Every mineralogist who visits the Cripple Creek district is
astonished by the frequency with which assayers report sylvanite. Lately the writer has had the privilege of looking over about
fifteen hundred specimens assembled from almost every mine
in the district. A few specimens of telluride ores from the Blue
Bird and Gold Coin Mines seemed to exhibit a cleavage. The
telluride formed silvery scale-like coatings on the surfaces of
joints in the phonolite, and the individual grains were striated
on their larger surfaces by lines that strongly resembled those
characteristic of sylvanite. To make the matter more certain,
the mineral exhibited what appeared to be an excellent cleavage
(calaverite normally showing none). Upon testing a small frag-
ment with the blow-pipe, and parting the resulting button, no
appreciable silver was obtained; and a fire assay confirmed this
result. This suggested either a new gold telluride or an inter-
growth with some other mineral. A number of small fragments of
the material were then roasted in a muffle, and the explanation of
the "cleavage" immediately became apparent. Extremely
thin, transparent, anisotropic quartz films appeared, stripped
of their telluride covering, and an examination of the specimens
with a lens showed that these were the cause of the apparent
cleavage. They occurred parallel with the surface of each tellu-
ride grain, were thinner than paper, and along them the mineral
split. The films are especially remarkable for their parallel
orientation and their repetition within individual grains. The
latter phenomenon suggests pulsations in the deposition of the
ore minerals. This would indicate that there was within the
veins a quick alternation of highly heated vapors and circulating
waters, if the emanation theory of Lindgren and Ransome is
correct. It is quite possible, however, that hydrofluoric acid
gas may have extracted silica from the wall rock as vaporous
hydrofluosilicic acid, and some reaction may have taken place
to cause deposition of silica.

Supplementary Note on Thaumasite. Edgar T. Wherry.
Washington, D. C.

Since the appearance of my note on "Terminated crystals of
thaumasite" there has been received in this country from Stock-
holm, Sweden, a number of the Geologiska Föreningens Förhand-
lingar containing an article by Dr. G. Flink on the same mineral. 3
The angle α_p of his crystals averaged $47^\circ 35', \text{which, it is worth}
noting, is only $30'$ more than my result, and within the limit of
error of my measurements; the corresponding axial ratio being
$\varepsilon = 0.948$. The matter will be further discussed in my paper in
the Proceedings of the U. S. National Museum.