NEW MINERAL NAMES

Torniellite

E. DITTLER AND F. KERNBAUER: Die Kaolinlager-stätte von Torniella (Mittelitalien). Zeits. Prakt. Geol., 45, 117-120 (1937) 4 figs.

NAME: From the locality, Torniella, Italy.

CHEMICAL PROPERTIES: A hydrous silicate of alumina. Analysis: SiO_2 33.45, TiO_2 tr., Al_2O_3 30.46, Fe_2O_3 0.27, MgO 0.02, CaG 0.01, Na_2O 0.03, K_2O 0.04, H_2O (over conc. H_2SO_4) 18.43, H_2O (—) 1.37, H_2O (+) 15.68, P_2O_5 0.48; sum 100.24. Decomposed slowly by concentrated HCl with separation of silica.

Physical and Optical Properties: Amorphous (Debye-Scherrer diagrams show only an amorphous halo). Color, pale yellow. Soapy feel, very porous, sticks to tongue. Hd. = 2.

G. = 2.432. Isotropic, *n* between 1.535-1.536.

OCCURRENCE: Found at Torniella, 56 km. south of Siena, as a hydrothermal alteration of a quartz trachyte dike, as a network of veins in ordinary kaolin used in ceramic and rubber manufacture.

W. F. FOSHAG

Yttrocolumbite

Charles Lepierre: Yttrocolumbite de Mocambique. Mem. Acad. Cien. Lisboa, Class Ciencias 1, 369-375 (1937).

NAME: In allusion to its composition.

CHEMICAL PROPERTIES: A columbate-tantalate of yttrium, etc. (Fe, Mn, UO₂)₂ (Cb, Ta)₂O₇–Y₄(Cb, Ta)₆O₂₁. Analysis: Ing. loss 1.33, Cb₂O₅ 31.21, Ta₂O₅ 21.50, Y group 14.06, Ce group 2.01, ThO₂ 2.65, SiO₂ 1.78, TiO₂ 1.20, ZrO₂ 0.25, Al₂O₃ 1.62, CaO 1.87, MgO 0.66, Fe₂O₃ 10.52, MnO 5.08, UO₂ 3.10, As₂O₅ 0.10, SnO₂ 0.66, Na₂O, K₂O, WO₃, P₂O₅ lacking; Sum 99.60%.

Physical Properties: Color, black; luster, brilliant. G. = 5.49, Hd. = 6.

Remarks: Stated to be similar to ampangabite (from which it differs considerably, but is very close to yttrotantalite. Abs.) Also called yttro-columbo tantalite.

W.F.F.

Kolskite

Hydrofosterite Karachaite Adigeite Deveilite Iskildite

N. E. Efremov: Classification of the minerals of the serpentine group. Compt. Rend. (Doklady) Acad. Sci. U.R.S.S., 22, No. 7, 432-435 (1939).

NAME: From the region where it was discovered, Kola.

CHEMICAL PROPERTIES: A hydrous silicate of magnesium, 5MgO·4SiO₂·4H₂O. Analysis: SiO₂ 43.78, Al₂O₃ 0.56, Fe₂O₃ 1.17, FeO none, CaO 0.41, MnO trace, MgO 37.01, NiO 0.11, CO₂ 0.56, H₂O (+) 13.04, H₂O (-) 3.02; Sum 99.66.

PHYSICAL AND OPTICAL PROPERTIES: Color white, sometimes with pale yellow tint. G. = 2.401. Hd. = 2-3. Fibrous to compact.

Biaxial, positive, $\beta = 1.542$. Birefringence low. Parallel extinction.

OCCURRENCE: Found as veins in the olivinites near Saig Lake, Kola.

DISCUSSION: The serpentine group is considered to consist of a series, made up of stoichiometric combinations of two end-members, hydrofosterite 2MgO·SiO₂·nH₂O and kerolite MgO·SiO₂·nH₂O. Serpentine has a theoretical formula 3MgO·2SiO₂·2H₂O. Some of these intermediate members have been named as follows:

Adigeite, Mt. Tkhach, North Caucasus, 5MgO·3SiO₂·2·5-4H₂O; Deveilite, 4MgO·3SiO₂·3H₂O; Paradeveilite, 4MgO·3SiO₂·3H₂O; Ishkildite, Ishkildino, Urals, 5.25MgO·4SiO₂·3.5H₂O; Kolskite, Kola Peninsula, 5MgO·4SiO₂·4H₂O; Karachaite,* Shaman-Beklegen, MgO·SiO₂·H₂O.

W.F.F.

* Abst. Am. Mineral., 23, 666-7 (1938).

Manganphlogopite

TOYOHUMI YOSIMURA: Studies on the minerals from the manganese deposits of the Kaso Mine, Japan. *Jour. Faculty Science, Hokkaido Imperial University*, Series IV, Nos. 3-4, Geol. and Mineral., 313-453 (1939), 19 plates, 13 text figs.

A phlogopite, rich in manganese (MnO 18.24%) occurring in irregular foliated crystals. $2E=0^{\circ}$. $\alpha=1.552$. G. = 3.21.

W.F.F.