PHYSICAL PROPERTIES OF SYNTHETIC BIOTITES ON THE JOIN PHLOGOPITE-ANNITE¹

DAVID R. WONES, U. S. Geological Survey, Washington 25, D. C.

ABSTRACT

Indices of refraction, α , γ , n (average of an aggregation); d_{060} ; and unit-cell parameters have been measured for synthetic biotites on the join phlogopite-annite, which have been synthesized and annealed at a variety of pressures, temperatures, and oxygen fugacities. Regression coefficients relating physical properties to Fe/(Fe+Mg) have been computed for biotites annealed at oxygen fugacities defined by the assemblages $Fe_{1-x}O-Fe_3O_4$, $Fe_2SiO_4-SiO_2-Fe_3O_4$, Ni-NiO, and $Fe_3O_4-Fe_2O_3$. Systematic variations in the physical properties are observed with changes in both Fe/(Fe+Mg) and oxygen (hydrogen) fugacities. These variations are attributed to the presence of "oxyannite" $KFe^{2+}Fe_2^{+3}AlSi_3O_{12}$ molecule in the biotite solid solutions.

INTRODUCTION

The relationship existing between the chemical composition and the physical properties of biotites has been the subject of several investigations, the most recent compilations being prepared by Deer et al. (1962) and Radoslovich (1962). In a study concerning the phase equilibria of synthetic biotites intermediate to phlogopite $[KMg_3AlSi_3O_{10}(OH)_2]$ and annite $[KFe_3AlSi_3O_{10}(OH)_2]$ it was found necessary to determine Fe/(Fe+Mg) ratios of fine-grained biotites (1–50 microns) coexisting with sanidine and magnetite by means of optical and x-ray measurements. This paper summarizes the results of measurements in graphic and analytic expressions relating indices of refraction, do60, and unit-cell parameters with the Fe/(Fe+Mg) ratio of biotites synthesized and "annealed" under given conditions of pressure, temperature, and oxygen (hydrogen) fugacity.

The term "annealed" describes the process of subjecting a synthetic biotite to a given temperature, total pressure and oxygen fugacity for a given length of time. This process differs from synthesis in which the biotite is crystallized from a mixture of other phases.

SYNTHESIS: CONTROL OF VARIABLES

The biotites prepared for this study were synthesized by the techniques described by Eugster and Wones (1962) in their study of annite. K_2O and SiO_2 were weighed as potassium silicate glass of the composition $K_2O \cdot 6SiO_2$, prepared and crystallized using the technique of Schairer and Bowen (1955) and under Schairer's direction. Iron was weighed as Fe_2O_3 (J. T. Baker Lot No. 4137) or as $FeC_2O_4 \cdot 2H_2O$ (Fisher Lot No. 541312). The oxalate was analyzed by E. G. Zies and

¹ Publication authorized by the Director, U. S. Geological Survey.

found to contain, by weight, Fe, 30.54 per cent; Mg, 0.21; Mn, 0.07; Na, 0.13; Ca, 0.04; and C_2O_4 , 49.04. MgO was weighed as periclase (J. T. Baker Lot No. 82735). Al₂O₃ was prepared as γ -alumina by heating AlCl₃·6H₂O at 700° C. for one hour (see for example, Stirland, et al. 1958). The γ -alumina was examined by x-ray diffraction techniques and also found to be optically homogeneous.

The mixtures of reagents were weighed out in a ratio corresponding to $K_2O \cdot Al_2O_3 \cdot 6SiO_2 \cdot 6(FeO + MgO)$. These mixtures were then ground in an agate mortar under acetone for one hour. For producing bulk quantities of biotites, oxalate mix was placed in an unsealed silver capsule which in turn was placed in a sealed platinum tube containing water and oxalate mix. The oxygen fugacity (or perhaps more important, hydrogen fugacity) was controlled by diffusion of hydrogen through the platinum tube (Eugster and Wones, 1962). When gold tubes were used in conjunction with oxalate mixes, the slower rate of hydrogen diffusion maintained highly reducing conditions and graphite crystals were observed in the products of the experiments. Preliminary synthesis was carried out at 500° C. 2070 bars (30,000 psi) for a period of 48 hours. The resultant biotites were dried at 120° C. for about 10 minutes and then "annealed" under buffered conditions in order to determine the physical properties as a function of the Fe/(Fe+Mg) ratio and the oxygen (or hydrogen) fugacities of the experiment. The biotites synthesized without buffers (at the oxygen fugacity controlled by the pressure vessel) have low indices of refraction, and yield x-ray diffraction patterns with diffuse reflections, as compared to the "annealed" biotites. This phenomenon is similar to that observed by Yoder and Eugster (1954, 1955) for poorly crystallized micas in their studies of synthetic muscovite and phlogopite.

The buffers used are listed in Table 1 which is from the compilation of Eugster and Wones (1962). As the oxygen fugacities are calculated from gas equilibria measurements or thermodynamic data, they are referred to as fugacities rather than pressures.

An experimental difficulty was to keep the iron content of the charge constant, as iron alloys with platinum under the more reducing conditions of the experiments buffered by Fe_{1-x}O-Fe₃O₄ assemblages. Silver foil capsules were used in the center of the charge (Eugster and Wones, 1962) so that only in the portions of the charge adjacent to the platinum tube did leaching occur. The material within the silver capsule was used for the measurements. Results of these experiments were identical to those obtained from experiments in which the silver-palladium tubes, as suggested by Muan (1962), were used.

The values of Fe/(Fe+Mg)[0.169, 0.352, 0.550, 0.765, 0.880, 0.939] correspond to values of weight per cent annite [20, 40, 60, 80, 90, 95].

Buffer	$\operatorname{Log} f_{0_2}$	$= -\frac{A}{T} + B + C\frac{(P - 1)^2}{2}$	<u>- 1)</u> Γ
	A	В	С
Fe ₂ O ₃ -Fe ₃ O ₄	24912	14.41	0.019
Fe ₃ O ₄ -Fe _{1-x} O	32730	13.12	0.023
Fe _{1-x} O-Fe	27215	6.57	0.055
NiO-Ni	24709	8.94	0.046
SiO ₂ -Fe ₂ SiO ₄ -Fe ₃ O ₄	27300	10.30	0.092

Table 1. Oxygen Fugacities of Oxygen Buffers (Eugster and Wones, 1962)

As the data are more useful in terms of atomic ratios, they have been recast in that form.

OPTICAL PROPERTIES

Indices of refraction were measured by oil immersion techniques using white light and oils calibrated at the time of measurement with a sodium vapor light source on an Abbé refractometer. The measurements were usually made to ± 0.002 to ± 0.003 , and very rarely to ± 0.001 . Dispersion did not interfere with these determinations.

The index of refraction, γ , is readily measured, and in all of these synthetic biotites $\beta \approx \gamma$, so that a pseudo-uniaxial indicatrix is observed. Because the biotites are very fine grained ($<50~\mu$) and oil wet, they float in the immersion oil with the {001} cleavage parallel to the vertical. Hence, the measurement of α is greatly facilitated. Finally, for these biotites, an index of refraction n could be obtained for aggregates at low magnification. This value is surprisingly close to the index calculated from either the formula

$$\vec{n} = \frac{\alpha + 2\gamma}{3}$$
 or $\vec{n} = \sqrt[3]{\alpha\gamma^2}$

(Larsen and Berman, 1934).

The data are presented in graphic form in Figs. 1, 2 and 3, and the regression coefficients, listed in Table 2, are of the form y=A+Bx where y is the particular physical parameter, x the Fe/(Fe+Mg) ratio of the biotite and A and B the regression coefficients. The individual sample data are presented in the appendix. The appendix includes data for phlogopite as well.

Regression coefficients were calculated for linear, quadratic and cubic expressions. The quadratic equations provided a slightly better fit than the linear. The cubic equations gave very poor results.

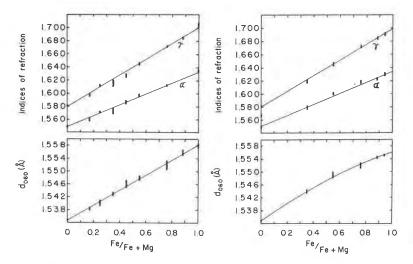


Fig. 1. Values of the indices of refraction and d_{060} x-ray reflection for biotites on the join phlogopite-annite. Light lines indicate regression equations of the form y=A+Bx, where x is the ratio Fe/Fe+Mg and y is the property in question; heavy lines indicate the experimental values and limits of error: a) biotites annealed at oxygen fugacities defined by wustite-magnetite assemblages; b) biotites annealed at oxygen fugacities defined by fayalite-quartz-magnetite assemblages.

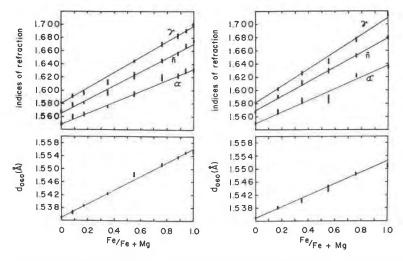


Fig. 2. Values of the indices of refraction and d_{060} x-ray reflection for biotites on the join phlogopite-annite. Solid lines indicate regression equations of the form y=A+Bx where x is the ratio Fe/Fe+Mg and y is the property in question; heavy lines indicate the experimental values and limits of error: a) biotites annealed at oxygen fugacities defined by nickel-nickel oxide assemblages; b) biotites annealed at oxygen fugacities defined by magnetite-hematite assemblages.

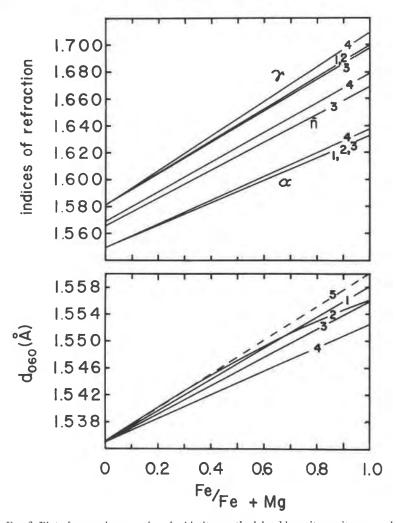


Fig. 3. Plot of regression equations for biotites on the join phlogopite-annite comparing results from differing conditions of annealing. Oxygen fugacities defined by the following assemblages: 1) Fe_{1-x}O-Fe₃O

The regression coefficients for the optical properties are essentially equivalent for biotites annealed at oxygen fugacities defined by $Fe_{1-x}O-Fe_3O_4$, $Fe_2SiO_4-SiO_2-Fe_3O_4$, and Ni-NiO buffers. However, the coefficient B, for biotites annealed at oxygen fugacities equivalent to $Fe_3O_4-Fe_2O_3$ assemblages is considerably larger than for the biotites annealed at more reducing conditions. The maximum birefringence

 $(\gamma - \alpha)$ is greater for the iron-rich biotites, than for the magnesium rich ones, and an expression for $(\gamma - \alpha)$ can be readily obtained by substracting the expression for α from that for γ .

X-RAY POWDER DATA

All x-ray diffraction patterns were obtained by powder techniques, using glass slide mounts with Norelco diffractometers. Films were used to observe weak reflections, but all data used in computing unit-cell parameters were obtained by measurement on a diffractometer with a silicon (a=5.4307 Å) internal standard. Measurements consisted of at least two oscillations between the 2θ values of the standard and unknown peaks. The uncertainties listed for d_{060} values in the appendix are the standard deviations determined from four or more measurements.

Malcolm Ross (pers. comm.) has pointed out to the author that the d_{060} may well be a doublet involving the $(\bar{3}31)$ reflection as well as (060). This fact will tend to decrease the reliability of the (060) as a measure of b, but the shift with composition has relatively little scatter as is seen by the errors quoted in Table 2. Hence the d_{060} has value as a measure of annite content in this solid solution series. The accuracy is also dependent on the true value of the cell parameters of the internal standard and the instrumental errors. The temperatures of the laboratories where the data were collected were in the range of $23^{\circ}-28^{\circ}$ C. Both FeK α and CuK α radiations were used in these measurements.

The unit-cell parameters were determined by a least-squares refinement of the x-ray powder data. The computations were carried out on the Burroughs 220 computer programmed by D. S. Handwerker, H. T. Evans, Jr. and D. E. Appleman of the U. S. Geological Survey. The basic problem in determining unit-cell parameters lies in establishing accurate values for a sufficient number of independent reflections. The majority of peaks in biotite powder patterns represent the superposition of several reflections. For this study the (003), ($\bar{1}13$), (004), ($\bar{1}32$), (005) and (060)/ $\bar{3}31$) reflections were measured for a majority, and with some samples the (110), (200)/($\bar{1}31$), ($\bar{1}33$)/(202), (006), ($\bar{1}35$) and (204) reflections were also measured. The d-spacings selected for determination of the unit-cell parameters of biotites are given in Table 3. The occurrence of doublets: (200)/($\bar{1}31$); ($\bar{1}33$)/(202); (060)/($\bar{3}31$); also increases the uncertainties. Table 4 lists the unit-cell parameters for 14 synthetic biotites.

The $(060)/(\bar{3}31)$ reflection demonstrated the greatest shift with changing Fe/(Fe+Mg), and the position of this reflection was measured for most of the biotites. The regression coefficients for d_{060} are given in Table 2, and the relationship of d_{060} to Fe/(Fe+Mg) is plotted in Figs. 1, 2

Table 2. Regression Coefficients for the Indices of Refraction, α γ n (Aggregate) d₀₆₀ X-Ray Reflection (Å) and Unit-Cell Parameters a,b,c and β (Å) for Biotites on the Join Phlogopite+Annite¹

	Property	Buffer	A	В	C	Std. Error
			1.5492	0.0829		0.0031
	α	Fe _{1-x} O-Fe ₃ O ₄	1.5497	0.0795	0.0037	0.0029
Optical			1.5800	0.1196		0.0054
	γ	Fe _{1-x} O-Fe ₃ O ₄	1.5808	0.1076	0.0142	0.0053
			1.5348	0.0234		0.0002
	dose	Fe _{1-x} O-Fe ₃ O ₄	2.0010			
			1.5348	0.0236	-0.0003	0.0002
			5.320	0.0742		0.006
	a	Fe _{1-x} O-Fe ₃ O ₄				
			5.328	0.025	0.048	0.004
			9.209	0.139		0.003
v-ray	b	Fe _{1-x} O-Fe ₃ O ₄				
			9.209	0.142	-0.004	0.003
			10,309	-0.006		0.010
	C	Fe _{1-x} O-Fe ₃ O ₄				
			10.312	-0.029	+0.023	0.010
			99.897	0.143		0.160
	β	Fe _{1-x} O-Fe ₃ O ₄	100.073	-0.069	+0.011	0.131
			1.5514	0.0814		0.0036
	α	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	1.5497	0.1001	-0.0198	0.0027
Optical			1.5808	0.1174		0.0019
	γ	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	1.5000	0,1171		0.0027
		1 020104 0102 1 0304	1.5809	0.1132	0.0050	0.0020
			1.5348	0.0222		0.0005
x-ray	doso	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	1.5348	0.0281	0.0068	0.0003
			1.5502	0.0845		0.0046
	α	Ni-NiO				
			1.5502	0.0672	0.0186	0.0042
			1.5800	0.1170		0.0037
Optical	γ	Ni-NiO				
			1.5808	0.1005	0.0187	0.0030
	1/		1.5642	0.1053		0.0037
	n	Ni-NiO				
			1.5671	0.0803	0.0253	0.0030

 $^{^1\,}Regression$ equations are of the form y=A+Bx+Cx², where x=Fe/(Fe+Mg) and y is the particular property.

Table 2—(continued)

	Property	Buffer	A	В	C	Std. Erro
x-ray	dose	Ni-NiO	1.5348	0.0213		0.0007
a-ray	C1060	NI-INIO	1.5348	0.0256	-0.0048	0.0004
		F. O. F. O.	1.5506	0.0878		0.0052
	α	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	1,5492	0.1116	-0.0247	0.0047
			1.5806	0.1116	-0.0247	0.0047
Optical	γ	Fe ₃ O ₄ -Fe ₂ O ₃	1,5600	0.1293		0,0039
- P. Hann		1 0304-1 0203	1.5813	0.1123	0.0197	0.0031
			1.5689	0.1097	0.0177	0.0031
	n	Fe_3O_4 - Fe_2O_3	1.0005	0.1077		0.0022
	1		1.5678	0.1211	-0.0115	0.0017
			1.5348	0.0176		0.0004
	d ₀₆₀	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$				
			1.5348	0.0190	-0.0017	0.0005
			5.325	0.045		0.006
	a	$\mathrm{Fe_3O_4}\text{-}\mathrm{Fe_2O_3}$				
			5.327	0.029	0.017	0.006
			9.210	0.098		0.004
r-ray	b	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$				
			9.209	0.110	-0.012	0.004
			10.307	-0.040		0.005
	c	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$			1	D
			10.307	-0.039	-0.001	0.006
			99.97°	0.045		0.153
	β	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	Surgarity Street	l and an		
			100.05°	-0.596	0.692	0.153

and 3. Except for biotites annealed at oxygen fugacities defined by the fayalite-quartz-magnetite assemblage, a linear expression fits the data just as well as a quadratic expression. There is a systematic increase in $d_{0\ell 0}$ with increase of Fe/(Fe+Mg) for a given "buffer series," and a systematic decrease in $d_{0\ell 0}$ at constant Fe/(Fe+Mg) as oxygen fugacity increases.

Two relationships characterize the unit-cell parameters. For a given buffer series the a and b axes increase with increasing Fe content, and a, b and c all decrease with increasing oxygen fugacities at a constans value of Fe/(Fe+Mg). The optical data show an increase in the indicet of refraction with the increase in oxygen fugacity as well as the increase in Fe content. These results are fully reversible, biotites originally annealed at either reduced (Fe_{1-x}O-Fe₃O₄; Ni-NiO) or oxidized

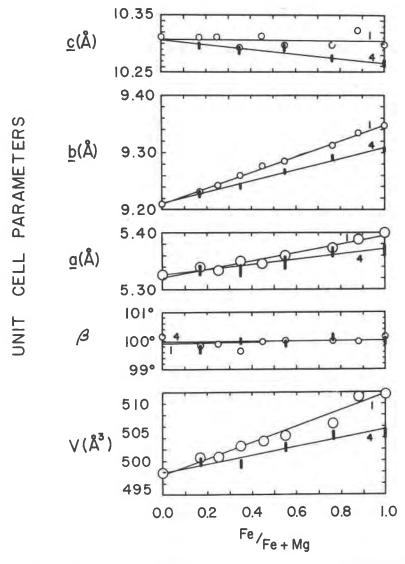


Fig. 4. Unit-cell parameters of biotites on the join phlogopite-annite. Open circles are those annealed at oxygen fugacities defined by Fe_{1-x}O-Fe₃O₄ assemblages; bars are those annealed at oxygen fugacities defined by Fe₃O₄-Fe₂O₃ assemblages. Solid lines are regression equations given in Table 1.

(Fe₃O₄-Fe₂O₃) conditions change their properties apropos to the new conditions at which they are annealed a second or third time.

No attempt was made to investigate Gower's (1957) method of determining Fe contents by measuring the ratio of the intensities of the (004) and (005) reflections. In general, the intensity of (005) for iron-rich micas was so weak that the peak could not be observed in many cases. As the (004) coincides with the (113) reflection of magnetite, the method would not be useful for determining the composition of biotites intimately mixed with magnetite. As this was the case in the phase equilibria studies, Gower's method was not investigated for the synthetic biotites.

PROPERTIES OF PHLOGOPITE

The values of α , γ and d₀₆₀ were determined for two phlogopites synthesized during this study and for eight synthetic phlogopites supplied by H. S. Yoder, Jr., and H. P. Eugster. In addition, the unit cell was redetermined by a least-squares analysis of the x-ray powder diffraction data. The results are slightly different from those reported by Yoder and Eugster (1954). The individual data are listed in the Appendix and the average values are compared with the values of Yoder and Eugster:

	Wones	Yoder and Eugster
α	1.550 ± 0.002	1.548 ± 0.003
γ	1.581 ± 0.001	1.588 ± 0.003
a	$5.326 \pm 0.01 \text{ Å}$	$5.314 \pm 0.01 \text{ Å}$
b	$9.210 \pm 0.01 \text{ Å}$	$9.204 \pm 0.02 \text{ Å}$
C	$10.311 \pm 0.01 \text{ Å}$	$10.314 \pm 0.005 \text{ Å}$
β	100°10′±8′	99°54′±5′
\bar{n}	(average) 1.571	1.575
\bar{n}	(Gladstone and Dale) 1.575	1.576

The phlogopite cell as determined in this study does not meet the exact requirements for transformation to a hexagonal cell (Smith and Yoder, 1956, p. 231). The ratio b/a is 1.729 rather than $\sqrt{3}$, and $\cos^{-1} a_{\rm M}/3c_{\rm M}=99^{\circ}54'$ rather than the value of 100°10′ found in this study.

THE OXYBIOTITE PROBLEM

The observed variations in the indices of refraction and the x-ray powder data are readily explained by the dehydrogenation of the biotites to form "oxybiotites." Barnes (1930) conclusively proved this to be the case for the "basaltic hornblendes," or "oxyhornblendes." An excellent review of this concept is given by Deer et al. (1963). This concept was first demonstrated experimentally for biotites by Rinne (1925) and by Larsen et al., (1937) for the biotite phenocrysts in the San Juan region, Colorado. Eugster and Wones (1962), in a study of annite, demonstrated

Table 3 d-Spacings of Biotites Selected for Determination of Unit-Cell Parameters

		T. C/ (1	Fe+Mg)	of biotite	s buffered	Fe/(Fe+Mg) of biotites buffered by Fe _{1-x} O-Fe ₃ O ₄ assemblages	O-Fe ₃ O ₄	assembla	ges	Fe/(Fe/(Fe+Mg) or brottes bunered by Fe ₃ O ₄ -Fe ₂ O ₃ assemblages	e+mg) or brouces burie Fe ₃ O ₄ -Fe ₂ O ₃ assemblages	s bunered nblages	ı by
002 1110 112	0.000	0,169	0.250	0.352	0.450	0.550	0.765	0.880	1,000	0,169	0.352	0.550	0.765	1.000
	5.071													
			3.681											
_		1	1	3.417	0	3.424	6	000	000	204	277	211	3.417	, ,
_	3.371	3.387	3.385	3.382	3.586	3.581	3.176	3.185	3.388	3.381	3.311	3.3//	2.017	3.307
		2.938	2.939	2.937	2.941	2.942	2.946	2.950	2.961				2.942	
_		2.729	2.732	2.729		2.733	2.731							
	2.621	2 626		2.631		2.639		2.654	2.656	2.624		2.634	2.641	2.644
	2.540	2.540	2.540	2.538	2.538	2.537		2.543	2.535	2.532	2.532			
	2.514 2.436	2.441		2.447	2.451	1	2.458	2.465	2.467	2.440		2.448	2.455	2.456
				7367		2.452					7.441			
				706.7							2.308			
										2.303			2 102	2 103
	2.180								2.201	701.7			1	1
_				2.170							1			
	2 032		2 031	2 030	2 032				2 023	2,030	2.105	2.029		
	700.7		100.1	7	100.3								2.011	
-	1.694													
	1.678		1	Con the court of cour	7	1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	7 200	0222	11	1 5200	1 5402	1 5112	1 5464 1 5505	· ν

¹ For unit-cell parameters, see Table 4.

TABLE 4. UNIT-CELL PARAMETERS OF SELECTED BIOTITES

Fe(Fe+Mg)	\boldsymbol{a}	b	C	β	V(Å3
		Phlogopi	te		
0.000	$5.326 \pm .006$	$9.210 \pm .009$	$10.311 \pm .009$	$100^{\circ}10'\pm8'$	497.77
Bio	tites annealed a	t oxygen fugac	ities defined by I	Fe ₃ O ₄ -Fe ₂ O ₃	
0.169	$5.339 \pm .003$	$9.228 \pm .001$	$10.295 \pm .003$	$99^{\circ}45' \pm 5'$	499.9
0.352	$5.333 \pm .003$	$9.241 \pm .001$	$10.288 \pm .004$	$99^{\circ}59' \pm 5'$	499.4
0.550	$5.347 \pm .01$	$9.266 \pm .003$	$10.293 \pm .007$	$99^{\circ}54' \pm 10'$	502.4
0.765	$5.377 \pm .002$	$9.291 \pm .001$	$10.275 \pm .006$	$100^{\circ}8' \pm 14'$	504.2
1.000	$5.369 \pm .005$	$9.304 \pm .001$	$10.264 \pm .001$	$100^{\circ}0' \pm 10'$	504.7
Biot	tites annealed at	oxygen fugaci	ties defined by F	e _{1-x} O-Fe ₃ O ₄	
0.169	$5.339 \pm .006$	$9.230 \pm .001$	$10.311 \pm .002$	$99^{\circ}50' \pm 4'$	500.6
0.250	$5.333 \pm .002$	$9.242 \pm .001$	$10.312 \pm .001$	$99^{\circ}56' \pm 1'$	500.6
0.352	$5.349 \pm .005$	$9.260 \pm .002$	$10.293 \pm .006$	99°38′±6′	502.6
0.450	$5.343 \pm .007$	$9.276 \pm .001$	$10.312 \pm .003$	$99^{\circ}57' \pm 4'$	503.4
0.550	$5.358 \pm .003$	$9.285 \pm .003$	$10.297 \pm .002$	$100^{\circ}0' \pm 1'$	504.5
0.765	$5.373 \pm .01$	$9.312 \pm .003$	$10.297 \pm .009$	$100^{\circ}3' \pm 6'$	507.3
0.880	$5.389 \pm .003$	$9.335 \pm .002$	$10.322 \pm .004$	$99^{\circ}58' \pm 4'$	511.4
1.000	$5.401 \pm .01$	$9.347 \pm .005$	$10.297 \pm .01$	100°10′ + 12′	511.7

a relationship between the physical properties of annite and the conditions of "annealing," and suggested the variations were due to the reaction:

$$\begin{split} KFe_3^{+2}AlSi_3O_{10}(OH)_2 \rightleftarrows KFe^{+2}Fe_2^{+3}AlSi_3O_{12} \,+\, H_2 \\ annite \qquad \text{``oxyannite''} \end{split}$$

Several lines of evidence indicate that this is the case.

First of all, the variations are correlated with buffers, rather than with temperature and oxygen fugacities. As Eugster and Wones (1962) demonstrated, the hydrogen fugacities associated with each buffer are more or less independent of temperature and are constant for a constant total pressure.

Secondly, biotites synthesized from oxalate mix in buffered runs are at hydrogen fugacities, but not oxygen fugacities, equivalent to the hydrogen fugacities of biotites annealed in buffered runs. For example, a biotite with Fe/(Fe+Mg) of 0.169 held at 700° C., 2000 bars, with an Fe₃O₄-Fe₂O₃ buffer, had a value of $\gamma = 1.608 \pm .003$ in an H₂+H₂O atmosphere, and a value of $1.609 \pm .003$ in an H₂+H₂O+CO+CO₂ atmosphere. Another biotite with Fe/(Fe+Mg) of 0.550 held at 800° C., 2000 bars, buffered by Fe₂SiO₄-SiO₂-Fe₃O₄, had values of $1.645 \pm .003$ and $1.644 \pm .003$ for the respective types of gas phases.

The changes in properties are completely reversible; biotites annealed at conditions of high or low hydrogen fugacities readily change their properties when annealed again at different hydrogen fugacities.

Finally, all runs used in this tabulation contain 99+ per cent biotite (by volume). If the cationic content varied from that prepared in the starting material, such phases as iron oxides, iron silicates, or feldspars should appear. The only additional phase encountered was sanidine, and it was readily attributed to loss of iron to the platinum container (Eugster and Wones, 1962), and such material was not used in this compilation.

The "ferrimuscovite," KFe₂³+AlSi₃O₁₀(OH)₂, molecule might be formed from a reaction such as the following:

 $KFe_3^{2+}AlSi_3O_{10}(OH)_2 + 2/3O_2 = KFe_2^{3+}AlSi_3O_0(OH)_2 + 1/3Fe_3O_4.$

This is considered very unlikely as no synthesis or annealing experiments were carried out in which iron oxides were observed without equivalent amounts of sanidine also being present.

Another possible reaction would be the following:

$$2KFe_3^{2+}AlSi_3O_{10}(OH)_2 + \frac{1}{2}O_2 = 2Fe_2^{2+}Fe_3^{3+}AlSi_3O_{10}(OH)_2 + K_2O$$

In order to test this hypothesis annite was annealed at 2000 bars total pressure, 375° C. in a 2 molar KCl solution for one week, buffered by an Fe₃O₄-Fe₂O₃ assemblage. The mean index of refraction n is 1.680, and the unit-cell parameters are $a=5.351\pm0.01$ Å, $b=9.297\pm0.005$ Å, $c=10.266\pm0.02$ Å, $\beta=99^{\circ}45'\pm20'$. These values, sufficiently close to those listed in Table 3 for an annite annealed in distilled water, indicate that the above reaction is improbable for these experimental conditions.

Estimating the mol fractions of phlogopite, annite and "oxyannite" presents another problem. Three methods have been used to estimate "oxyannite" contents: 1) partial chemical analyses, 2) comparison of the b unit-cell edge with the regression coefficients of Radoslovich (1962) and 3) application of the rule of Gladstone and Dale to the synthetic biotites.

As reported by Eugster and Wones (1962), Dr. Graham Chinner performed a partial microanalysis of a 60 mg synthetic annite sample containing about 1 volume per cent sanidine. Chinner reported 36.4 weight per cent FeO and 4.7 per cent Fe₂O₃. Converting to atomic ratios, 10.4 per cent of total iron is ferric. This corresponds to 15.6 mol per cent "oxyannite."

Radslovich (1962) has determined regression coefficients for the b axis of micas as a function of cations present in the structure. Using Chinner's partial analysis, and assuming no vacancies in the octahedral layer, Radoslovich's regression technique predicts a b axis of 9.336 Å for oxyan-

nite, 9.372 Å for annite, 9.210 Å for phlogopite, and 9.367 Å for the annite analyzed by Chinner. The phlogopite value is in exact agreement with the values determined in this study in (Table 4), but the other values seem to be quite far from the value of 9.334 Å determined for the annite analyzed by Chinner, and even farther from the values determined for more oxidized annites. The suggestion is that Radoslovich's values for the iron coefficients are not as good as those for the other constituents. Radoslovich does quote an error of ± 0.03 in his analysis, which just covers the deviations between these data and his regression predictions. The possibility of octahedral "vacancies" ("ferrimuscovite" solid solutions) would resolve some of this problem, but for reasons stated earlier, it seems unlikely that this is the case.

An attempt at a quantitative determination of the oxybiotite contents by means of the rule of Gladstone and Dale was made. Defining the mean index of refraction \bar{n} , the mol per cent m, the refractivity k, molecular weight w, of the components phlogopite, annite, and oxyannite by the respective subscripts 1, 2, 3, the following expression for the mol per cent of oxyannite in the iron end member (Fe/Fe+Mg=1.00) can be obtained:

$$m^3 = \frac{(\frac{1}{2}\overline{n} - 1)VA - 102.492}{13.297}$$

when V is the volume of the unit cell, and A is Avogadro's number (6.0247×10^{23}) . The values obtained using this relation are listed in Table 5 for three synthetic annites and the regression equations of Table 2. The uncertainties (± 0.013) are derived by standard propagation of error technique assuming uncertainties of 0.003 in \bar{n} , and 1 ų in V. The regression data indicate an orderly progression from reduced conditions to oxidized conditions, but the data on individual samples are more

Table 5. Comparison of Estimates of Molar Concentration of "Oxyannite" in Synthetic Annites by Means of the Rule of Gladstone and Dale (Larsen and Berman, 1934)

Conditions of Synthesis	Buffer	ñ	V (ų)	Mol % "oxyannite"
kegression, Table 2	Fe _{1-x} O-Fe ₃ O ₄	1.6687	511.7	4.4
Regression, Table 2	Fe ₃ O ₄ -Fe ₂ O ₃	1.6752	505.5	2.4
800° C., 72 hrs.	Fe _{1-x} O-Fe ₃ O ₄	1.681	511.7	18.6
400° C., 163 hrs.	Fe ₃ O ₄ -Fe ₂ O ₃	1.688	504.7	15.9
600° C., 212 hrs.	Ni-NiO	1.681	509.8	15.7
Analysis, Chinner, of abov	e sample			
(Ni-NiO)	1	_	_	15.5

scattered. However, all indicate oxyannite contents of about 15–19 mol per cent, which correspond to Fe³⁺/Fe⁺²+Fe⁺³ ratios of about 0.04–0.05, and are in excellent agreement with the analysis by Dr. Chinner.

Unfortunately, when the rule of Gladstone and Dale is applied to the phlogopite end member, a mean index of refraction of 1.575 is derived as opposed to the value of 1.571 derived from the measurements. However, when applied to the annite analyzed by Chinner, the agreement was almost exact. The problem lies in the " $\bar{n}-1$)V" term of the above expression, where the increase of \bar{n} is matched by a decrease in V.

The determination of the concentration of "oxyannite" molecule in synthetic biotites, and the correlation of that concentration with variations in temperature, pressure and gas composition will require careful synthesis and analytical work before it is completely resolved.

APPLICATION TO NATURAL BIOTITES

These data do not apply directly to natural biotites except as defining properties of the end members. However, it does indicate that the Fe³+/(Fe²++Fe³+) ratio may serve as an indicator of variations in the oxygen fugacity of the environment in which a biotite crystallizes. Chinner's (1960) work on the pelitic gneisses of Glen Clova provides an excellent example of how the Fe³+/(Fe²++Fe³+) content of biotite increases as the oxygen content (or perhaps fugacity) increases. Chinner was able to demonstrate such a change in the coexisting iron oxides (ilmenite, magnetite and hematite) as well, so that the biotite data as such is redundant. However, in assemblages lacking iron oxides the biotites could be used to define variations in the fugacities of oxygen or hydrogen.

The data of Larsen *et al.* (1937) on the biotite phenocrysts of the volcanic rocks of the San Juan Mountains, Colorado, clearly demonstrate the formation of oxybiotite through rapid "dehydrogenation" of lava upon extrusion.

Hellner and Euler (1957) treated biotites from the Albtal granite (Black Forest) hydrothermally and found that hematite flakes formed, and the indices of refraction increased. It seems apparent that they formed oxybiotite in their experiments. As such effects are due primarily to variations of oxygen fugacities, the value of knowing oxybiotite contents is more important as a hydrogen barometer rather than as the thermometer suggested by Hellner and Euler.

ACKNOWLEDGMENTS

The work in this paper was presented as a portion of a Ph. D. thesis presented to the Massachusetts Institute of Technology. The major por-

tion of the experimental work was performed at the Geophysical Laboratory, Carnegie Institution of Washington, where the author held a Vannevar Bush fellowship. The author is indebted to H. P. Eugster and G. J. F. MacDonald, who supervised the early aspects of the work. A second paper on phase equilibria of these biotites is being prepared in cooperation with Prof. Eugster. E. G. Zies and J. F. Schairer aided with the preparation of starting materials and G. A. Chinner performed a critical analysis. H. S. Yoder, Jr. and H. P. Eugster supplied samples of synthetic phlogopites. Valuable discussions were held with A. C. Turnock and W. G. Ernst of the Geophysical Laboratory. The manuscript was prepared at the U.S. Geological Survey and the author is indebted to D. E. Appleman and Gary Selner of the U. S. Geological Survey for aid in computing unit-cell parameters and regression coefficients. The author is also grateful to Malcolm Ross of the U.S. Geological Survey for bringing to his attention the problem of coincidence of the (060) and (331) reflections, and the resultant effect on the accuracy of the x-ray powder measurements. D. B. Stewart and H. R. Shaw have contributed helpful suggestions in preparation of the manuscript.

REFERENCES

- Barnes, V. E. (1930) Changes in hornblende at about 800° C. Am. Mineral. 15, 393–417. Chinner, G. A. (1960) Pelitic gneisses with varying ferrous/ferric ratios from Glen Clova, Angus, Scotland. Jour. Petrology, 1, 178–217.
- Deer, W. A., R. A. Howie and J. Zussman (1962) Rock-forming Minerals, v. 3, Sheet Silicates, London, Longmans, p. 42–84.
- GOWER, J. A. (1957) X-ray measurement of the iron-magnesium ratio in biotites. Am. Jour. Sci. 225, 142-156.
- Hellner, E. and R. Euler (1957) Hydrothermale und röntgenographische Untersuchungen an gesteinsbilden Mineralen—I. Über ein geologisches Thermometer auf Grund von Untersuchungen on Biotiten. Geochim. Cosmochim. Acta, 12, 47–56.
- LARSEN, E. S. AND HARRY BERMAN (1934) The microscopic determination of the nonopaque minerals. U. S. Geol. Survey Bull. 848.
- JOHN IRVING, F. A. GONYER AND E. S. LARSEN, III (1937) Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. Am. Mineral. 22, 898–905.
- Muan, Arnulf (1962) The miscibility gap in the system Ag-Fe-Pd at 1000°, 1100° and 1200°C. Trans. Metall. Soc. AIME, 224, 1080–1081.
- RADOSLOVICH, E. W. (1962) The cell dimensions and symmetry of layer-lattice silicates, II. Regression relations. *Am. Mineral.* 47, 617–636.
- Rinne, F. (1925) Röntgenographische Diagnostik beim Brennen von Kalkstein, Dolomit, Kaolin und Glimmer. Zeit. Krist. 61, 113–124.
- SCHAIRER, J. F. AND N. L. BOWEN (1955) The system K₂O-Al₂O₃-SiO₂. Am. Jour. Sci. 253, 681-746.

SMITH, J. V. AND H. S. YODER (1956) Experimental and theoretical studies of the mica polymorphs. *Mineral. Mag.* 31, 209-235.

STIRLAND, D. J., A. G. THOMAS, AND N. C. MOORE (1958) Observations on thermal transformations in alumina. *Brit. Ceram. Soc. Trans.*, **57**, 69–84.

Yoder, H. S., Jr. and H. P. Eugster (1954) Phlogopite synthesis and stability range. *Geochim. Cosmochim. Acta*, **6**, 157–185.

(1955) Synthetic and natural muscovites. Geochim. Cosmochim. Acta, 8, 225-280,

Manuscript received, May 16, 1963; accepted for publication, August 5, 1963.

Appendix, Properties of Synthetic Biotites Annealed at Various Conditions of Temperature, Pressure, and Oxygen Fugacity

Fe/Fe+Mg	Temp (° C.)	Time (hrs.)	Pressure (bars)	Buffer	ä	ě	и	d_{060}
0.169	800	166	2000	"FeO"-Fe ₃ O ₄	1.560+.003	1.597+.002	n.d.	1.5383 + .0005
0.250	800	118	2000	"FeO"-Fe ₃ O ₄	$1.571 \pm .002$	1,612+,002	n.d.	1.5402 + .0010
0.352	200	120	2000	"FeO"-Fe ₃ O ₄	1.573 ± .005	1.615+.005	n.d.	1.5430+.0005
0.450	200	215	2000	"FeO"-Fe ₃ O ₄	1.586+.003	1.622+.001	n.d.	1.5460+.0012
0.550	850	69	1035	"FeO"-Fe,O	1.597 ± .002	1.645+.002	n.d.	1.5488+.0008
0.550	850	177	1035	"FeO"-Fe ₃ O ₄	$1.597 \pm .002$	1.646 ± .001	n.d.	1.5475+.0002
0.765	200	160	2000	"FeO"-Fe ₃ O ₄	$1.611 \pm .002$	1.671+.003	n.d.	1.5520+.0010
0.765	820	69	1035	"FeO"-Fe ₃ O ₄	$1.612 \pm .004$	$1.673 \pm .002$	n.d.	1.5505 + .0011
0.765	800	51	1035	"FeO"-Fe3O4	1.612+.002	1.671+.003	n.d.	1.5520 + .0012
0.880	800	73	2000	"FeO"-Fe ₃ O ₄	n.d.	1.684+.002	n.d.	1.5558+.0010
1.000	200	72	2000	"FeO"-Fe ₃ O ₄	$1.634 \pm .001$	$1.704 \pm .003$	n.d.	1.5580±.0005
0.352	825	118	2070	Fe2SiO4-SiO2-Fe3O4	$1.580 \pm .003$	1.620+.002	n.d.	1.5442+.0003
0.352	800	68	2070	Fe,SiO4-SiO2-Fe3O4	1.578±.005	1.617 + .002	n.d.	$1.5432 \pm .0002$
0.352	200	92	2070	Fe2SiO4-SiO2-Fe3O4	$1.575 \pm .003$	1.616±.003	n.d.	1.5435 + .0003
0.352	820	94	1035	Fe2SiO4-SiO2-Fe3O4	$1.581 \pm .003$	1.622 ± .003	n.d.	1.5445±.0005
0.550	800	122	2070	Fe2SiO4-SiO2-Fe3O4	$1.600 \pm .003$	1.648±.002	n.d.	n.d.
0.550	790	47	2070	Fe2SiO4-SiO2-Fe3O4	1.600±.003	$1.644 \pm .003$	n.d.	n.d.
0.550	092	92	2070	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	1.600±.002	1.647 ± .002	n.d.	1.5498+.0006
0.550	750	68	2070	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	$1.597 \pm .002$	$1.643 \pm .004$	n.d.	1.5489+.0002
0.550	750	86	2070	Fe2SiO4-SiO2-Fe3O4	1.600±.002	$1.644 \pm .002$	n.d.	1.5491+.0006
0.550	740	92	2070	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	$1.601 \pm .003$	1.644 ± .002	n.d.	1.5493+.0008
0.550	740	80	2070	Fe2SiO,-SiO2-Fe2O4	$1.601 \pm .003$	$1.651 \pm .002$	n.d.	1.5475+.0007
0.550	200	150	2070	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	$1.597 \pm .003$	$1.644 \pm .003$	n.d.	1.5478±.0006
0.550	720	141	1035	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	$1.600 \pm .003$	1,647 ± .002	n,d.	1.5483 ± .0007
0.550	720	64	1035	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	n.d.	$1.639 \pm .004$	n.d.	1.5496±.0016
0.550	200	142	1035	Fe ₂ SiO ₄ -SiO ₂ -Fe ₂ O ₄	1.606+.003	1.645+.003	n d	1 5507 + 0004

¹ Specimens supplied by H. S. Yoder, Jr. and H. P. Eugster.

Appendix (continued)

d ₀₆₀	$1.5513 \pm .0003$	$1.5509 \pm .0010$	n.d.	n.d.	1.5514 ± 0014	$1.5526 \pm .0003$	$1.5514 \pm .0002$	$1.5510 \pm .0010$	$1.5528 \pm .0003$	p.u	n.d.	$1.5515 \pm .0008$	n.d.	$1.5515 \pm .0004$	$1.5515 \pm .0002$	1.5546±.0006	1.5542 ± 0002	$1.5546 \pm .0004$	$1.5544 \pm .0006$	$1.5542 \pm .0004$	$1.5550 \pm .0003$	1,5362±,0002
и	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1 577土 003
٨	1.670±.003	$1.677 \pm .001$	$1.670 \pm .003$	$1.675 \pm .002$	$1.670 \pm .002$	$1.671 \pm .002$	$1.670 \pm .002$	$1.676 \pm .003$	$1.670 \pm .003$	$1.674 \pm .002$	$1.670 \pm .003$	n.d.	$1.671 \pm .002$	$1.670 \pm .003$	$1.670 \pm .003$	1.684+.002	1.682+.003	1.684 ± .003	$1.682 \pm .002$	$1.686 \pm .003$	1.690±.002	$1.591\pm.003$
α	1.617±.003	$1.618 \pm .003$	$1.617 \pm .003$	$1.617 \pm .002$	$1.612 \pm .002$	$1.613 \pm .002$	$1.617 \pm .002$	1.618±.003	$1.617 \pm .003$	$1.613 \pm .003$	n.d.	n.d.	$1.617 \pm .003$	$1.618 \pm .003$	n.d.	1.623+.002	1.623+.002	1.623 ± .003	$1.620 \pm .002$	$1.623 \pm .002$	1.629±.003	1.560±.003
Buffer	Fe2SiO4-SiO2-Fe3O4	Fe2SiO4-SiO2-Fe3O4	Fe2SiO4-SiO2-Fe3O4	Fe2SiO4-SiO2-Fe3O4	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	Fe2SiO4-SiO2-Fe3O4	Fe2SiO ₄ -SiO ₂ -Fe ₃ O ₄	Fe2SiO4-SiO2-Fe3O4	Fe2SiO4-SiO2-Fe2O4	Fe2SiO4-SiO2-Fe3O4	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	FegSiO4-SiO2-FegO4	Fe2SiO4-SiO2-Fe3O4	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	FeaSiOa-SiOa-FeaOa	Fe-SiOSiOFe,O.	Fe-SiO ₁ -SiO ₂ -Fe ₂ O ₄	FesSiO4-SiO2-FesO4	Fe2SiO4-SiO2-Fe3O4	Fe ₂ SiO ₄ -SiO ₂ -Fe ₃ O ₄	Ni-NiO
Pressure (bars)	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	1035	1035	1035	2070	2070	2070	2070	2070	2000	2000
Time (hrs.)	74	167	69	92	449	118	92	84	189	169	89	48	48	209	162	113	00	113	113	48	140	132
Temp (° C.)	092	730	720	715	705	705	004	200	069	089	525	200	200	099	009	715	715	705	705	700	700	200
Fe/Fe+Mg	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.765	088 0	088.0	0880	0.880	0.880	0.939	0.083

	ontrnued)
,	ق
	Appendix

Fe/Fe+Mg	Temp (° C.)	Time (hrs.)	Pressure (bars)	Buffer	ъ	λ	u	Q000
0.169	800	118	2070	Ni-NiO	1.564±.005	1.597 ± .002	1.581±.003	1.5387 ± .0010
0.169	800	92	2070	Ni-NiO	$1.564 \pm .003$	$1.597 \pm .002$	$1.581 \pm .003$	$1.5385 \pm .0006$
0.169	700	139	2070	Ni-NiO	$1.564 \pm .003$	$1.597 \pm .002$	$1.580 \pm .003$	$1.5385 \pm .0006$
0.169	700	117	2070	Ni-NiO	1.561 ±.003	$1.595 \pm .004$	$1.581 \pm .003$	$1.5390 \pm .0003$
0.169	009	138	2070	Ni-NiO	$1.557 \pm .003$	$1.592 \pm .003$	$1.581 \pm .003$	$1.5385 \pm .0006$
0.169	009	107	2070	Ni-NiO	$1.566 \pm .003$	$1.589 \pm .006$	$1.581 \pm .003$	$1.5384 \pm .0004$
0.250	200	138	2000	Ni-NiO	$1.577 \pm .003$	1.608±.002	$1.597 \pm .003$	$1.5412 \pm .0009$
0.352	800	121	2070	Ni-NiO	$1.575 \pm .003$	$1.612 \pm .002$	1.593 ± .005	$1.5440 \pm .0010$
0.352	700	139	2070	Ni-NiO	$1.575 \pm .003$	$1.616\pm.003$	$1.595 \pm .004$	$1.5410 \pm .0010$
0.352	700	117	2070	Ni-NiO	$1.575 \pm .003$	$1.616 \pm .002$	$1.602 \pm .002$	$1.5434 \pm .0009$
0.352	700	113	2070	Ni-NiO	$1.575 \pm .003$	$1.612 \pm .002$	$1.598 \pm .004$	$1.5415 \pm .0006$
0.352	009	107	2070	Ni-NiO	$1.575 \pm .003$	$1.605 \pm .003$	$1.592 \pm .004$	$1.5429 \pm .0003$
0.352	009	92	2070	Ni-NiO	n.d.	$1.612 \pm .005$	$1.594 \pm .004$	$1.5415 \pm .0004$
0.550	800	168	2070	Ni-NiO	1.599 ± .002	$1.643 \pm .002$	n.d.	$1.5479 \pm .0009$
0.550	800	168	2070	Ni-NiO	n.d.	$1.646 \pm .005$	n.d.	.b.n
0.550	700	179	2070	Ni-NiO	$1.595 \pm .005$	$1.645 \pm .002$	$1.622 \pm .003$	$1.5475 \pm .0003$
0.550	200	118	2070	OiN-iN	$1.591 \pm .003$	$1.645 \pm .003$	$1.616 \pm .003$	$1.5475 \pm .0009$
0.550	009	115	2070	Ni-NiO	$1.592 \pm .002$	$1.641\pm.003$	$1.610 \pm .003$	$1.5476 \pm .0010$
0.765	700	160	2070	Ni-NiO	$1.620 \pm .003$	1.673 ± .002	$1.645 \pm .004$	$1.5518 \pm .0003$
0.765	700	148	2070	Ni-NiO	$1.616\pm.002$	$1.666 \pm .002$	$1.640 \pm .003$	$1.5516 \pm .0004$
0.765	650	88	2070	Ni-NiO	n.d.	$1.673 \pm .004$	$1.650 \pm .003$	$1.5511 \pm .0008$
0.765	009	165	2070	Oin-in	n.d.	n.d.	$1.640 \pm .003$	$1.5513 \pm .0003$
0.765	009	92	2070	Ni-NiO	$1.623 \pm .003$	$1.668 \pm .002$	$1.645 \pm .004$	$1.5519 \pm .0002$
0.880	009	139	2070	Ni-NiO	n.d.	n.d.	$1.657 \pm .003$	$1.5536 \pm .0009$
0.880	009	133	2070	O:N-iN	1 622 + 003	1 681+ 003	1 654+ 002	1 5534 + 0000

Appendix (continued)

Fe/Fe+Mg	Temp (° C.)	Time (hrs.)	Pressure (bars)	Buffer	ষ	٨	и	d ₀₆₀
0,939	009	166	2000	Ni-NiO	n.d.	1.694 ± .003	1.672 ± .005	1.5548±.0004
0.939	009	140	2000	Ni-NiO	$1.628 \pm .003$	$1.690 \pm .003$	1.664 ± .003	$1.5549 \pm .0009$
0.169	200	47	2070	$\mathrm{Fe}_3\mathrm{O}_4 ext{-}\mathrm{Fe}_2\mathrm{O}_3$	$1.571 \pm .003$	$1.605 \pm .002$	$1.591 \pm .003$	$1.5375\pm.0007$
0.169	009	115	2070	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.569 \pm .003$	$1.603 \pm .002$	$1.591 \pm .003$	$1.5374 \pm .0002$
0.169	009	41	2070	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	$1.566 \pm .003$	$1.602 \pm .001$	1.586±.003	$1.5381 \pm .0005$
0.169	800	99	1035	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.571 \pm .002$	$1.602 \pm .002$	$1.586 \pm .003$	$1.5379 \pm .0004$
0.169	200	2	1035	$\mathrm{Fe}_3\mathrm{O}_4\mathrm{-Fe}_2\mathrm{O}_3$	$1.566 \pm .003$	$1.600 \pm .002$	$1.586 \pm .003$	$1.5380 \pm .0006$
0.169	009	63	1035	$\mathrm{Fe_{3}O_{4}\text{-}Fe_{2}O_{3}}$	$1.561 \pm .002$	$1.600 \pm .003$	$1.591 \pm .003$	$1.5384 \pm .0003$
0.352	700	122	2070	$\mathrm{Fe}_3\mathrm{O}_4\mathrm{-Fe}_2\mathrm{O}_3$	$1.581 \pm .002$	1.628±.002	1.612±.003	$1.5399 \pm .0008$
0.352	700	29	2070	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.591 \pm .003$	$1.630 \pm .002$	$1.612 \pm .003$	$1.5401 \pm .0007$
0.352	009	73	2070	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.576 \pm .003$	$1.623 \pm .003$	$1.607 \pm .003$	$1.5397 \pm .0001$
0.352	200	29	1035	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	$1.586 \pm .003$	$1.625 \pm .001$	$1.613 \pm .003$	$1.5409 \pm .0006$
0.352	750	70	1035	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_2}$	$1.586 \pm .003$	$1.627 \pm .003$	$1.617 \pm .003$	$1.5397 \pm .0007$
0.352	009	139	1035	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.582 \pm .003$	$1.621\pm.002$	$1.607 \pm .003$	$1.5411 \pm .0004$
0.550	650	94	2070	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	$1.596 \pm .002$	$1.651 \pm .002$	1,635±.003	$1.5430 \pm .0002$
0.550	009	94	2070	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.591 \pm .003$	$1.645 \pm .002$	$1.630 \pm .004$	$1.5426 \pm .0006$
0.550	582	86	2070	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	$1.591 \pm .003$	$1.648 \pm .001$	1.630±.004	$1.5450 \pm .0007$
0.550	550	140	2070	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.586 \pm .003$	$1.646 \pm .002$	$1.630 \pm .003$	$1.5432 \pm .0006$
0.550	545	157	2070	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.586 \pm .003$	$1.641 \pm .002$	1,630±.004	$1.5431 \pm .0005$
0.550	520	96	2070	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.592 \pm .003$	$1.643 \pm .001$	$1.630 \pm .004$	$1.5441 \pm .0004$
0.550	520	192	1035	$\mathrm{Fe_3O_4} ext{-}\mathrm{Fe_2O_3}$	$1.576 \pm .003$	$1.635 \pm .001$	1.625 ± .002	$1.5450 \pm .0010$
0.550	510	159	1035	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	$1.576 \pm .003$	$1.635 \pm .001$	$1.623 \pm .005$	$1.5431 \pm .0006$
0.550	200	49	1035	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	$1.576 \pm .003$	1.641+.002	1 626+ 004	1.5455 + 0004

Appendix (continued)

Fe/Fe+Mg	Temp (° C.)	Time (hrs.)	Pressure (bars)	Buffer	ъ	X.	и	doeo
0.765	500	83	1035	$\mathrm{Fe}_3\mathrm{O}_4\mathrm{-Fe}_2\mathrm{O}_3$	1.621 ± .002	1.673 ±.002	1.652 ± .003	1.5486±.0007
0.765	485	42	1035	$\mathrm{Fe_3O_4 ext{-}Fe_2O_3}$	1.625 ± .001	$1.679 \pm .003$	$1.655 \pm .003$	1.5484 \pm .0010
1.000	400	240	2000	Fe_3O_4 - Fe_2O_3	n.d.	n.d.	-	n.d.
1.000	400	165	2000	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	n.d.	n.d.	$1.677 \pm .003$	n.d.
1.000	400	163	2000	$\mathrm{Fe_3O_4\text{-}Fe_2O_3}$	$1.635 \pm .002$	$1.715\pm.003$	n.d.	$1.5508 \pm .0008$
1.000	400	140	2000	$\mathrm{Fe_3O_4 ext{-}Fe_2O_3}$	n.d.	n.d.	$1.677 \pm .003$	n.d.
				Data for phlogopite				
1000.	1000	N	5175	1	$1.550 \pm .002$	$1.581 \pm .002$	n.d.	$1.5348 \pm .0003$
1000.	1160	w	2070		$1.550 \pm .003$	$1.581 \pm .002$	n.d.	n.d.
1000.	1080	S	2070	I	$1.545 \pm .002$	$1.580 \pm .002$	n.d.	n.d.
1000.	800	826	2070		$1.548 \pm .003$	$1.581 \pm .002$	n.d.	$1.5348 \pm .0004$
1000	800	502	2070		$1.549 \pm .003$	$1.581 \pm .003$	n.d.	n.d.
1000	800	130	2070		$1.551 \pm .002$	$1.581 \pm .002$.p.u	n.d.
000	800	48	2070	Ī	$1.552 \pm .003$	$1.582 \pm .002$	1.567 ± .002	$1.5349 \pm .0006$
000	925	S	1035		$1.551 \pm .003$	$1.578 \pm .005$	n.d.	p.u
1000	350	2208	1035		n.d.	n.d.	n.d.	$1.5349 \pm .0003$
1000	900	330	340	Ì	$1.533 \pm .003$	$1.580 \pm .002$	n.d.	n.d.