URANIUM AND THORIUM IN THE ACCESSORY ALLANITE OF IGNEOUS ROCKS¹ WILLIAM LEE SMITH,² MONA L. FRANCK,³ AND ALEXANDER M. SHERWOOD, U. S. Geological Survey, Washington 25, D.C. ## Abstract Accessory allanite was separated from phanerocrystalline igneous rocks and its optical properties and radioactive components were compared. The indices of refraction of these allanite samples are higher than those from the pegmatites that are usually described in geologic literature. The birefringence was found to range from 0.015 to 0.021, the α -index of refraction from 1.690 to 1.775. The allanite content ranges from 0.005 to 0.25 per cent by weight in the rocks studied. The mineral is confined largely to the more siliceous phanerites. The uranium content is highest in the allanite from the granites sampled, ranging from 0.004 to 0.066 per cent, whereas the thorium content is high or low regionally, ranging from 0.35 to 2.33 per cent. Allanite was found to be otherwise of exceptionally uniform composition. ## Introduction Allanite, (RE,*Ca)₂(Fe,Al)₃Si₃O₁₂(OH), may occur as an accessory mineral in siliceous and intermediate igneous rocks, in limestone contact skarns, pegmatites, crystalline metamorphic rocks, and as a component of magmatic iron ores. The mineral is monoclinic and varies in color from light brown to black. Its hardness ranges from 5 to 6 depending upon its degree of alteration, and similarly its specific gravity varies from 3.4 to 4.2. Allanite is a member of the epidote group with rare earths substituting for calcium. Allanite is often found with epidote; some of it is intergrown with epidote (Hobbs, 1889). The metamictization of allanite produces an amorphous alteration product, and some allanite from pegmatite is completely isotropic. The alteration is inferred to be the result of the destruction of the crystalline structure of allanite by the radioactive decay of its uranium and thorium. ### MINERALOGY ## Separation methods In the granitic rocks that were studied, allanite was found to average 0.1 mm. in diameter. The rocks were pulverized on a roll-type crusher which liberated the allanite cleanly. The allanite was generally found to concentrate in the 100- to 200-mesh size fraction. Allanite concentrates ^{*} Rare earths. ¹ Publication authorized by the Director, U. S. Geological Survey. $^{^{\}rm 2}$ Present address: Minerals Benefication Div., Battelle Memorial Institute, Columbus, Ohio. ³ Present address: Ferro Corp., Technical Service Lab., Cleveland, Ohio. with the other accessory minerals in the sink of a methylene iodide separation (sp. gr. 3.33). It is easily separable from the other heavy minerals in a Frantz Isodynamic magnetic separator, allanite becoming magnetic between 0.4 and 0.6 amp. at cross and logitudinal settings of 10°. When epidote occurs with allanite, the separation becomes more difficult. The epidote floated and the allanite sank in methylene iodide saturated with iodoform (sp. gr. 3.45). Thus a minimum of hand-picking was required to obtain clean separates of the minerals. # Optical properties All of the allanite studied was optically negative. The indices of refraction of the allanite were generally higher than those described in literature. This may be because the minerals generally described are the more metamict varieties from pegmatites. It is likely that the allanite described here is more abundant and more typical of the fresh mineral than the larger specimens obtained from pegmatites. The optical data in Table 1 show that the α indices range from 1.690 to 1.775, β from 1.70 to 1.789, and γ from 1.706 to 1.791 with a possible error of ± 0.002 . Allanite is reported to have indices as low as n 1.60 Table 1. Indices of Refraction of Allanite from Igneous Rocks | Host rock | α | β | γ | Birefrin
gence | | |---|-------|-------|-------|-------------------|--| | Southern California batholith | | | | | | | Coarse phase | | | | | | | Granite from Rubidoux Mountain, Riverside | 1.775 | 1.789 | 1.791 | 0.016 | | | Fine Phase | 1 | | | 0.010 | | | Granite from Rubidoux Mountain, Riverside | 1.735 | 1.750 | 1.752 | 0.017 | | | Woodson Mountain granodiorite, Descanso | 1.745 | 1.760 | 1.763 | 0.018 | | | Woodson Mountain granodiorite, Temecula | 1.735 | 1.750 | 1.753 | 0.018 | | | Woodson Mountain granodiorite, Rainbow | 1.740 | 1.755 | 1.759 | 0.019 | | | Woodson Mountain granodiorite, Elsinore | 1.740 | 1.755 | 1.760 | 0.020 | | | Granodiorite, Stonewall formation, Cuyamaca | 1.705 | 1.717 | 1.720 | 0.015 | | | Mount Hole granodiorite, Mount Hole | 1.695 | 1.710 | 1.714 | 0.019 | | | Tonalite, Aguanga | 1.743 | 1.760 | 1.763 | 0.020 | | | Sierra Nevada batholith | | | | | | | Quartz monzonite, Basin Mountain
Idaho batholith | 1.750 | 1.766 | 1.770 | 0.020 | | | | | | l | | | | Porphyritic granodiorite, Cascade | 1.740 | 1.751 | 1.755 | 0.015 | | | Granodiorite, Stanley | 1.761 | 1.776 | 1.780 | 0.019 | | | Granodiorite, Atlanta | 1.752 | 1.768 | 1.771 | 0.019 | | | White Mountains, New Hampshire | | | | | | | Fresh Conway granite, Conway | 1.721 | 1.738 | 1.742 | 0.021 | | | Weathered Conway granite, Conway | 1.720 | 1.737 | 1.740 | 0.020 | | | Albany porphyritic quartz syenite, Passaconway | 1.690 | 1.700 | 1.706 | 0.016 | | among its isotropic varieties. The birefringence, $\gamma - \alpha$, is shown to vary from 0.015 to 0.021 in the specimens studied. The indices of refraction of allanite from a single rock were found to be variable. The indices listed are representative. In the fresh Conway granite the allanite varies in α index from 1.695 to 1.739, and in the Cascade granodiorite the allanite varies in α index from 1.740 to 1.760. There seems to be no clear relationship between the indices of refraction and the rock type. The Idaho minerals have consistently higher indices, whereas those from New Hampshire have lower indices. All of the allanite studied is from rocks of Late Jurassic or Cretaceous age (Larsen, 1948; Chapman, 1955; Hinds, 1934) with the exception of the New Hampshire samples which are of Mississippian age (Billings, 1945). ## CHEMISTRY ## Chemical analysis Chemical analyses (Table 2) of allanite from different areas and of different optical properties were made by Glen Edgington of the Geological Survey. Table 2. Chemical Analyses, in Per Cent, of Allanite from Cascade, Idaho; Conway, New Hampshire; and Riverside, California¹ | Constituent | Cascade
granodiorite | Conway granite | Granite from
Rubidoux Mountain
(fine), Calif. | |--|-------------------------|----------------|---| | SiO ₂ | 30.35 | 26.05 | 29.75 | | Al_2O_3 | 7.56 | 7.54 | 8.42 | | Fe_2O_3 | 18.14 | 17.01 | 20.68 | | CaO | 12.90 | 10.45 | 8.95 | | MgO | 1.43 | 0.81 | 0.91 | | MnO | 0.38 | 0.58 | 0.31 | | H ₂ O (total) | 2.00 | 5.60 | 2.40 | | Ce ₂ O ₃ | 11.06 | 12.45 | 11.38 | | Re ₂ O ₃ (other) | 15.69 | 18.69 | 15.81 | | (Total RE incl. ThO ₂) | (26.75) | (31.14) | (27.19) | | Total | 99.51 | 99.18 | 98.61 | | Determined on separate
samples by Sherwood ² | | | | | -ThO ₂ | 1.2 | 0.92 | 0.76 | | U | 0.0036 | 0.0540 | 0.0400 | ¹ Analyses made by methods outlined in Hillebrand and Lundell (1929) ² Uranium determined fluorimetrically. Thoria determined colorimetrically by thoron method. ## Spectroscopy Semiquantitative spectrographic analyses of nine allanites from igneous rocks are compared in Table 3. The minerals were separated from rocks of the White Mountains batholith of New Hampshire, the Southern California batholith, the Sierra Nevada batholith, and the Idaho batholith. The rocks include fresh and weathered alkalic biotite granites, a hypersthene-bearing leucogranite, four granodiorites, a quartz monzonite and a porphyritic granodiorite. Despite variations in the optical properties, color, abundance, and origin of these allanite specimens, they are remarkably alike in composition. Aside from the radioactive components, which are discussed separately, most of the variations in composition are within the limits of precision of the method. One immediately obvious fact is that each allanite contains the same 37 elements, with the exception of the absence of thulium from the Basin Mountain mineral and the absence of lutetium from the Cascade granodiorite mineral. The variations, which seem to be regional, are the higher content of Nb, Be, and Sn in the New Hampshire minerals, and the higher content of the elements Mn, Ti, Ni, and Cu in the Sierra Nevada specimen. Among the rare earths, in all samples the order of abundance is Ce,(La,Nd,Pr), (Sm,Gd), variable traces of Lu, Ho, and Eu. Tm is the least abundant. Of the cerium earths the order is Ce,(La,Nd,Pr), Sm, and Eu. Of the yttrium earths the order is (Gd,Dy), (Er,Yb,Lu), (Ho,Tm.) This distribution of rare earths shows the most pronounced cerium assemblage (Rankama and Sahama, 1950) of any of the rare-earth minerals. Goldschmidt and Thomassen (1924) describe six assemblages of rare earths occurring in minerals including an allanite-type assemblage containing the series La-Nd, minor amounts of Sm-Gd, and traces of other yttrium earths. The sensitivity of the spectrographic method used for Na is 0.01 percent, for K is 0.3 per cent, and for Li is 0.04 per cent. The most sensitive lines were not used for these analyses because their wavelengths are in the visible region of the spectra and the standard method covers from 2350~Å to 4750~Å. # Radioactive components Table 4 compares the Th and U contents, calculated eU, Th/U, and optical properties of ten of the allanite samples. This radioactivity, called calculated total eU in Table 4, is calculated (for beta counting), on the assumption of the secular equilibrium of both U and Th, by taking the sum of the per cent U and one-quarter of the per cent Th. The minerals contain no detectable potassium. Table 3. Semiquantitative Spectrographic Analyses of Allanite Analyst: Mona L. Franck | Rock | Fresh Conway
granite | Weathered Conway granite | Granite from
Rubidoux
Mountain,
fine phase | Woodson
Mountain
granodiorite | Woodson
Mountain
granodiorite | Granodiorite,
Stonewall
formation | Quartz
monzonite | Porphyritic granodiorite | Granodiorite | |---------------|---------------------------|---------------------------|---|-------------------------------------|-------------------------------------|---|------------------------------|--------------------------|------------------------| | Location | Conway, N. H. | Conway, N. H. | Riverside,
Calif. | Temecula,
Calif. | Descanso,
Calif. | Cuyamaca,
Calif. | Basin Mt.,
Calif. | , Cascade,
Idaho | Atlanta,
Idaho | | Per Cent | Si Fe | 5-10 | Ce Ca | Ce | Ce Ca Al | Çe | Ce Al Ca | Ce Al Ca | Ce Al | Ce Al Ca | Ce Al Ca | | 1-5 | Al La Nd Pr | Al Ca La Nd
Th Pr | La Nd Pr | Al Cs La Nd Pr | Nd La Pr | Nd La Pr | Ca La Pr Nd | La Nd Th Pr | Nd La Pr Th | | 0.5-1 | Th Y Mg | Y Mg | Th Y Mg | Mg Y Th | Y Mg Th | Th Y Mg | Mg Ti Mn | Mg | Y Mg | | 0.1-0.5 | Mn Ti Sm Zr
Gd | Zr Ti Sm Mn
Gd | Zr Ti Mn Sm
Gd | Ti Mn Sm | Ti Zr Mn Sm
Gd | Ti Mn Sm Gd | Th Y | Ti Mn Y Sm | Mn Gd Ti Sm | | 0.05-0.1 | Dy Sr Er Yb | Dy Er Yb Sr | Dy Er Yb | Gd Dy Er | Dy Er B Yb | Er Zr Dy Sr | Sm Zr Yb Dy
Gd | Sr Zr Gd | Dy Sr Er | | 0.01-0.05 | Ba Nb Pb V Sc
Lu Sn Ho | Nb Ba V Pb Sc
Sn Lu Ho | Sr V Pb Sc Ba
Ho Lu | Zr Sr V Yb Ba
Sc Pb | Sr Ba Pb V Sc
Ho Lu | V Yb Sc Ba B
Ho Lu Pb | Er Ba Sr Pb Sc
V Cu Ni Nb | Dy Er V Sc Ba
Pb Yb | Yb Zr V Sc Lu
Pb Ho | | 0.005-0.01 | B Eu Ga Ni | B Eu Ni Ga | B Eu Gd Ni | Ho B Eu Ga
Lu Ni | Eu Ni Ga Cu | Eu Ni Ga Cu | Eu B Ga
Lu Ho | Eu B Ga Ni | Nb Ba Eu B
Ga Ni | | 0.001-0.005 | Cr Be Cu Co
Tm | Cr Cu Be Co
Tm | Cr Nb Cu Co
Sn Tm | Cr Nb Tm Co
Cu Sn | Cr Nb Co Sn
Tm | Cr Nb Tm Co
Sn | Cr Co Sn | Ho Cr Cu Co
Sn Nb Tm | Sn Cr Cu Co
Tm | | 0.0005-0.001 | | | Be | | Be | | | | Be | | 0.0001-0.0005 | | | | Be | | Be | Be | Be | | TABLE 4. RADIOACTIVE COMPONENTS OF ALLANITE FROM IGNEOUS ROCKS | Rock and location | ī | Th1 | 1, 4F | Th as | Calculat-
ed total | Indices o | Indices of refraction | | |---|------------|-------|----------|----------|-----------------------|-----------|-----------------------|-------| | דיטפה מוות וסכמווטו | (per cent) | cent) | 1 II / O | Der cent | eU (per
cent) | ø | 7 | 7-0 | | New Hampshire
Weathered Conway granite, Conway | 0.0656 | 2.33 | 35.5 | 0.583 | 0.649 | 1.720 1. | 1.737 1.740 | 0.020 | | Fresh Conway granite, Conway | 0.0540 | 0.92 | 15.1 | 0.202 | 0.256 | 1.721 1. | | 0.021 | | Idaho | | | | | | | | _ | | Granodiorite, Stanley | 0.0040 | 1.14 | 286. | 0.286 | 0.296 | 1.761 1. | 1.776 1.780 | 0.019 | | Porphyritic granodiorite, Cascade | 0.0036 | 1.05 | 291. | 0.264 | 0.268 | | 1.751 1.755 | 0.015 | | Granodiorite, Atlanta | 0.0045 | 0.99 | 220. | 0.249 | 0.253 | | 1.768 1.771 | 0.019 | | California | | | | | | | | | | Granite from Rubidoux Mountain, fine, Riverside | 0.0400 | 0.67 | 16.7 | 0.167 | 0.207 | 1.735 1. | 1.750 1.752 | 0.017 | | Granodiorite, Stonewall formation, Cuyamaca | 0.0111 | 0.72 | 64.8 | 0.180 | 0.191 | | | 0.015 | | Woodson Mountain granodiorite, Temecula | 0.0055 | 0.56 | 101. | 0.141 | 0.146 | • | 1.750 1.753 | 0.018 | | Woodson Mountain granodiorite, Descanso | 0.0102 | 0.38 | 37.2 | 0.097 | 0.107 | 1.745 1. | 1.760 1.763 | 0.018 | | Quartz monzonite, Basin Mountain | 0.0078 | 0.35 | 44.6 | 0.088 | 0.096 | 1.750 1. | 1.766 1.770 | 0.020 | ¹ Analyst: A. M. Sherwood. Partly because of their similarity to the rare earths in ionic radius, uranium and thorium may be incorporated in the structure of allanite. The radioactive elements accompany the rare earths in many minerals, for example, in monazite, xenotime, bastnaesite, chevkinite, doverite, and keilhauite. In the rocks studied allanite has a lesser amount of radioac- Table 5. Uranium Content of Accessory Allanite and of Its Host Rocks Analysts: A. M. Sherwood, M. Molloy, and M. Schnepfe | Rock, location | U in allanite
(ppm) | U in rocks (ppm) | | |---|------------------------|------------------|--| | Granites | | | | | Biotite granite, weathered, Conway, N. H. | 656 | 12.0 | | | Biotite granite, fresh, Conway, N. H. | 540 | 13.0 | | | Leucogranite, fine, Riverside, Calif. | 400 | 3.7 | | | Leucogranite, coarse, Riverside, Calif. | 241 | 4.1 | | | Granodiorites | | | | | California | | | | | Mount Hole | 208 | 5.9 | | | Cuyamaca | 111 | 1.5 | | | Descanso | 102 | 3.7 | | | Temecula | 55 | 1.2 | | | Idaho | | | | | Atlanta | 45 | 2.3 | | | Stanley | 40 | 0.8 | | | Cascade | 36 | 1.1 | | | Quartz monzonites | | | | | California | | | | | Mt. Tom quadrangle | 91 | 7.7 | | | Mt. Goddard quadrangle | 79 | 5.8 | | | Mt. Goddard quadrangle | 78 | 3.8 | | | Big Pine quadrangle | 50 | 2.0 | | | Quartz syenite | | | | | Passaconway, N. H. | 39 | 4.6 | | tive elements captured in its structure than ziron, xenotime, or monazite, and it generally approximates the radioactivity of sphene, apatite, and the rare-earth carbonates. Table 4 shows thorium to be high in the New Hampshire and Idaho minerals and low in the California minerals, regardless of rock type. Uranium is seen to be high in the allanites from granites from both localities listed in Table 5. Figures 1 and 2 show the relation of the calculated total per cent eU to the birefringence and to the beta index of allanite samples. A black high-index allanite occurring in late calcite-celestite veins Fig. 1. Per cent eU as related to birefringence in allanite from New Hampshire ○, Idaho △, and California ●. cutting rare-earth-bearing carbonate rock from Mountain Pass, California (personal communication, H. W. Jaffe, 1955) has indices of refraction of α 1.790, β 1.812, and γ 1.818; a U content of 0.0018 per cent and Th in the range of 0.01–0.1 per cent. J. P. Marble (1940) described isotropic allanite from the Baringer Hill, Texas, pegmatite with n=1.716, as containing 0.715 per cent Th and 0.033 per cent U. Wells (1934) pre- Fig. 2. Per cent eU as related to beta index in allanite from New Hamphsire ○, Idaho △, and California ●. sented the analysis of allanite from a Wyoming pegmatite with 1.12 per cent Th and 0.017 per cent U. Hutton (1951) describes allanite from a pegmatite in Yosemite National Park, Calif., as containing 0.95 per cent ThO₂, 0.015 per cent UO₂, and optics α 1.769, β 1.782, and γ 1.791. In a microscopic study of five specimens of black, vitreous allanite from pegmatites by E. S. Larsen, Jr., of the Geological Survey (Watson, 1917) a range from the isotropic to the birefracting forms of the mineral is Table 6. Uranium Content of Epidote from California Rocks Analyst: A. M. Sherwood | Rock | Uranium in epidote
(ppm) | |--|-----------------------------| | Mount Hole granodiorite | 1310 | | Quartz monzonite, Mt. Goddard quadrangle | 220 | | Quartz monzonite, Big Pine quadrangle | 180 | described. The isotropic forms show indices of refraction from n=1.60 to 1.72. In a study of the radioactivity of allanite from igneous rocks Hayase (1954) concluded that thorium was the major radioactive component, ranging from 0.5 to 1.6 per cent. The uranium content of rocks varies regionally, and generally in each region the more siliceous rocks have the higher uranium content. The relationship of high uranium allanite to high uranium rocks is apparent from observation (Table 5), but it should be pointed out that only a per cent or two of the total uranium in the rocks is traceable to allanite. For comparison three samples of epidote were analyzed and show comparatively higher uranium contents for their rock type and area (table 6). Epidote is less abundant than allanite in the rocks studied. In all the rocks epidote was green and allanite was brown or black. ### PETROGRAPHY Allanite was found to be present in the rocks studied in amounts ranging from 0.25 per cent in the granodiorite from Cascade to 0.005 per cent in the granodiorite from the Stonewall formation. The abundance of allanite in a rock has no apparent direct relation to the uranium or thorium content of the rock or mineral and is not related to rock type or area. Of 81 rocks studied, 31 were found to contain allanite. No allanite was found in any of 10 siliceous lavas from the San Juan region of Colorado. None was found in five alkalic rocks from Sussex County, New Jersey. No allanite was found in any basalts, norites, gabbros, diorites, or nepheline rocks, although geologic literature describes occasional occurrences of allanite within such rock types (Iddings and Cross, 1885). Table 7 lists the incidence and abundances of allanite in five suites of allanite-bearing rocks. ## METAMICTIZATION Brögger (1893) in proposing the term metamict for certain rare-earth minerals suggested, "... The reason for the amorphous rearrangement of the molecules might perhaps be sought in the lesser stability which so | Location | Number of
of rocks | Number of | Percentage of allanite and rock type | | | | |---------------------------------|-----------------------|-----------|--------------------------------------|--------------------------------|---|--| | 130carion | studied | allanite | 0.X | 0.0X | 0.00X or less | | | Idaho batholith | 14 | 6 | 1 granodiorite | 2 granodiorites | 3 granodiorites | | | Sierra Nevada batholith, Calif | . 6 | 4 | - | 3 quartz monzo-
nites | 1 granite | | | Southern California batholith | 34 | 13 | I granite | 2 granodiorites
1 granite | 7 granodiorites
1 quartz syenite
1 quartz monzo
nite | | | Sterling batholith, R. I. | 4 | 3 | : | 1 granodiorite | 2 granites | | | White Mountain batholith, N. H. | 8 | 5 | 1 granite | 2 granites
1 quartz syenite | 1 granite | | TABLE 7. INCIDENCE AND ABUNDANCE OF ACCESSORY ALLANITE complicated a crystal molecule as that of these minerals must have in the presence of outside influences."* He implied that the rare-earth minerals were so complex as to prevent them from being permanently combined in the crystalline state—a definition no longer accepted. Des Cloizeaux and Damour (1860) noted that isotropic allanite became birefringent on heating and showed that both the isotropic and birefringent allanite existed both anhydrous and hydrated. Goldschmidt and Thomassen (1924) described the alteration of rareearth minerals from the crystalline to the glassy state. They concluded that the important factor is the weak chemical bonding between rare earths and weak acids (silicic, tantalic). Goldschmidt proposed that for metamictization to take place the crystal lattice must have a weak enough ionic structure to permit decomposition and hydrolysis. Also, he proposed that it is necessary that radiation provide the energy to discharge the ions of the rare-earth elements. This radioactivity could be either from within or from without the crystal. Metamictization would ^{*} Translated by A. Pabst (1952, p. 138). thus occur as the ionic bond breaks by hydrolysis, and the lattice becomes isotropic. Ellsworth (1925) stated that "... all minerals containing UO₂ automatically oxidize themselves at a rate depending on the rate of uranium and thorium decomposition." Hata (1939) in describing the weathering of allanite reports the altered portions as being conspicuously high in thoria and conspicuously low in the rare earths, as compared with the fresh part of the same mineral. As the result of leaching studies, Hata concluded that the alteration is likely to take place when the ratio of Fe₂O₃ to Al₂O₃ is less than 1.3 and the content of thoria is more than 1.5 per cent. The other variables and the relative proportions of the rare earths were found to have no influence on the alteration. Ueda and Korekawa (1954) suggest that the metamictization of allanite is due to the repeated expansion and quenching of the lattice, resulting in the formation of an aggregate of several phases in both the crystalline and amorphous state. Allanite shows various degrees of metamictization and, in the extreme cases of some pegmatite specimens, approaches isotropism. The alteration of the allanite is suggested to be due to radiation from the uranium and thorium components which breaks the ionic bonds and permits the entry of water into the lattice of the mineral. ## ACKNOWLEDGMENTS We wish to thank Professor Esper S. Larsen, Jr., of the Geological Survey who suggested this study and who checked the optical properties of many of the allanite samples. Thanks are also due to George H. Hayfield for assistance in mineral separations, and to Glen Edgington, Marjorie Molloy, and Marian Schnepfe, also of the Geological Survey, for chemical analyses. This work is part of a program conducted by the U. S. Geological Survey on behalf of the Division of Research of the U. S. Atomic Energy Commission. ### REFERENCES BILLINGS, M. P. (1945), Mechanics of igneous intrusion in New Hampshire: Am. Jour. Sci., 243-A, Daly Volume, 43. Brögger, W. C. (1893), Amorf: Salmonsens store illustrerede Konversationslexikon: 1, 742-743. Chapman, R. W., Gottfried, David, and Waring, C. L., (1955), Age determinations on some rocks from the Boulder batholith and other batholiths of western Montana: *Geol. Soc. America Bull.*, 66, 607-609. Des Cloizeaux, A., and Damour, A. (1860), Examen des propriétés optiques et pyrogénétiques des minèraux connus sous les noms de gadolinites, allanites, orthites, euxenite, yrite, yttrotantalite et fergusonite: Ann. chim. phys. (3), 59, 357-379. - ELLSWORTH, H. V. (1925), Radioactive minerals as geological age indicators: Am. Jour. Sci., 5th ser., 9, 127-144. - Goldschmidt, V. M., and Thomassen, L. (1924), Geochemische Verteilungsgesetze der Elemente III: Norske vidensk-akad. Oslo Arbok 5, 51-109. - HATA, S. (1939), The alteration of allanite: Tokyo Inst. Phys. Chem. Res., Sci. Papers, no. 923, 36, 301-311. - HAYASE, I. (1954), The radioactivity of rocks and minerals studied with nuclear emulsion. Pt. 2. Thorium content of granitic allanites: Kyoto Imp. Univ., Coll. Sci., Mem. ser. B, 21, no. 2, 171-183. - HILLEBRAND, W. F., AND LUNDELL, G. E. F. (1929), Applied inorganic analysis: New York, John Wiley & Sons. - Hinds, N. E. A. (1934), The Jurassic age of the last granitoid intrusives in the Klamath Mountains and Sierra Nevada, California: Am. Jour. Sci., 5th ser., 27, 182–192. - Hobbs, W. H. (1889), On the paragenesis of allanite and epidote as rock forming minerals: Am. Jour. Sci., 38, 223-228. - HUTTON, C. O. (1951), Allanite from Yosemite National Park, Tuolumne Co., Calif.: Am. Mineral., 36, 233-248. - IDDINGS, J. P., AND CROSS, W. (1885), On the widespread occurrence of allanite as an accessory constituent of many rocks: Am. Jour. Sci., 3d ser., 30, 108-111. - MARBLE, J. P. (1940), Allanite from Barringer Hill, Texas: Am. Mineral., 25, p. 168-173. PABST, A. (1952), The metamict state: Am. Mineral., 37, 137-157. - RANKAMA, K., AND SAHAMA, TH. G. (1950), Geochemistry, Univ. Chicago Press. - UEDA, T., AND KOREKAWA, M. (1954), On the metamictization: Kyoto Imp. Univ., Coll. Sci., Mem., ser. B, 21, no. 2, 151-162. - Watson, T. L. (1917), Weathering of allanite: Geol. Soc. America Bull., 28, 463-500. - Wells, R. C. (1934), Allanite from Wyoming: Am. Mineral., 19, 81-82. Manuscript received November 11, 1956