THIERSCHITE (= WHEWELLITE)

Clifford Frondel, Department of Geological Sciences, Harvard University, Cambridge, Massachusetts.

The name, thierschite, was given by Justus Liebig in 1853 to an unanalyzed calcium oxalate found as a coating on the marble of the Parthenon, Athens. It was considered by J. D. Dana in the 1854 edition of The System of Mineralogy to be probably identical with whewellite, CaC₂O₄·H₂O, and the same opinion is expressed in most more recent references to the mineral. X-ray and optical study of an authentic specimen obtained from the Vienna Natural History Museum, through the courtesy of Dr. Alfred Schiener, Curator of Minerals, established that the substance consisted of desiccated vegetal material, perhaps a lichen, that contained embedded microscopic grains of whewellite. The crystallization of CaC₂O₄·H₂O and CaC₂O₄·2H₂O (wedellite) in the cells of certain plants is well known, the earliest description dating from 1675, and is the subject of an extensive literature (von Philipsborn, 1952, 1954).

References


NON-EXISTENCE OF NATIVE TANTALUM

Clifford Frondel, Department of Geological Sciences, Harvard University, Cambridge, Massachusetts.

Type specimens of the native tantalum described by Walther (1909) and by his associate von John (1910) from gold washings at Nizhniy Tagil in the Urals and from the Altai Mountains, Russia, recently were obtained with the purchase of the collection of the late P. Walther by the Harvard Museum. Re-examination of this material has shown that it is in fact tantalum carbide and not tantalum. The specimens give identical x-ray diffractometer patterns that agree with the data given on ASTM¹ card 6-0524 for synthetic TaC (Table 1). TaC is isometric, with a NaCl-type structure (Schwartz and Summa, 1933); specific gravity 14.5.