NOTES AND NEWS

BOUSSINGAULTITE FROM RESIDUE OF FIRE IN ANTHRACITE REFUSE BANK

(Contribution from the Central Experiment Station, Bureau of Mines, Pittsburgh, Pa.)

WILDER D. FOSTER

Introduction

This paper contains a description of the occurrence of boussingaultite, \((\text{NH}_3)_2\text{Mg(SO}_4)_2 \cdot 6\text{H}_2\text{O}\), following a fire in a bank of minus-eight-inch anthracite breaker refuse two miles west of Mahanoy City, Schuylkill County, Pennsylvania, in the Western Middle anthracite field.

A series of 17 holes was drilled into the refuse to locate the fire. The hole (No. 3) around which the boussingaultite was discovered was drilled until hot vapors were encountered at a depth of 158 feet. The temperature at the bottom of this hole was 370°C., while that in the other holes did not exceed 100°C. About 30,000 pounds of limestone dust in a 1 to 1 aqueous suspension was poured down this hole No. 3 to aid in extinguishing the fire. The dust was found, upon excavation of the burning refuse, to have spread 6 to 8 feet radially from the holes not in the hottest zone and to have traveled to the outer limits of the fire and deposited as a chalk-like mass from the holes in the hottest zone.

Discovery of the Boussingaultite

Pinkish crystals of boussingaultite were found, upon excavation of the burned refuse, filling cavities in the refuse near the edges of the deposits of the limestone dust. Refuse material (consisting of unburned, high-grade anthracite, bone coal, and slate) was found cemented together by some of the crystals. The presence of the unburned coal, which has an ignition temperature of 470°C., indicates that the sample was not heated higher than this temperature, even though the refuse reportedly burned to ashes. The boussingaultite evidently formed after the hot refuse cooled.

1 Published by permission of the Director, Bureau of Mines, U. S. Department of the Interior, Washington, D. C.
2 Assistant chemist-petrographer, Gas and Dust Section, Central Experiment Station, Bureau of Mines, Pittsburgh, Pa.
as ammonium-magnesium sulfate hexahydrate loses 86 to 87 per cent of its water at 120°C. and becomes anhydrous at 132°C., according to Mello.

6 Boussingaultite crystallizes, without decomposition, from an aqueous solution. Thus the formation of boussingaultite from components in solution would be expected upon evaporation or cooling of the solution.

Identification of the Boussingaultite

The crystals varied in color from colorless to a yellowish-pink and were about 1 mm. in diameter. Some had small faces. Most of the crystal fragments revealed, under the microscope, a centered optic normal interference figure due to the {010} cleavage. The material was biaxial positive with α = 1.471 ± 0.002 and γ = 1.479 ± 0.002, and had a moderate 2 V and a birefringence of 0.008. An extinction angle was not measured.

The material was soluble in water and yielded water upon heating in a closed tube. Ammonia and sulfate were found by chemical microscopy.

Considerable magnesium, a few tenths of one per cent of iron and manganese, and traces of calcium and silicon were found by spectroscopic analysis. The iron and manganese probably replaced some of the magnesium.

Probable Origin of the Boussingaultite

Ammonical compounds in the refuse probably supplied the ammonia for the boussingaultite. Leitch noted a faint odor of ammonia during the pouring of the limestone suspension. Liberation of ammonia was attributed to the action of free lime from the limestone on ammonical compounds in the refuse. The formation of an ammonium-calcium sulfate might be expected in the presence of the quantity of calcium carbonate present in the drill hole. An ammonium syngenite has been reported but it is stable only in strong ammonium sulfate solutions.

Magnesium in the limestone, in ankerite in the coal, and in the water of the limestone suspension probably supplied the magnesium. The lime-
stone, judging from analysis19 of samples from the vicinity of its origin14 (Bellefonte, Centre County, Pennsylvania), probably contained about 0.5 per cent MgCO\textsubscript{3}. Thirty thousand pounds of limestone with 0.5 per cent MgCO\textsubscript{3} would contain 150 pounds of MgCO\textsubscript{3}, which is equivalent to 640 pounds of boussingaultite. Some of the bone coal from the vicinity of the boussingaultite was found to contain a few per cent of ankerite. The water, judging from analysis of water from a nearby well15 and from the Susquehanna River16 (into which the region drains), contained only a few parts per million of magnesium, so the water was not an important source of the magnesium. Lansfordite and nesquehonite, the type locality of which is about 20 miles away,17 may have contributed some magnesium but none of these minerals were found in the samples of boussingaultite.

Sulfur compounds in the refuse probably supplied the sulfur for the sulfate. From 0.2 to 4.3 per cent sulfur was found18 in similar refuse.

\begin{itemize}
 \item Personal communication, George E. McElroy, senior mining engineer, Health Division, Central Experiment Station, Bureau of Mines, Pittsburgh, Pa.
 \item Jones, G. W., and Scott, G. S., Work cited in footnote 4, page 5.
\end{itemize}

\section*{NOMINATIONS FOR OFFICERS OF THE MINERALOGICAL SOCIETY OF AMERICA FOR 1945}

The Council has nominated the following for officers of the Mineralogical Society of America for the year 1945:

\textbf{President:} K. K. Landes, University of Michigan, Ann Arbor, Michigan.

\textbf{Vice-President:} George Tunell, Geophysical Laboratory, Washington, D. C.

\textbf{Secretary:} C. S. Hurlbut, Jr., Harvard University, Cambridge, Mass.

\textbf{Treasurer:} Earl Ingerson, Geophysical Laboratory, Washington, D. C.

\textbf{Editor:} Walter F. Hunt, University of Michigan, Ann Arbor, Michigan.

Following the decision of the Geological Society of America, there will be no meeting for the presentation of papers of the Mineralogical Society of America during 1944. Members of the Society may submit abstracts of scientific papers to be published in the March-April issue of the \textit{American Mineralogist}.

The ballots for officers of the Society and for candidates for fellowship will be sent out from the Secretary’s office early in October.

\textit{C. S. Hurlbut, Jr., Secretary.