this discovery. The demonstration was very startling and impressive, and Mr. Lee's explanation of the cause was received with interest.

F. H. Pough, Secretary

PHILADELPHIA MINERALOGICAL SOCIETY

Academy of Natural Sciences of Philadelphia, October 1, 1936

Mr. Harold W. Arndt presided at a stated meeting, 48 members and 30 visitors being present. The following officers were elected: President: Harold W. Arndt; Vice-President: Dr. Joseph L. Gillson; Secretary: Wylie H. Flack; Treasurer: Morrell G. Baldwin; and Councillor: Charles R. Toothaker.

Mr. A. Wm. Postel of the Department of Geology of the University of Pennsylvania gave an illustrated talk on "The Geology of Southern California."

Trips were reported by: Samuel G. Gordon (Perkiomenville) exhibiting stilbite; Harry W. Trudell (Bernardville, N. J., Tilly Foster, N.Y., Westfield, Mass., and Portland, Conn.) collecting beryl, tourmaline, albite, apatite, and fluorite; Lawrence Wemple (Nova Scotia); Arnold Morris (Beatty Road) beryl and ilmenite; Adolph E. Meier (quarry below Crum Creek Falls) molybdenite and beryl; Louis Moyd (Easton and Boyertown) molybdenite, hematite; G. Earle Thompson (Bridgeport, Penn.) malachite, calcite, quartz; Leonard Morgan (Prospect Park, Paterson, N. J.) agate, quartz, and datolite; Edwin Roedder (Hillburn, N. Y.) pyrite; Charles R. Toothaker (Judds Bridge, Conn.) cyanite; Constantine Challis (Phoenixville, Penn.) pyromorphite and wulfenite, (Leiperville) beryl and garnet.

W. H. Flack, Secretary

NEW MINERAL NAMES

Parawollastonite

<table>
<thead>
<tr>
<th></th>
<th>Triclinic</th>
<th>Monoclinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a:b:c$</td>
<td>$1.0816:1:0.9649$</td>
<td>$1.0524:1:0.9649$</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
<td>$\beta=95^\circ24\frac{1}{2}'$</td>
</tr>
<tr>
<td>β</td>
<td>$95^\circ16'$</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>$103^\circ22'$</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.9169</td>
<td>0.9169</td>
</tr>
<tr>
<td>ϱ</td>
<td>0.9874</td>
<td>0.9606</td>
</tr>
<tr>
<td>μ</td>
<td>$84^\circ35\frac{1}{4}'$</td>
<td>$\lambda=88^\circ45'$</td>
</tr>
<tr>
<td>ν</td>
<td>$76^\circ34\frac{1}{2}'$</td>
<td>$\mu=84^\circ35\frac{1}{4}'$</td>
</tr>
<tr>
<td>X</td>
<td>1.620</td>
<td>1.620</td>
</tr>
<tr>
<td>Y</td>
<td>1.632</td>
<td>1.631</td>
</tr>
<tr>
<td>Z</td>
<td>1.634</td>
<td>1.633</td>
</tr>
<tr>
<td>X/α</td>
<td>$31\frac{1}{2}^\circ\pm3^\circ$</td>
<td>$34^\circ\pm3^\circ$</td>
</tr>
<tr>
<td>Y/β</td>
<td>$4^\circ\pm1^\circ$</td>
<td>0</td>
</tr>
<tr>
<td>$2V$</td>
<td>$39^\circ\pm3^\circ$</td>
<td>$44^\circ\pm3^\circ$</td>
</tr>
<tr>
<td>Occurrence</td>
<td>Contact metamorphic</td>
<td>In ejected blocks.</td>
</tr>
</tbody>
</table>

W. F. Foshag
Earlandite

Name: In honor of Mr. Arthur Earland, in recognition of his contributions to the study of ocean deposits.

Chemical Properties: Hydrated calcium citrate; Ca₃(C₆H₅O₂)₄·4H₂O. Analyses: (by E. Hope, on 3.6 mgs.) C 24.01, H 3.48, CaO 28.63, (by M. H. Hey on 1.8 and 4 mgs.) CaO 31.6 and 29.01. Soluble in dilute acid and decolorizes permanganate solution.

Physical and Optical Properties: Color pale yellow to white. n = 1.56. G = 1.80-1.95.

Occurrence: As very fine grained nodules, ½–1½ mm. in diameter, also larger fragments, in the sediments of Weddell Sea from a depth of 2580 meters, associated with quartz grains, foraminifera, etc.

W. F. F.

Unnamed

Chemical Properties: Probably calcium oxalate trihydrate, CaC₂O₄·3H₂O. (From comparisons with the artificial salt and the presence of lime.)

Crystallographical Properties: Tetragonal, bipyramids c: α = 30 35°, c: 7.37 ± 0.02 Å, c: 0.594. Space group C₄ᵥh = I 4/m.

Physical and Optical Properties: Transparent, colorless. ω = 1.523; birefringence 0.02.

Occurrence: Found sparsely distributed in the sediments of Weddell Sea at depths from 4434-5008 meters, as minute “envelope” crystals.

W. F. F.

Brickerite

Name: From the owner of the Lilli Mine, David G. Bricker.

Chemical Properties: An arsenate of zinc and calcium: Zn₃Ca₄As₄O₁₃. Analysis: (by Dr. J. Barrande-Hesse). CaO 14.84, ZnO 29.07, Fe₂O₃ 0.66, SiO₂ 1.65, As₂O₅ 40.84, CaCO₃ 10.46. Total 97.52.

Biaxial, positive. α = 1.752, β = 1.7555, γ = 1.779. 2V = 41°.

Occurrence: Found in veinlets and nodules in tuff, with quartz, chalcedony and calcite as a hydrothermal spring deposit.

W. F. F.

Metakernite

The sodium tetraborate dihydrate, Na₂B₄O₇·2H₂O formed from kernite by treatment with dehydrating agents or thermal treatment (100-120°) and which will regenerate to kernite with water vapor is called metakernite.

W. F. F.
DISCREDITED SPECIES

Gosseletite

A comparison of the properties of gosseletite with those of the viridine of Darmstadt suggests the probable identity of these two minerals. New data are given on the absorption spectra, as follows:

- \(\gamma \) = two bands in the green at 550\(\mu \mu \) and at 555\(\mu \mu \) and 560\(\mu \mu \).
- \(\beta \) = near the limit of the blue extending from 496 to 505\(\mu \mu \), and another at 550\(\mu \mu \).
- \(\alpha \) = same as for \(\gamma \) but more indistinct.

Matildite

Mineralographic studies of matildite and schapbachite show them to be regular intergrowths of a predominately rhombic, weakly birefracting mineral, with a well defined pseudo-cubic lamellar structure, and galena. The compound AgBiS\(_2\) is considered dimorphous: \(\alpha \) AgBiS\(_2\), a cubic high temperature form, and \(\beta \) AgBiS\(_2\), an orthorhombic low temperature form. The name matildite should be dropped in favor of schapbachite.

W. F. F.