NEW MINERAL NAMES

Tchinglusuite

(Chinglusuite)

Name: From the locality, Chinglusuai River, Kola, U.S.S.R.

Chemical Properties: A complex hydrous titanio-silicate of sodium and manganese, 2(Na,K)2O·5(Mn,Ca)O·3(Ti,Zr)O2·14SiO2·9H2O. Analysis: SiO2 39.50, TiO2 9.62, ZrO2 3.02, rare earths 1.18, ThO2 0.06, Al2O3 n.d., Fe2O3 0.34, FeO, n.d., CaO 1.75, SRO none, MnO 14.53, MgO none, Na2O 5.52, K2O 0.41, H2O(+110°), 7.92 H2O(−110°), 13.92, Cl, 0.12, F none, P trace. Sum 100.39, less O=Cl,F 0.02, Total=100.37 per cent. Does not gelatinize with acids. In conc. HCl decomposes easily without warming. In conc. HNO3 decomposes on warming. In conc. H2SO4 decomposes slowly upon heating. Spectrographic examination shows the rare earths to be chiefly Yb, Y, Ho.

Physical and Optical Properties: Grains about 0.5 cm. in diameter, crystals not observed. Color black. Streak brownish. Luster resinous. Cleavage lacking. Fracture uneven. Opaque. Hardness 2–3. Gravity by pyknometer 2.151 on a sample of 3.2518 g. In closed tube swells and easily melts to a dark-brown glass, almost black in color. With borax in oxidizing flame gives a bead of rather pale violet-rose color (both hot and cold), which fades in the reducing flame. Salt of phosphorus bead is pale yellowish-green in both oxidizing and reducing flames, the color disappearing on cooling.

In thin section pale yellow, in powder yellow-brown to black. Isotropic. Index of refraction 1.582. X-ray studies show the mineral to be amorphous, hence in the metamict state, probably due to the content of radioactive matter.

Occurrence: Found in pegmatites in the Chinglusuai River valley, Lovozero Tundra, Kola, U.S.S.R., with hackmanite, eudyalite, lamprophyrite, ramsayite, etc. Exact locality uncertain, as it apparently was found only in blocks of sodalite-syenite pegmatite in the stream debris.

J. P. MARBLE

Magnophorite

Name: Magnophorite, from its relationship to katophorite; a kali-magnesio-katophorite.

Chemical Properties: A member of the amphibole group; (Ca, Na, K)3,15 (Mg, Fe, Ti, Mn)4,22 (Si, Al, Ti)4,19O22 (OH, F), m. Analysis: SiO2 52.67, Al2O3 1.72, TiO2 3.53, Fe2O3 0.58, FeO 2.41, MnO 0.06, MgO 21.32, CaO 6.95, SrO 0.15; Na2O 3.64, K2O 5.70, H2O+0.46, F 1.29; Sum 100.48, less O=F 0.54; Total 99.94.

Physical and Optical Properties: Color pale reddish brown. Pleochroism, α= colorless to pale yellow, β= reddish, γ= pale to bright yellow, occasionally slightly greenish. Absorption β<γ<α. G = 3.12.

Biaxial, 2V=70°. Dispersion rather strong r<v. Optic plane (010). α=1.616, γ=1.632, γ−α=0.016.
NEW MINERAL NAMES

Occurrence: As an abundant essential constituent of the leucite lamproites (made up of diopside, phlogopite, magnophorite and leucite) from West Kimberley, Western Australia. A similar amphibole is found in the jumillites of Murcia, Spain, and the orendites of the Leucite Hills, Wyoming.

W. F. F. Foshag

Wadeite

Name: In honor of Dr. Arthur Wade, who collected the material.

Chemical properties: A silicate of potassium, calcium, zirconium, related to catapleite. Formula: essentially K$_2$CaZrSi$_2$O$_7$. Analysis SiO$_2$ 39.43, P$_2$O$_5$ 3.15, Al$_2$O$_3$ 5.98, Fe$_2$O$_3$ trace, TiO$_2$ 1.63, MgO 0.28, ZrO$_2$ 21.29, CaO 5.22, SrO 0.16, Na$_2$O 2.82, K$_2$O 18.40, BaO 1.20, H$_2$O + 1.30; sum 100.86. Insoluble in hot acids.

Crystallographic properties: Hexagonal. Habit, hexagonal shaped basal sections.

Physical and optical properties: Colorless. G = 3.10. Cleavage pyramidal, poor. Uniaxial, positive. $\epsilon =$ 1.655, $\alpha =$ 1.625, $\epsilon - \alpha =$ 0.030.

Occurrence: Found at the Wolgddie Hills, associated with magnophorite (vide supra) and making up 1 or 2 per cent of the rock.

W. F. F.

Magnesiumapjohnite
Manganpickeringite
Eisenpickeringite
Magnesiumhalotrichite

Intermediate members of halotrichite group.

W. F. F.

The Division of Geological Sciences of Harvard University, together with many friends and former students, tendered a dinner to Professor Charles Palache upon his retirement as Professor of Mineralogy and Curator of the Mineralogical Museum on Monday, February 5, 1940. After the dinner a portrait of the Professor was presented to the University in the Mineralogical Museum.

Professor Palache has served Harvard University for forty-five years and in these years the Department of Mineralogy and the Mineralogical Museum have grown into great prominence.

Teaching Fellowship in Mineralogy

A teaching fellowship in mineralogy has been established at Stanford University. The fellowship is open to graduate students who intend to specialize in mineralogy, and preference will be given to those who have had one or two years of graduate work. The chief work duty of the fellow is to assist in laboratory instruction. Not more than eight or nine hours a week will be required. The amount of the fellowship is $750.

Application for the year 1940–41, supported by testimonial letters should be made to Professor Austin F. Rogers, Box 87, Stanford University, California.