\overline{3} 24$	$\overline{2} 43$	5706	$45 \quad 17$
115	Δ	3.2 .10	2.10.3	"	2200
116	\%	8.9 .12	9.12 .8	3942	4944
117	e	524	$\overline{2} 45$	$\begin{array}{ll}69 & 38\end{array}$	$56 \quad 26$
118	H	7.4.10	4.10 .7	5740	4308
119	o	568	685	$37 \quad 57$	$48 \quad 58$
120	g	328	283	5320	$27 \quad 43$
121	Ф	$\overline{3} 27$	273	$57 \quad 06$	$29 \quad 20$
122	i	$\overline{6} 47$	476	*	$49 \quad 06$
123	1	315	153	$58 \quad 51$	3602
124	1	374	$\overline{7} 43$	$\overline{22} \quad 53$	$65 \quad 22$
125	z	728	287	7121	46.14
126	¢	$\overline{3} 57$	573	$\overline{30} 46$	43 '27
127	(524	245	$65 \quad 21$	5715
128	\mathfrak{U}	456	564	$36 \quad 51$	5129
129	(1	345	453	$35 \quad 07$	4941
130	\mathfrak{n}	123	231	$25 \quad 22$	4120

The gnomonic projecton on b (010), figure 40 shows the direction line of the base $2^{\circ} 25^{\prime}$ to the right of the 90° coordinate. The positive pyramids are in the lower right hand, and upper left hand, quadrants. A crystal is brought from the normal to this position by two 90° rotations:

1. A 90° rotation from front to back-making the front pinacoid polar.
2. A second 90° rotation from right to left-bringing the side pinacoid of the right end of the crystal polar.
The forms which were positive in the first position will still be positive. It is important to note that if the pole of the side pinacoid of the left end of the crystal is brought to the center of the projection, the direction line of the base will be on the left of the 90° coordinate. The position of the positive and negative pyramids is also reversed, i. e. the negative forms will lie in the lower, right quadrant. Therefore, if the right end of a crystal is measured in the side pinacoid position, the ϕ of the base will be $+87^{\circ} 35^{\prime}$ and the ϕ values of the other forms will agree, in sign, with the table. If the left end is measured, the base will have a ϕ value of $-87^{\circ} 35^{\prime}$. In this case the sign of all the ϕ angles must be reversed to conform to the orientation used in calculating the table.

THE ANGLES OF AZURITE FROM OTHER LOCALITIES

Azurite crystals from different localities were next studied to test the new calculated angles, and to determine, if possible, any actual variation in the angles of crystals from different localities. In the following tables the average measured angles, together with the calculated angles from this paper and the Winkeltabellen, are given for comparison. The relative weight to be accorded each form depends upon the number of measurements and quality of the reflection obtained from the face. Poor reflections are usually not included and the entries under the column marked "Signal" indicate:-E-excellent, G-good, F-fair, P-poor.

Chessy, France. Three specimens from this locality were obtained for crystallographic study. Most of the crystals are of the pyramidal habit forming a sub-parallel group on malachite pseudomorphs. Six such crystals were measured, but the signals were so confused that it was impossible to use them in checking the calculations. One vug, however, contained undisturbed crystals
elongated parallel to the b axis, and projecting into the cavity. Four of these crystals were measured, and gave good reflections.

Azurite from Chessy, France-Measured on $b(010)$

Letter	Signal	Number of faces	ϕ			p		
			Calculated		Measur'd	Calculated		Measur'c
			Winkeltabellen	This paper		Winkeltabellen	This paper	
c	F	2	$87^{\circ} 36{ }^{\prime}$	$87^{\circ} 35^{\prime}$	$87^{\circ} 39^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$
η	G	1	$3 \overline{3}$ 28	$\overline{3} \overline{3} \quad 36$	$\overline{33} 36$	"	"	
θ	E	1	4509	$45 \quad 15$	$45 \quad 12$	"	"	"
v	G	1	$\overline{2 \overline{6}} \quad 13$	$\overline{26} \quad 17$	$\overline{26} 07$	"	"	"
a	G	1	$\begin{array}{ll}0 & 00\end{array}$	$0 \quad 00$	006	"	"	$90 \quad 08$
m	G	1	$0 \quad 00$	000	000	$49 \quad 39$	$49 \quad 27$	$49 \quad 24$
h	E	1	$\begin{array}{ll}25 & 18\end{array}$	$25 \quad 22$	$25 \quad 27$	$53 \quad 02$	$52 \quad 51$	$52 \quad 50$
x	G	2	4509	$45 \quad 15$	$45 \quad 18$	$58 \quad 02$	57	5747
d	G	2	$\overline{57} 01$	5706	5	$45 \quad 24$	$45 \quad 17$	$45 \quad 18$
R	F	2	$26 \quad 13$	$\begin{array}{ll}26 & 17\end{array}$	$2 \overline{26} \quad 14$	$32 \quad 42$	$32 \quad 33$	$32 \quad 34$
f	G	2	$87 \quad 36$	$87 \quad 35$	$87 \quad 35$	$48 \quad 40$	$48 \quad 33$	$48 \quad 34$
p	E	2	8736	8735	8736	$29 \quad 27$	$29 \quad 30$	2930

The measured angles consistently agree more closely with the new calculations than with the corresponding values in the Winkeltabellen. The disagreement between the elements obtained from Chessy measurements and from other localities seems to depend on the quality of material available for the early studies, rather than upon any actual variation in angles.

Bisbee, Arizona. A very fine collection was available for study from this locality. Nine crystals were measured. Four of the most perfect were averaged to check the axial ratio.

Azurite from Bisbee Arizona-Measured on b (010)

Letter	Signal	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { faces } \end{gathered}$	ϕ			ρ		
			Calculated		Measur'd	Calculated		Measur'd
			Winkeltabellen	This paper		Winkeltabellen	This paper	
c	P	5	$87^{\circ} 36^{\prime}$	$87^{\circ} 35^{\prime}$	$87^{\circ} 42^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$
a	F	6	000	00	$0 \quad 00$	a	*	"
σ	P	4	4250	$42 \quad 54$	$42 \quad 58$	*	4	"
θ	F	4	$45 \quad 09$	$\overline{45} \quad 15$	$45 \quad 21$	"	4	"
m	G	7	000	$0 \quad 00$	$0 \quad 02$	$49 \quad 39$	$49 \quad 27$	$49 \quad 31$
w	G	2	$0 \quad 00$	$0 \quad 00$	$0 \quad 02$	$30 \quad 29$	$\begin{array}{ll}30 & 18\end{array}$	$30 \quad 10$
l	F	6	$87 \quad 36$	8735	$87 \quad 57$	$\begin{array}{ll}59 & 37\end{array}$	$59 \quad 30$	$59 \quad 21$
f	G	7	"	,	8740	$48 \quad 40$	$48 \quad 33$	$48 \quad 36$
p	G	7	"	"	$87 \quad 38$	$29 \quad 27$	$29 \quad 30$	2931
h	F	7	$25 \quad 18$	$25 \quad 22$	$25 \quad 39$	$53 \quad 02$	$52 \quad 51$	$52 \quad 54$
s	F	4	4250	4255	4303	5906	$\begin{array}{ll}58 & 57\end{array}$	$58 \quad 55$
P	F	2	5346	5350	$54 \quad 02$	$64 \quad 40$	$64 \quad 33$	$64 \quad 33$
γ	G	3	4250	$42 \quad 55$	$42 \quad 54$	$\begin{array}{ll}39 & 52\end{array}$	3942	3944
k	G	5	26 13	26 $\quad 17$	26 $\quad 18$	$52 \quad 08$	5156	5155
x	F	4	$\begin{array}{ll}45 & 09\end{array}$	$4 \overline{5} \quad 15$	$45 \quad 08$	$58 \quad 02$	$57 \quad 52$	5750
d	F	6	$\overline{57}$	$\overline{57} \quad 06$	$\overline{57} \quad 00$	$45 \quad 24$	$45 \quad 17$	$45 \quad 20$
e	G	7	$\overline{69}$	$\overline{69} \quad 38$	$\overline{69} 40$	5635	$56 \quad 26$	$56 \quad 27$
R	G	8	26 13	$\overline{2} \overline{6} \quad 17$	$\overline{26} \quad 15$	$32 \quad 42$	$32 \quad 33$	3233
u	F	1	$\begin{array}{ll}\overline{57} & 01\end{array}$	5706	$\overline{56} \quad 55$	6547	6340	$63 \quad 55$
ρ	G	4	$\overline{77} 46$	$\overline{77} \quad 48$	$\begin{array}{ll}77 & 35\end{array}$	$57 \quad 10$	$57 \quad 24$	57
q	F^{*}	4		4255	4303		7315	$73 \quad 23$
i	P*	3		$\begin{array}{ll}\overline{9} & 13\end{array}$	$\overline{10} \quad 20$		$41 \quad 25$	$40 \quad 46$
c	P*	2		13 44	1307		$25 \quad 28$	$24 \quad 10$
\Re	E*	1		8735	$87 \quad 33$		$56 \quad 28$	5635

* New forms

Laurium, Greece. Two specimens with brilliant azurite projecting into the opening of a partially filled veinlet yielded crystals of exceptional brilliance. These crystals are comparable to the Tsumeb suite in perfection and the angular agreement is correspondingly close. Four crystals were measured and averaged.

Azurite from Laurium, Greece-Measured on (010)

Letter	Signal	Number of faces	ϕ			ρ		
			Calculated		Measur'd	Calculated		Measur'd
			Winkeltabellen	This paper		Winkeltabellen	This paper	
c	G	6	$87^{\circ} 36^{\prime}$	$87^{\circ} 35^{\prime}$	$87^{\circ} 35^{\prime}$	$90^{\circ} 000^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00{ }^{\prime}$
a	E	8	$00 \quad 00$	$0 \quad 00$	001	$90 \quad 00$	$90 \quad 00$	$89 \quad 59$
σ	G	2	4250	$42 \quad 54$	4255	$190 \quad 00$	$90 \quad 00$	$90 \quad 00$
v	F	6	$26 \quad 13$	$\begin{array}{ll}26 & 17\end{array}$	2601	"	"	"
θ	F	7	$\begin{array}{ll}45 & 09\end{array}$	$45 \quad 15$	$45 \quad 15$	"	"	"
n	P	4	$\overline{64} 132$	$\begin{array}{lll}64 & 37\end{array}$	64 37	"	"	"
D	F	1	$\overline{77} 45$	$\overline{\mathbf{7 7}} \quad 48$	77 35	"	"	"
ψ	F	1	$\overline{18} 03$	$\overline{18} 06$	$\overline{17} 53$	"	"	"
T1.0.13	P	1		$\overline{50}$	$\overline{49} \quad 36$	"	"	"
4.0.11	P	2		$\overline{71} 133$	$\begin{array}{ll}71 & 37\end{array}$	"	"	"
A	F	1	$\overline{7} 307$	$\overline{7} 3111$	$\overline{7} 311$	"	"	"
4.0 .13	P	1		$\overline{7} 3$	$\overline{7} 4 \quad 00$	"	"	"
m	E	6	000	$0 \quad 00$	$0 \quad 01$	$49 \quad 39$	$49 \quad 27$	$49 \quad 26$
h	E	8	2518	$25 \quad 22$	$25 \quad 21$	5302	$52 \quad 51$	$52 \quad 51$
k	P	2	$\overline{2} 6 \quad 13$	$26 \quad 17$	$26 \quad 20$	5208	$51 \quad 56$	5155
x	G	4	$\overline{45} 09$	$45 \quad 15$	$45 \quad 21$	$58 \quad 02$	$57 \quad 52$	$57 \quad 53$
d	G	8	57 01	5706	57	$45 \quad 24$	$\begin{array}{ll}45 & 17\end{array}$	4516
e	G	6	$\overline{69} \quad 34$	$\begin{array}{ll}\overline{69} & 38\end{array}$	$\overline{69} \quad 40$	$56 \quad 35$	$56 \quad 26$	$56 \quad 26$
ρ	F	2	776	$\overline{77} 48$	$\overline{7} 758$	$57 \quad 10$	57	5708
R	E	6	26 13	$\overline{26} 17$	$\overline{26} 17$	$32 \quad 42$	$32 \quad 33$	3233
P	G	2	5346	5350	5350	$64 \quad 40$	$64 \quad 33$	$64 \quad 33$
s	E	4	$42 \quad 50$	4255	$42 \quad 54$	5906	$\begin{array}{lll}58 & 57\end{array}$	$58 \quad 57$
l	G	6	$87 \quad 36$	$87 \quad 35$	$87 \quad 33$	5937	$59 \quad 30$	5930
f	F	4	"	,	$87 \quad 33$	$48 \quad 40$	$48 \quad 33$	$48 \quad 32$
p	E	6	"	"	$87 \quad 34$	$29 \quad 27$	$29 \quad 30$	2930
\mathfrak{x}^{*}	Line	1		$\overline{30} \quad 46$	$\overline{32}$.		$43 \quad 27$	4310
${ }^{*}$	G	1		$\begin{array}{r}9 \\ \hline\end{array}$	$9 \quad 04$		$35 \quad 54$	$35 \quad 56$
\mathbf{u}^{*}	Dim	1		$\overline{18} \quad 07$	$\overline{17} \quad 39$		3603	3615
t^{*}	6.	1		$68 \quad 51$	6806		$36 \quad 02$	3705
3^{*}	"			$71 \quad 21$	7216		$46 \quad 14$	$46 \quad 40$

* New forms.

Kelly, New Mexico. Eight crystals were measured. Each crystal had from 25 to 40 faces, and four yielded over 35 readings. Measurements of the three most perfect crystals are included in the average.

Azurite from Kelly Mine, New Mexico-Measured on (010)

Letter	Signal	Number of faces	ϕ			ρ		
			Calculated		Measur'd	Calculated		Measur'd
			Winkeltabellen	This paper		Winkel tabellen	This paper	
c	F	4	$87^{\circ} 36{ }^{\prime}$	$87^{\circ} 35^{\prime}$	$87^{\circ} 37^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$
a	G	3	$0 \quad 00$	$0 \quad 00$	$0 \quad 00$	"		"
σ	F	2	$42 \quad 50$	$42 \quad 54$	$42 \quad 53$	"	"	$90 \quad 02$
v	P	2	$\overline{26} 13$	$26 \quad 17$	$26 \quad 45$	"	"	$90 \quad 00$
η	P	2	$\overline{3} 3 \quad 28$	$33 \quad 36$	उ3 28	"	"	"
θ	E	4	$45 \quad 09$	$45 \quad 15$	$45 \quad 15$	"	"	"
n	P	2	$64 \quad 32$	$64 \quad 38$	$64 \quad 37$	"	"	"
$\overline{11} .0 .13$	F	2		$5 \overline{50} 14$	4932	"	"	"
α	P	1	$69 \quad 34$	69 38	$\overline{7} 0 \quad 11$	"	"	"
$\overline{3} .0 .10$	F	1		$\overline{75} 00$	$\overline{7} 506$	"	"	"
5.0.3	Line	1		30 45	了 314	"	"	"
T	P	1	$51 \quad 47$	$51 \quad 53$	$53 \quad 25$	"	"	"
4.0.13	P	1		$\overline{7} 359$	7403	"	"	"
A	F	1	$\overline{7} 307$	$\overline{7} 311$	$\overline{7} 309$	"	"	"
F	P	1	$\overline{7} 544$	$\overline{7} 5 \quad 48$	$\overline{7} 6 \quad 02$	"	"	"
m	E	6	000	$0 \quad 00$	$\begin{array}{ll}0 & 01\end{array}$	$49 \quad 39$	$49 \quad 27$	$49 \quad 26$
w	E	4	000	$0 \quad 00$	$0 \quad 02$	$30 \quad 29$	$\begin{array}{ll}30 & 18\end{array}$	$\begin{array}{ll}30 & 18\end{array}$
l	F	3	8736	$87 \quad 35$	$87 \quad 39$	59	$59 \quad 30$	$59 \quad 31$
f	F	4	"	"	$87 \quad 39$	4840	48	$48 \quad 35$
p	G	5	"	"	$87 \quad 33$	$29 \quad 27$	$29 \quad 30$	$29 \quad 32$
h	E	6	$25 \quad 18$	$25 \quad 22$	$25 \quad 25$	5302	52	$52 \quad 51$
s	P	3	$42 \quad 50$	$42 \quad 55$	$43 \quad 08$	5906	58 57	$59 \quad 04$
P	P	2	5346	$53 \quad 50$	$53 \quad 47$	$64 \quad 40$	$\begin{array}{ll}64 & 33\end{array}$	$64 \quad 35$
γ	G	4	$42 \quad 50$	$42 \quad 55$	$43 \quad 01$	$39 \quad 52$	$39 \quad 42$	$39 \quad 42$
ω	E	5	2518	$25 \quad 22$	$25 \quad 24$	$33 \quad 36$	$33 \quad 25$	$33 \quad 26$
ρ	G	5	7746	7748	$\overline{7} 743$	57	57	57
d	G	4	5701	$57 \quad 06$	$57 \quad 07$	$45 \quad 24$	45	$45 \quad 16$
e	F	5	$\overline{69} \quad 34$	$69 \quad 38$	6952	56	$56 \quad 26$	$56 \quad 24$
R	F	3	$26 \quad 13$	$26 \quad 17$	$\begin{array}{ll}\overline{2} 6 & 07\end{array}$	$32 \quad 42$	$32 \quad 33$	$32 \quad 36$
δ	G	2	5346	$53 \quad 57$	$53 \quad 54$	46	46	$46 \quad 25$
u	G	1	5701	3706	$57 \quad 05$	$65 \quad 47$	$63 \quad 40$	$63 \quad 37$
q^{*}	G	2		$42 \quad 55$	$42 \quad 48$		$\begin{array}{ll}73 & 15\end{array}$	$73 \quad 22$
F*	F	1		906	$\begin{array}{ll}9 & 11\end{array}$		$\begin{array}{lll}35 & 34\end{array}$	$35 \quad 53$
${ }^{*}$ *	F	3		İ3 44	13 35		$25 \quad 28$	2530
m^{*}	G	4		$45 \quad 15$	$45 \quad 12$		$\begin{array}{ll}75 & 55\end{array}$	$75 \quad 56$
${ }^{\text {* }}$	P	3		$\overline{2} \quad 53$	$\overline{2} 250$		$\begin{array}{ll}65 & 22\end{array}$	$65 \quad 15$
i^{*}	P	1		5706	57		$49 \quad 06$	$49 \quad 34$
\mathfrak{b}^{*}	P	1		$\begin{array}{ll}57 & 06\end{array}$	$\begin{array}{ll}57 & 08\end{array}$		$\begin{array}{ll}29 & 20\end{array}$	$30 \quad 20$

* New forms.

Broken Hill, New South Wales. A single crystal, in habit and brilliance very similar to the Tsumeb crystals, was measured. Although the following table includes only the average of two faces for each form, the excellent crystallographic quality justifies its inclusion to check the calculated angles.

Azurite from Broken Hill, N. S. W.-Measured on (010)

Letter	Signal	Notices	ϕ			ρ		
			Calculated		Measur'd	Calculated		Measur'd
			Winkeltabellen	This paper		Winkeltabellen	This paper	
c	G	2	$87^{\circ} 36^{\prime}$	$87^{\circ} 35^{\prime}$	$87^{\circ} 39^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$
a	E	1	$0 \quad 00$	000	$0 \quad 02$	"	,	
σ	F	2	$42 \quad 50$	$42 \quad 54$	$42 \quad 50$	"	"	"
ϕ	P	1	$\begin{array}{ll}25 & 18\end{array}$	$25 \quad 22$	$25 \quad 56$	${ }^{\prime}$	"	"
η	G	2	$\overline{3} 328$	$33 \quad 36$	$\overline{3} 35$	"	*	"
θ	E	2	$45 \quad 09$	$45 \quad 15$	$45 \quad 11$	"	"	"
m	E	2	$0 \quad 00$	000	$0 \quad 03$	$49 \quad 39$	$49 \quad 27$	$49 \quad 26$
l	G	2	$87 \quad 36$	$87 \quad 35$	$87 \quad 36$	$\begin{array}{ll}59 & 37\end{array}$	$59 \quad 30$	$59 \quad 28$
f	E	2	-	"	$87 \quad 37$	$48 \quad 40$	$48 \quad 33$	$48 \quad 31$
p	E	2	"	"	$87 \quad 37$	$29 \quad 27$	$29 \quad 30$	$29 \quad 29$
h	G	2	$25 \quad 18$	$25 \quad 22$	$25 \quad 23$	5302	$52 \quad 51$	5249
s	G	2	$42 \quad 50$	$42 \quad 55$	$42 \quad 56$	59	$58 \quad 57$	$58 \quad 57$
γ	G	2	$42 \quad 50$	$42 \quad 55$	4308	$39 \quad 52$	$39 \quad 42$	$39 \quad 48$
r	F	2	$\overline{2} 6 \quad 13$	$26 \quad 17$	$26 \quad 12$	5208	$51 \quad 56$	$51 \quad 55$
R	F	2	$26 \quad 13$	$\overline{2} 6 \quad 17$	$26 \quad 17$	$32 \quad 42$	3233	$32 \quad 30$

Copiapó, Chile. Very small, needle-like crystals are clustered as a drusy coating on a specimen from this locality. The small size of the faces necessitates the use of the high-power magnifying lens in measurement. The signals are single and definite, and although the results are not quite as accurate as measurements on larger crystals, the following table can safely be interpreted as indicating that measured angles from this locality also are in close agreement with the new calculations.

Azurite from Copiapó, Chile-Measured on (010)

Letter	Signal	Number of faces	ϕ			ρ		
			Calculated		Measur'd	Calculated		Measur'd
			Winkeltabellen	This paper		Winkel tabellen	This paper	
c	G	2	$87^{\circ} 36^{\prime}$	$87^{\circ} 35^{\prime}$	$87^{\circ} 26^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$	$90^{\circ} 00^{\prime}$
a	F	2	$0 \quad 00$	$0 \quad 00$	$0 \quad 00$	"	"	
σ	Line	1	$42 \quad 50$	$42 \quad 54$	$42 \quad 22$	*	*	"
v	"	1	276	$26 \quad 17$	$26 \quad 18$.	
θ	F	1	$45 \quad 09$	$45 \quad 15$	$45 \quad 26$			
l	G	2	8736	$87 \quad 35$	$87 \quad 21$	$59 \quad 37$	5930	$59 \quad 29$
m	G	2	$0 \quad 00$	$0 \quad 00$	000	4939	$49 \quad 27$	$49 \quad 27$
h	G	2	$25 \quad 18$	$25 \quad 22$	$25 \quad 13$	$53 \quad 02$	$52 \quad 51$	$52 \quad 52$
s	F	2	$42 \quad 50$	$42 \quad 55$	$43 \quad 03$	5906	58	$58 \quad 57$
P	P		5346	$53 \quad 50$	$54 \quad 09$	$64 \quad 40$	64	$64 \quad 46$
R	G	1	$26 \quad 13$	$26 \quad 17$	$26 \quad 16$	$32 \quad 42$	32 33	$32 \quad 34$

CONCLUSIONS CONCERNING THE AXIAL RATIO OF AZURITE
In 1891, Farrington ${ }^{3}$ made the first crystallographic study of azurite from Arizona, and deduced the ratio: .85676:1:88603, $\beta=87^{\circ} 36^{\prime} 36^{\prime \prime}$. He says: "In the position adopted by Schrauf the vertical axis is given double the length of that in our position. Taking, therefore, one-half the value which he gives to c, his axial ratio is:

$$
\grave{a}: \bar{b}: c=.85012: 1: .88054, \quad \beta=87^{\circ} 36^{\prime}
$$

It will be seen that these ratios differ but little, the values for β being almost identical, while those for \grave{a} and c agree to the third decimal place. The author's value for \grave{a} is supported by several very accurate measurements of the prism $m \wedge m$, which in every case showed a close approximation to the angle $81^{\circ} 8^{\prime}$ instead of $80^{\circ} 42^{\prime}$ as given by Schrauf. Whether this variation is to be regarded as a fundamental difference in the prismatic angle of the crystals from the separate localities or, on the other hand, as so small as to be within the limits of error in observation, I cannot say. More data are needed for deciding the question. The most satisfactory measurements that could be obtained for judging of the correctness of the value assigned to c, were those of $c \wedge p$,

[^1]$001 \wedge 021$, and $p \wedge p, 021 \wedge 02 \overline{1}$. The measured and calculated angles compare as follows:

Calculated
Farrington Schrauf

$$
\begin{array}{llllll}
c \wedge p & 001 \wedge 021 & 60^{\circ} & 33^{\prime} & 60^{\circ} & 24^{\prime} \\
p \wedge p & 021 \wedge 021 & 58 & 56 & 59 & 12
\end{array}
$$

Measured
No. 1 No. 2
$60^{\circ} 29^{\prime} 60^{\circ} 30^{\prime}$
$\begin{array}{llll}59 & 1 & 59 & 6\end{array}$

From these it would seem that the true value of c is about a mean between that given by Schrauf and by the author. Here, again, more accurate measurements are needed."

The value of c, as derived from the Tsumeb crystals, is .8844a mean between the value assigned by Farrington and Schrauf.

The following table is taken from Farrington's paper with the addition of a column giving our calculated values for comparison.

Angles on the Orthopinacoid, $a(100)$ and $a(100)$-after Farrington

Letter	Symbol	Calculated			$\begin{gathered} \text { Crystal } \\ \text { No. } 1 \end{gathered}$	$\begin{gathered} \text { Crystal } \\ \text { No. } 2 \end{gathered}$	Other measurements
		Farrington	Schrauf	Palache \& Lewis			
m	(110)	$40^{\circ} 34^{\prime}$	$40^{\circ} 21^{\prime}$	$40^{\circ} 33^{\prime}$	$40^{\circ} 34^{\prime}$	$40^{\circ} 33^{\prime}$	$40^{\circ} 30^{\prime}$
w	(120)	5943	59 \% 41	5942			$60 \quad 17$
l	(023)	8756	$87 \quad 55.8$	8755		8756	
f	(011)	8812	$88^{7} 12$	8811		8816	
p	(021)	8850	$88^{-4} 49$	8849	8852	$88 \quad 50$	
σ	(101)	4253	4250	$42 \quad 54$	4246	$42 \quad 57$	4256
$Q(P$	(223)	5747	5742	5748	5740	$57 \quad 50$	
h	(221)	4356	$43 \quad 45.5$	4356	4350	$43 \quad 58$	
γ	(121)	627	6158	627		$62 \quad 12$	
x	(111)	$53 \quad 22$	$53 \quad 15.5$	5324	5331	5318	
k	(221)	$45 \quad 5$	4455	456	4519		
G	(321)	3335	$33 \quad 26$	$33 \quad 36$			3330
K	(12.10.5)	3948	$\begin{array}{ll}39 & 37\end{array}$	3948			39.55
F	(207)	7545	7544	7548	7556		7547
θ	(101)	4512	459	4515	$45 \quad 20$	$45 \quad 12$	
η	(302)	3330	$33 \quad 27.5$	3336			3.329

The measurements do not check closely with the calculated values, but the fact that our calculated angles agree so closely with Farrington's, shows that the variation is not to be regarded as "a fundamental difference in the prismatic angle from the separate localities." It has already been shown that measurements
on sufficiently perfect azurite from Chessy agree more closely with our calculations than with Schrauf's. Our study on azurite from Bisbee, Laurium, Kelly, Broken Hill, and Copiapó indicates that the Tsumeb elements are in accord with measurements from these localities. The conclusion seems justified that the axial ratio of azurite is constant for these different localities, and that the new tables have a general, rather than local, value.

General Features of Azurite from Tsumeb

Most of the specimens selected for study had the azurite crystals implanted without mutual interference. The crystals elongated parallel to c are usually attached to the matrix at one end of the vertical axis. Those elongated parallel to the ortho axis are usually attached at one end of this axis. Many doubly terminated crystals are found delicately attached to the matrix or perched on needles of malachite. Symmetrical development is the rule. Small or thin crystals are transparent and of a beautiful azure blue color, while the thicker or larger ones are much darker. Prismatic development of the orthodome zone is the most common habit. These crystals usually have a wealth of forms developed with brilliant faces and sharp angles. Vicinal, etch, and line faces are rare. No twinned crystals were observed.

The larger crystals are commonly composed of parallel aggregates of several individuals. Often a malachite pseudomorph core is observed with second generation azurite in parallel or subparallel position.

The photographs reproduced in this paper were taken by Mr. E. B. Dane, Jr., a student at Harvard University. The reproduction of the colored photographs was made possible through the generosity of Mr. E. B. Dane, of Brookline, Mass. The authors welcome this opportunity to express their appreciation of the careful work necessary to obtain the detail found in the illustrations.

HABIT OF AZURITE FROM TSUMEB

In attempting to classify such a large number of crystals, the futility of strictly defining habit is apparent. The following classification is not exhaustive, but indicates the most important modifications observed.

Habit I. Elongated parallel to the c axis.
Type 1. Tabular parallel to a (100). Figure 1. Plate I, figure 2.
Dominant-a (100).
Prominent- m (110), σ (101).
" 2. Prismatic. Figure 3. Plate I, figures 4 and 5.
Dominant-m (110).
" 3. Elongated pyramidal. Plate I, figure 6.
Dominant- h (221), m (110).
Prominent-clinodome zone.
Habit II. Essentially equant parallel to a, b, and c axes.
Type 4. Dominant- m (110) and striated negative orthodome zone. Plate II, figures 7 and 8.
" 5. Dominant-m (110), $c(001)$. Figures 10 and 11. Plate II, figure 9.
" 6. Dominant- m (110), $a(100), \sigma(101), \theta(\overline{101), ~} c(001)$. Plate II, figure 12.

Fig. 1. Azurite. Projections, in Normal Position, of Crystal of Type 1.

Plate I

Azurite of Type 1.

Fice 5
Azurite Transitional between Types 2 and 3.

Fte. 4
Azurite Transitional between Types 1 and 2

Fic. 6
Azurite of Type 3.

Plate I

Fig. 2

Fig. 5

Fig. 4

Fig. 6

Pseudo-rhombohedral Aspect of One Modification of Type 4.

Fig. 9
Azurite of Pyramidal Habit.

FTG. 8
Type 4. Simple Modification Dominated by Base and Prism.

Fic. 12
Azurite of Type 6.

Plate II

Fig. 7

Fig. 8

Fig. 12

Habit III. Elongated parallel to the b axis.
Type 7. Dominant in the orthodome zone-a (100). Figures 17 and 18. Plate III, figures 13, 14, 15, and 16.
" 8. Dominant in the orthodome zone--c (001). Figure 19. Plate IV, figures 20, 21, and 22.
" 9. Tabular parallel to striated negative orthodome zone approximating μ (105) in slope. Figures 23 and 24.
" 10. Plan of orthodome zone essentially equant. Figures 25 and 27. Plate IV, figure 26.

Habit IV. Tabular parallel to $c(001)$.
Type 11. Dominant--c (001). Figure 28.
" 12. Dominant--c (001). Figure 30. Plate IV, figure 29.

Fig. 3. Orthographic and Clinographic Projections of Azurite Crystal. Transitional between Types 1 and 2.

Habit I. Elongated parallel to the c axis.
Type 1. In this type the front pinacoid is dominant, and in the crystals examined m (110) , σ (101) v (201), and h (221) are prominent. All the forms observed on this type are: $a(100), m(110), \sigma(101), v(201), \theta(101), \sigma(001), h(221), b(023)$, f (011). Figure 1 shows the relative development of the forms. The crystals on specimen 87475 have a maximum size of $1.5 \times .8 \times .3 \mathrm{~cm}$, and an individual crystal is illustrated in plate I, figure 2. Other specimens of this type are present in the collection, but no other forms were observed.

Type 2. The representative reproduced in plate I, figure 4 , and figure 3 shows the forms: $m(110), a(100), c(001), \sigma(101), v(201), \eta(302), \theta(\overline{\mathrm{I}} 01), f(023), f(011)$, $h(221), s$ (111). In the crystals studied, $a(100)$, and m (110) dominate, and $c(001)$, $l(023), \sigma(101)$, and $\theta(101)$ are prominent. The crystal shown on plate I , figure 5 , is transitional between types 2 and 3 . The steep pyramid $h(221)$ is well developed, but the truncation by the base prevents the elongation of type 3 .

Type 3. The following list includes the most frequently occurring forms: m (110), $c(001), \phi(201), \sigma(101), v(\overline{201}), \eta(\overline{302}), \theta(\overline{101}), l(023), f(011), p(021), h(221)$. Other forms observed as small faces are: ($\overline{503}$), $s(111), \gamma(121), P(223), k(\overline{2} 21)$, R ($\sqrt{2} 41$), (771). The steep pyramid ©(771) has previously been reported from Tsumeb by Toborffy. ${ }^{4}$ On one crystal measured it occurred as a line face between $R\left({ }^{2} 41\right)$ and $n(110)$. The unit prism and pyramid $h(221)$ are dominant, and the clinodome zone is prominent. -The crystal shown on plate I, figure 6, is associated with divergent blades of malachite, and illustrates the zone of oscillation between pyramid and prism. Smaller azurite crystals less than 2 mm , in size are implanted on the malachite. Several large specimens in the collection have a steep slope due to the oscillation between h and m. Large sub-parallel aggregates are also common.

Habit II. Essentially equant parallel to the a, b, and c axes.

Type 4. Only five crystals of this type were observed. Plate II, figure 7, illustrates the pseudo-rhombohedral character resulting from the equal development of m (110) and the striated negative orthodome zone. The clinodome zone is prominent. The crystal shown on plate II, figure 8 is dominated by m and c.

Type 5. Symmetrical representatives are common in the collection. The equant habit of the crystal shown on plate II, figure 9 results from the approximation of the prism angle to a right angle, and the truncation of h by the base. Figure 10 shows the dominance of m and c and the prominent development of h (221), $P(223), \beta$ (362), and the clino and orthodome zones. Figure 11 shows a different modification. The following list includes the forms observed on crystals of this type: m (110), $a(100), \sigma(101), \phi(201), \theta$ (101), $v(201), \eta(302), c(001), l(023)$, $f(011), p(021), h(221), P(223), k(221), \varepsilon(245), \beta$ (362). Farrington describes crystals of "Pyramidal Habit" corresponding to our crystals of types 3 and 5 . He says, "Aside from the one just mentioned (Chessy) and a crystal from Cornwall figured by Zippe, I have found no other figures of azurite where the pyramid h predominates. This habit therefore may be considered peculiar to the Arizona azurites."
${ }^{4}$ Toborffy, Zeit. Kryst., 1913, 52.

Azurite of Type 7 with Few Forms.

Fic. 1.
Azurite of Type 7 with Complex Terminations.

Fic. 16
Type 7. Terminations Dominated by Unit Prism

Plate III

Fig. 13

Fig. 15

Fig. 16

Fig. 14

Fig. 10. Orthographic Projection of a Crystal of Type 5.

Fig. 11. Orthographic Projection of a Crystal of Type 5 with Enlarged Clinodomes and Negative Pyramids.

Type 6. Plate II, figure 12 illustrates this type in which the front pinacoid is surrounded by a ring of well developed faces. The forms $a(100), m(110), \sigma(101)$, θ (101), and $c(001)$ are dominant, and $l(023), f(011)$, and $h(221)$ are prominent.

Habit III. Elongated parallel to the b axis.
Type 7. These crystals are elongated parallel to the b axis and flattened parallel to the front pinacoid. Many are tabular parallel to the front pinacoid, but crystals in which it is the most prominent face in the orthodome zone are included. The collection contains many excellent representatives and plate III, figures 13, 14, 15 and 16 , together with figures 17 and 18 illustrate the important modifications. The unit prism is the dominant truncation, but often the truncating forms are numerous. The forms observed are: $a(100), c(001), \sigma(101), \theta(\overline{101}), v(\overline{201}), \eta(\overline{302}), m(110)$, $w(120), l$ (023), $f(011), p(021), h(221), P(223), R(241)$.

Fig. 17. Orthographic Projection on the Side Pinacoid, and Clinographic
Projection in Normal Position, of Crystal of Azurite.

Fig. 18. Type 7. Orthographic Projection, on the Side Pinacoid, of Azurite Crystal Shown in Figure 16.

Fig. 19. Type 8. Orthographic Projection, on the Side Pinacoid, of Crystal Shown in Figure 20.

Fis. 21
Type 8. Dominated by λ.

Type 8. Clinodome Dominant.

Fic. 22
Crystal tabular parallel to c and μ.

Fic. 29
Type 12. Compare with Figs. 5, 6 and 9.

Fig. 26
Type 10. See Figure 25.

Plate IV

Fig. 21

Fic. 22

Fig. 29

Fig. 26

Type 8. The crystals are elongated parallel to the b axis with c (001) dominant in the orthodome zone. Many of the crystals are tabular parallel to the base. Figure 19 is a plan of the crystal shown on plate IV, figure 20. In this modification $\sigma(101)$ and a (100) are prominent in the orthodome zone, and $m(110)$ and the clinodome zone are the prominent truncations. Plate IV, figure 21 shows a simpler modification with m (110) and λ (2.18.3) the prominent truncations. Plate IV, figure 22 illustrates a mode flattened parallel to the base and truncated by the unit prism. The following forms were observed: ϵ (001), $a(100), \sigma(101), \theta$ ($\overline{0} \overline{1} 1)$, $v(\overline{201}), \eta(302), \mu(\overline{105}), m(110), w(120), l(023), f(011), p(021), h(221), P(223)$, $R(241), \lambda(2.18 .3)$

Type 9. These crystals are tabular parallel to the negative striated orthodome zone. The resultant slope of this striated zone approximates μ (105) and is conspicuous for the small angle made with the base. In appearance this type is similar to the previous one, but the striations on the large face makes it easy to identify. The truncations are usually not complex and may be grouped as two modifications. One in which the unit prism is the dominant truncation and the other dominated by the flat pyramid λ (2.18.3). Figure 23 illustrates a crystal with m as the dominant truncation. Figure 24 illustrates a modification in which the prism and clinodome form a frame for λ. The following forms were observed: $a(100), c(001)$, $\sigma(101), \theta(\overline{101}), v(\overline{201}), \eta(302), \mu(\overline{105}), m(110), l(023), p(021), d(\overline{243}), e(\overline{2} 45)$.

Fig. 23. Orthographic Projection, on the Side Pinacoid, of a Crystal of Type 9 with $m(110)$ Dominant.

Fig. 24. Orthographic Projection, on the Side Pinacoid, of a Crystal of Type 9 with $\lambda(2.18 .11)$ Dominant.

Type 10. These crystals have a stocky appearance due to the equant plan of the orthodome zone. Figure 25 is drawn from a crystal from a large vug, and plate IV, figure 26 illustrates the terminations of another such crystal. The crystals are of desirable size for measurement, and faces unusually clean-cut and brilliant. Eight were measured and included in the average used in determining the axial ratio. Figure 25 shows the prominence of m, and λ as truncations. The zone of the three positive pyramids shown is typical and useful in orienting unmeasured crystals. The following forms were observed: $a(100), c(001), \sigma(101), \theta(\overline{101})$, v ($\overline{20} 1$), η (302),μ (105) $l(023), f(011), p(021), m(110), w(120), h(221), s(111), P(223)$, γ (121), $k(221), R(\overline{241}), \alpha(121), \lambda(2.18 .3)$.

Figure 27 illustrates a modification in which the plan of the orthodome zone is similar to the one just described, but with λ as the only important termination. Crystals were observed in the collection where this pyramid was the only termination. The flat slope is very distinctive. In another modification λ is surrounded by a ring of narrow faces, as shown in figure 33. Forms observed on this mode are: $a(100), c(001), \sigma(101), \theta(101), v(201), \eta(\overline{3} 02), c(\overline{3} .0 .10), F(\overline{207}), l(023)$, p (021), m (110), $h(221), d$ (243), $e(245)$.

Fig. 25. Type 10. Orthographic Projection, on the Side Pinacoid, and Clinographic Projection in Normal Position, of Azurite Crystal. A very Common Habit.

Fig. 27. Type 10. Orthographic Projection, on the Side Pinacoid, of a Crystal of Type 10.

Fig. 28. Type 11. Orthographic and Clinographic Projections of a Crystal of Type 11.

Habit IV. Tabular parallel to c (001).
Type 11. The thin, platy crystals of this type were found on only three specimens. Figure 28 shows the development of forms. The clinodomes come to a sharp edge on the crystals from two specimens. On one the crystals have the side pinacoid present as a dull face, having more the appearance of being due to solution than to growth. This type is the only one on which the side pinacoid was observed. The equally developed ring of faces around the base is characteristic. The following forms were observed: c (001), a (100), m (110), $\sigma(101), \theta$ (101), η (302), l (023), u (223), b (010).

Type 12. These crystals are tabular parallel to the base, and the plan is dominated by the unit prism. Plate IV, figure 29, shows one of the crystals with c dominant, m and h prominent, and σ (101), ϕ (201), $l(023), f(011), p(021)$ and $\lambda(2.18 .3)$ present. Crystals with the modification illustrated in figure 30 are distinguished by the grouping of faces around the b axis. The forms observed are: $c(001), a(100)$, $\sigma(101), \theta(\overline{101}), \eta(302), m(110), w(120), l(023), f(011), p(021), h(221), k(\overline{2} 21)$, R (241).

Fig. 30. Type 11. Orthographic and Clinographic Projections. The Clinographic Projection is Turned 20° from the b axis.

DISCUSSION OF FORMS OBSERVED ON TSUMEB AZURITE

A gnomonic projection, on the side pinacoid, of the forms observed on azurite from Tsumeb is reproduced in figure 40. The strong zonal relations are well shown. The poles of the common forms fall on important points in the network. The pyramid $\lambda(\overline{2} .18 .3)$ is an exception to this rule. The following table shows graphically the forms observed on each type together with the relative development of the form. The last column sums the number of types in which each form occurs.

Figure 40. Gnomonic Projection on $b(010)$, of all reported forms for Azurite.

- New azurite forms. Forms observed on Tsumeb specimens. . Other reported forms
(See p. 101 for details of this projection.)

COMBINATION TABLE OF AZURITE FORMS FROM TSUMEB

	Symbol (001)	2000050	Habit I			Habit II			Habit III				Habit IV		
烒			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{2} \\ & \hat{H} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{y}{\omega} \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \\ & 0 \\ & n \end{aligned}$	$$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & H \end{aligned}$	$\begin{gathered} \text { N } \\ \stackrel{y}{\circ} \\ \stackrel{y y}{2} \end{gathered}$	$\left\lvert\,\right.$	$\begin{gathered} a \\ \dot{d} \\ \stackrel{\rightharpoonup}{0} \end{gathered}$	$\begin{aligned} & \underset{0}{9} \\ & \stackrel{0}{2} \\ & \Leftrightarrow \end{aligned}$		$\begin{gathered} \text { N } \\ \stackrel{0}{\circ} \\ \stackrel{\rightharpoonup}{E} \end{gathered}$	
a	(100)	(010)	x	x			-	x	x	X	X	x	-	x	10
c	(001)	(100)	-	x	-	x	x	X	x	x	x	x	x	x	12
b	(010)	(001)											-		1
m	(110)	(011)	X	x	x	X	x	x	X	x	x	x	-	x	12
w	(120)	(012)							-	-		-		-	4
σ	(101)	(110)	x	x	-		-	x	-	x	-	x	-	x	11
ϕ	(201)	(120)			-		-							-	13
θ	(101)	(110)	-	-	-		-	π	-	-	-	-	-	-	11
v	(201)	(120)	x	-	-		-		-	-	-	-			8
η	(302)	(230)		-	-		-		-	-	-	-	-	-	8
μ	(105)	(510)									x	x			2
f	(011)	(101)	-	-	-	-	x	-	x	x		-		-	10
l	(023)	(302)	-	x	x	-	x	-	x	x	x	-	x	-	12
p	(021)	(102)			-	-	-		8	X	-	-		-	8
h	(221)	(122)	-	-	x		X	-	-	-		-		-	9
s	(111)	(111)		-	-							-			3
P	(223)	(322)			-		-		-	-		-			5
γ	(121)	(112)			-							-			2
k	(221)	(122)			-		-					-		-	4
α	(121)	(112)										-			1
R	(241)	(124)			-				-	-		-		-	5
e	(245)	(524)					x				-				2
d	(243)	(324)									-				1
u	(223)	(322)											x		1
β	(362)	(236)					-								1
λ	(2.18.3)	($\overline{3} \cdot 2 \cdot 18$)								x	x	x		X	4

Legend:
$x=$ Form present as a well developed face.

- " " " "small face.

The numbers in the last column in the above table give a rough idea of the importance of the different forms.
c (001) was observed on every crystal examined. In habits tabular to it the base is present as a large square or rectangular face. In other cases it is usually present as a linear face. It is always brilliant but often gives double or multiple reflections.
m (110) was invariably present-usually with large faces. The signals normally yielded were single and strong and the angular variation found was slight.
$w(120)$ is usually present as a small face on crystals of habit III. In crystals similar to the one shown in figure 18 it forms a long narrow truncation of the unit prism. It is more often present as a small triangle as illustrated in figure 19.
$a(100)$ is usually present, either as a broad face or a long rectangle.
b (010) was only observed on one crystal, and then as a small, dull, line face. It may be considered an exceptional occurrence on azurite from Tsumeb. The recognition of the almost universal presence of the front and absence of side pinacoid is useful in orienting crystals for measurement.
$\sigma(101)$ is nearly always present, although often as a small face. The face is brilliant and yields a good reflection.
ϕ (201) is the only other positive orthodome observed, and it is not common. It occurs usually as a long narrow face truncating the edge between the faces of h (221), and narrowing to a point upon meeting $a(100)$ or $m(110)$. See plate II, figure 9 , and plate V, figure 29.

The negative orthodomes θ (T01), η (302), $v(201)$, usually occur together and in relatively equal development. Considering all the crystals observed the unit form is the best developed. Reference to the figures shows nearly all the crystals of habit III characterized by the presence of these three faces between the front pinacoid and base. The small angle between these faces is easily recognized.

The crystals of habit III usually have a striated negative orthodome face making a small angle with the base. This zone gives a long line of signals, and the signal corresponding to the average slope is that of μ (105). In drawing the crystals the pole of this face is used to represent this zone.

The clinodomes $l(023), f(011)$, and p (021) are present on most of the types. The three faces usually occur together. $l(023)$ was observed on all the types, $f(011)$ on ten, and $p(021)$ on eight. $l(023)$ is ordinarily the largest face of the three. p (021) is characterized by its wedge shape due to the steep slope at which it bevels the other forms. See figures 5,6 , and 9 .

The three positive pyramids h (221), s (111); and $P(223)$ form a characteristic zone with base and unit prism in crystals of type 10 . See figure 25.
$h(221)$ is present on nine of the types and largely developed in two. The most striking crystals observed are of type 3 where it dominates, resulting in an extremely elongated habit parallel to the c axis. The face is always clean-cut and sharp and gives an excellent signal.
s (111), and $P(223)$ are usually present as rectangular faces in zone with $h(221)$.
$\gamma(121)$ is not common and occurs only as a small face. See figure 26.
k (221) was observed on crystals of four types. The face is usually small, but gives a good reflection.
λ (2.18.3) is commonly developed with large brilliant faces. It occurs in only four types, but a large proportion of the crystals in the collection belong to habit III, and the importance of this form is, therefore, greater than would be indicated by the table. It commonly is the largest truncating face, and occasionally is the only one present. See figures $21,24,25,26$, and 30 . The signal given is excellent and undoubtedly the indices are correct.
R (241) is present as a small face on crystals of five types.
e (245) was observed on only two crystals. On the crystal illustrated in figure 11 it is present as a large striated face.

The negative pyramids d (243), u (223), $\beta(362)$ were observed only once as small faces.

Plate V

Fig. 31. Unaltered and Completely Altered Azurite in Contact.

Fig. 32. Large Azurite Crystal of Type 8 with Bayldonite.

Fig. 34
Azurite Altering to Malachite

Fio. 35
Pseudomorph Group of Malachite after Azurite.

Fig. 34

Fig. 35

MALACHITE PSEUDOMORPHS AFTER AZURITE

Among the very numerous specimens in the collection of malachite pseudomorphs after azurite a large part retain their original outline so perfectly that the forms can be identified with certainty. On some hand specimens a single generation of azurite crystals has been partly changed to malachite with an abrupt boundary between the fresh and altered material. This condition is illustrated in plate V , figure 31. A few crystals of azurite on the right are unaltered and show absolutely no signs even of etching. All the other crystals have been replaced by malachite. The crystals are completely interlocking where attached to the matrix, and at the contact between azurite and malachite pseudomorphs, a few crystals are partially altered. The alteration has the appearance of starting at some center and progressively attacking fresh azurite, completely converting each crystal to malachite and spreading to the next at the point of contact.

Plate VI, figure 34, illustrates a partially altered crystal. The malachite fibers radiate from one important center on the front pinacoid, and many interfering centers on the prism, giving a confused network of interwoven, splendant fibers. The front of the invading malachite is roughly concentric normal to the fibers. Several darker colored bands in the malachite may be seen surrounding the center of radiation. In this specimen the contact is uneven with many individual malachite fibers penetrating beyond the common front.

The pseudomorph group shown on plate VI, figure 35, is attached to limestone containing a network of small veinlets of azurite and malachite. The drusy surface is covered with needlelike crystals of smithsonite, stained brown at the tips. The small size of the radiating group of malachite fibers can be dimly seen, but no picture could do justice to the delicate coloring and velvety texture.

The largest pseudomorph in the collection is shown on plateVII, figure 36. Several individuals in parallel position form the complete crystal, $10 \times 10 \times 5 \mathrm{~cm}$. in size, but the prism and pinacoid faces form practically a continuous surface. Comparison with plate VII, figure 37, illustrates the coarser, sheaf-like arrangement of the fibers.

The specimen from Bisbee illustrated on the frontispiece is a large malachite pseudomorph partially covered by parallel azurite
crystals orientated to the original azurite axes. Similar examples were observed from Tsumeb. In some cases the azurite completely surrounds the malachite core. Figure 33 illustrates an example where the azurite wraps around the malachite pseudomorph without completely covering it. Apparently the pseudomorphs retain a structure adequate to control the orientation of later azurite deposited on their surface. The sequence of deposition of azurite, alteration to malachite, and later crystallization of azurite, indicates a delicate balance in the equilibrium relations.

The type of progressive alteration thus described for the figured specimens seems to be universal in the collection. A radiating fibrous or bladed structure of the invading malachite is the normal product of the change.

Fig. 33. Orthographic and Clinographic Projection of a Malachite Pseudomorph of Type 10 Partially Surrounded by a later Azurite Crystal in Parallel Position.

HABIT OF AZURITE FROM OTHER LOCALITIES AND FORMS OBSERVED

Azurite from Laurium, Greece
The crystals of the one specimen examined were elongated in the direction of the b axis, and tabular parallel to $\theta(\overline{1} 01)$. The habit is similar to that of crystals described by Zimányi ${ }^{5}$ from this locality.

The following combination table shows the forms observed on the five crystals measured. (See figure 38.)

[^2]

Large Pseudomorph of Malachite after Azurite.

Malachite Pseudomorph after Azurite.

Fig. 36

[^3]

Fig. 38. Orthographic Projection, on the Side Pinacoid, of an Azurite Crystal from Laurium, Greece.
$f(6.10 .1)$

Measured	¢	ρ
	$9^{\circ} 03^{\prime}$	$36^{\circ} 11^{\prime}$
	904	3556
Average ${ }^{7}$	904	3603
Calculated	906	3534
Δ	002	029

\mathfrak{r} (573) is present on two crystals ${ }^{-1}$ a narrow line face between, and in zone with, m (110) and d (243). The signal was faint and difficult to center accurately.
r (573)

$\Re(564)$ occurs as a line face between $l(023)$ and $h(221)$ and is in zone with them.

7 (564)	Measured	$\begin{gathered} \phi \\ 36^{\circ} 56^{\prime} \\ 37- \end{gathered}$	$\begin{gathered} \rho \\ 51^{\circ} 48^{\prime} \\ 51118 \end{gathered}$
	Average	37 -	5133
	Calculated	3651	5129
	Δ	009	004

$\mathfrak{D}(453)$ is also a line face and is in zone with $h(221)$ and $f(011)$.
(1) (453)

	ϕ	ρ
Measured	$37^{\circ} \mathbf{-}^{\prime}$	$49^{\circ} 30^{\prime}$
	36 -	4924
Average	3630	4927
Calculated	3507	4941
	123	014

\mathfrak{H} (231) was observed as a narrow face between h (221) and ω (241), and it is definitely in zone with these two.

\mathfrak{n} (231)	Measured	ϕ	${ }^{\rho}$
		$24^{\circ} 48^{\prime}$	$41^{\circ} 00^{\prime}$
		2510	4130
	Average	2455	4115
	Calculated	2522	4120
		027	005

$\mathfrak{u}(351)$ was observed only once as a line face between $R(241)$ and $m(110)$.

	φ	ρ
Measured	$17^{\circ} 39^{\prime}$	$36^{\circ} 15^{\prime}$
Calculated	1806	3603
Δ	027	012

t (153) was only observed once.

	ϕ	ρ
Measured	$68^{\circ} 06^{\prime}$	$37^{\circ} 05^{\prime}$
Calculated	6851	3602
Δ	045	103

z (287). A line face between $h(221)$ and $f(011)$ gave a dim signal.

	$\boldsymbol{\phi}$		
Measured	$72^{\circ} 16^{\prime}$		$\rho 6^{\circ} 40^{\prime}$ Calculated
	7221		4614
Δ	055		026

Ω (301) was observed twice as a line face on crystal 5 .

Measured	ϕ	ρ
	$18^{\circ} 32^{\prime}$	$90^{\circ} 00^{\prime}$
	1900	9000
Average	1844	9000
Calculated	1739	9000
	105	000

Azurite from Kelly, New Mexico

The crystals studied from this locality are of four distinct types. The numbering will follow the scheme employed for the Tsumeb crystals to avoid confusion.

Habit I. Elongated parallel to the c axis.
Type 2. Prismatic.
Dominant-m (110).
Prominent- a (100), $c(001)$, σ (101).
Type 3. Elongated pyramidal.
Dominant-m (110), h (221).
Prominent- $c(001), \sigma \cdot(110)$.
Habit III. Elongated parallel to the b axis.
Type 9. Tabular parallel to the negative orthodome zone.
Prominent in orthodome zone- $v(\overline{2} 01), \eta(\overline{3} 02), \theta(\overline{1} 01), n(\overline{1} 02), a(100)$, $c(001)$.
Dominant truncation- m (110), ρ (134).
Prominent truncation- $h(221), d$ (243).
Type 10. Plan of orthodome zone essentially equant.
Prominent in orthodome zone- $a(100), c$ (001), σ (101).
Prominent truncations- m (110), d (243), clinodome zone.

The table on page 117 gives the average angles for the forms measured. The following combination table shows the forms observed on the different types.

Combination Table of Forms on Azurite from Kelly, N. M.

New forms:
\mathfrak{p} (112). This form was observed as a line face in zone between $\epsilon(001)$ and P (223). The signal was not sharp but could be read to the nearest degree.

	ϕ	ρ
Measured	$61^{\circ}-{ }^{\prime}$	$69^{\circ}{ }^{\prime}$
Calculated	$60 \quad 48$	$68 \quad 54$
Δ	$0 \quad 12$	006

f (6.10.1) occurred on crystal 3 giving a poor but definite signal. This form was first observed on Laurium crystals.

Measured	$9^{\circ} 18^{\prime}$	$35^{\circ} 57^{\prime}$
Calculated	906	$35 \quad 34$
Δ	$0 \quad 12$	$0 \quad 23$

i (476) also a line face giving a fair signal.

	ϕ	ρ
Measured	$\overline{57}^{\circ} 08^{\prime}$	$49^{\circ} 34^{\prime}$
Calculated	$\overline{57} 06$	4906
Δ	$0 \quad 02$	028

$\mathfrak{h}(273)$ was observed as a small face on crystal 3.

	ϕ		ρ	
Measured	57°	08^{\prime}	30	20^{\prime}
Calculated	$\overline{57}$	06	29	20
Δ	0	02	1	00

$\mathfrak{L}(743)$ is present as a large etch face on crystal 4. The signal was blurred but the second reading below was centered on a discernible signal.

Measured	ϕ		ρ	
	23°	30^{\prime}	65°	- '
	23	09	65	26
	21	52	65	-
Average	22	50	65	08
Calculated	22	53	65	22
Δ	0	03	0	14

\mathfrak{m} (525) forms well developed faces between $d(\overline{243})$ and θ (101) on crystals 4 and 5. The signals were good.

Measured	ϕ		ρ	
	45°	12^{\prime}	75°	53^{\prime}
	45	14	76	00
	45	07	75	54
Average	45	12	75	56
Calculated	45	15	75	55
Δ	0	03	0	01

c (4.10 .1) was present on crystal 5 as a good face giving a fair signal. It was also observed on Bisbee crystals.

	ϕ	ρ	
Measured	$\overline{13}{ }^{\circ} 36{ }^{\prime}$	25°	33^{\prime}
Calculated	I3 44	25	08
Δ	008	0	05

\mathfrak{q} (212) This form was present as two good faces on crystal 6, lying in zone between σ (101) and s (111). It is also present on Bisbee crystals.

Measured	ϕ		ρ	
	42°		78°	
	42	55	73	24
Average	42	48	73	22
Calculated	42	55	73	15
Δ	0	07	0	07

Azurite from Bisbee, Arizona

The crystals observed on six hand specimens studied belong to two types:

Habit III. Elongated parallel to the b axis.
Type 9. Flattened parallel to negative orthodome zone.
Prominent in orthodome zone-v $(\overrightarrow{2} 01), \eta(\overline{3} 02), \theta(\overline{1} 01)$.
These crystals were taken from the deeper workings of the Copper Queen Mine in 1909 and reach a length of 5 cm . with greatest diameter of 2 cm . They are implanted as a secondary growth in parallel position upon well formed pseudomorphs of malachite after azurite of even larger dimensions, the largest pseudomorph having a length parallel to the b axis of 7 cm . These characteristics are illustrated in the specimen shown on the colored plate. The azurite crystals are of magnificent blue color on the exterior but for the most part, when broken through, a green malachite center is visible which indicates that the second generation of azurite is also in process of alteration to malachite. Some of the crystals present both terminations with reference to the b axis and the quality of the faces except in the orthodome zone, which is somewhat striated, is of the best.

Three crystals were measured and the presence of the following forms shown in figure 39 in average development, was established.

Fig. 39. Clinographic and Orthographic Projections, on the Side Pinacoid, of Azurite from Bisbee, Arizona.
c (001), a (100), m (110), w (120), $l(023), f(011), p$ (021), σ (101), $\mu(\overline{105), ~} A$ (103), n (T02), 0 (T01), h (221), s (111), P (223), k (221), $q(212), R(241), \rho(\overline{1} 34), d$ (243), $e(245), \gamma$ (121), α (121).
Habit V. Tabular parallel to σ (101).
Dominant- σ (101)
Prominent- m (110), $h(221), l(023), f(010), \mathrm{p}(021)$.
Crystals of this habit occur as reticulated plates on a specimen from the Czar mine. The following forms were identified: $c(001), a(100), \sigma(101), v(201), \theta$ (101), m (110), l (023), f(011), p(021), $h(221), P(223), k(221), R(241), e(245)$.
New forms:
a (212). This form, which was also identified on the Kelly crystals, occurs as a large face between $\sigma(101)$ and $f(011)$.

Measured	ϕ		ρ	
	43°	23^{\prime}	73°	28^{\prime}
	43	06	73	16
	42	53	73	31
	42	51	73	09
Average	42	33	73	23
Calculated	42	55	73	15
Δ	0	22	0	08

i (681) occurs as a line face between $R(241)$ and $m(110)$ and is in zone with them.

Measured	¢		ρ	
				20
			40	-
	İ0	44	40	30
Average	10	22	40	37
Calculated	$\overline{9}$	13	41	25
Δ	1	09		

c (4.10.1) was identified on one crystal as a small face. It was first observed on Kelly specimens.

	ϕ		ρ	
Measured	13°	07'	24°	
Calculated	13	44	25	24
Δ	0	37	1	14

Azurite from Barnaul, Siberia

Etched azurite crystals associated with malachite coatings are found in cavities of a quartz vein. The crystals are elongated parallel to the orthodome zone and tabular parallel to $\theta(\overline{101})$.
Habit III. Elongated parallel to the b axis.
Type 9. Tabular parallel to θ ($\overline{10} 1$).
Dominant in orthodome zone- θ ($\overline{10} 1$).
Prominent in orthodome zone- a (100) and σ (101).
Prominent truncations- m (110), h (221), p (021).
The faces of the orthodome zone are only slightly etched but the truncating forms are badly pitted and it was often necessary to use alcohol to obtain a signal. The side pinacoid is always present as a rather large rectangular face.

Azurite from Copiapó, Chile

One hand specimen had small needle-like crystals of azurite forming a drusy coating. They are elongated parallel to the b axis and tabular parallel to the negative striated orthodome zone. The following forms were observed:
c (001), $a(100), \sigma$ (101) $, v(201), \theta(\overline{1} 01), m(110), l(023), p(021), h(221), s(111)$, R (241), and e (245).

Azurite from Chessy, France

The crystals from this locality that were quite perfect and used to check the axial ratio are elongated parallel to the b axis and tabular parallel to the base.

Habit III. Elongated parallel to the b axis.
Type 8. Tabular parallel to c (001).
Dominant in the orthodome zone-c (001).
Prominent in the orthodome zone- $v(201), \theta(\overline{101})$.
Prominent truncations- m (110), x (111).
The front pinacoid is absent and the sharp angle between negative orthodomes and the base gives a thin wedge-like appearance. The following forms were also observed: $f(011), p(021), h(221), R(241), e(\overline{2} 45)$.

[^0]: * Unpublished notes.
 ** Weighted average from the three localities-unpublished notes.
 ${ }^{2}$ C. Anderson, Jour. Proc. Roy. Soc. N. S. Wales, Vol. LI.

[^1]: ${ }^{3}$ C. C. Farrington, Am. J. Sc., Vol. XLI, April, 1891.

[^2]: ${ }^{5}$ K. Zimányi, Zeit. Kryst., 21, p. 86. 1882. The orthogonal projection shown in Fig. 22, Taf. V, of his paper illustrates the type observed on our crystals. This plan is reproduced in Goldschmidt's Atlas, Band V, Tafel 68, Figure 232

[^3]: * New forms

 The table on page 116 gives the average measured angles. New forms:
 $f(6.10 .1)$ was observed on two crystals. It forms a triangular face between m (110) and $p(021)$, and gives a sharp signal. It is also found on Kelly crystals.

