
Hale, D. R. (1950), *Ceramic Age*, 56, 22.

THE AMERICAN MINERALOGIST, VOL. 46, MARCH-APRIL, 1961

COMMENT ON "GROWTH AND PROPERTIES OF COLORED QUARTZ"

Rustum Roy, *Department of Geophysics and Geochemistry, The Pennsylvania State University.*

The interesting results of Ballman (preceding article) on the differences in concentration of various ions in the different crystallographic zones suggest the following explanations which supplement or modify the author's conclusions.

(1) Keith and Tuttle (*Am. J. Sci.*, *Bowen Volume*, 1952, p. 203) found a similar zoning of alternate "segments" of different color in natural quartz (after irradiation). It is interesting to note that such crystals as well as those grown by Ballman provide examples of the chemical inhomogeneity of a "single phase" which still qualifies as a phase in the context of the Phase Rule.

(2) Ballman suggests that a "carrier ion must be used for charge balance" in order for ferrous or ferric ion to be included in the quartz structure. Since their valence is also lower than Si$^{4+}$, it is obvious that the elements suggested (Be$^{2+}$, Mn$^{2+}$) cannot form half-breed derivatives...
such as (for example) P5+ serving as a ‘carrier’ for Al3+ and together proxying for 2Si4+. It may be implied that Be2+ could accept interstitial sites, which is feasible, but it would be much less likely that Mn2+ would do so.

Energetically, what appears to be most likely is that a stuffed derivative is formed rather than adding ions in interstitial sites. Thus, Be2+IV replaces Si3+IV with Mn2+, Fe2+ and Fe3+ being added in the stuffing site to balance the loss of charge.

Alternatively, Fe3+, Be2+ for Si4+ with Mn2+, Fe3+ (and remaining Fe3+ if any) in the stuffing site.

If Fe3+ were in lattice sites rather than Fe2+ it would require that twice as many total charges be realized by the stuffing ions. In fact, the analysis of Fig. 5 cannot be quantitatively explained on the basis of any of these schemes, since the atomic concentration of Be is too high to be compensated for by putting all the iron and manganese in the stuffing site. If this amount of Be2+ is actually incorporated, almost certainly one should detect by infra-red spectroscopy appreciable (OH)- proxying for O2-.

The absorption due to Fe3+, Fe2+ or Mn2+ in the stuffing site will, of course, not be the same as the absorption in other commoner crystal fields and hence one cannot extrapolate from the color of known compounds to the ‘color’ of an ion in an interstitial or stuffing site.