using Hurlbut's single-crystal data: space group $I 4/mmm$, $a = 13.8$ Å, and $c = 9.8$ Å. The results are shown in Table 1. The weak line at $d = 2.96$ is probably due to a small amount of magnetite.

The writer is indebted to Professor Hurlbut for providing the aminofsite specimen.

Reference

ERRATA

1) $\text{Ca}_{3.60}\text{Na}_{0.30}\text{K}_{0.0}(\text{Al}_{7.60}\text{Mg}_{0.05}\text{Fe}_{0.05}\text{Si}_{0.35})\text{O}_{48}\cdot 16.39$

H_2O If calculated on the basis of 28 total cations, the formula is:

2) $(\text{Ca}_{1.90}\text{Na}_{0.20}\text{K}_{0.0})(\text{Al}_{7.60}\text{Fe}_{0.05}\text{Mg}_{0.05}\text{Si}_{0.35})\text{O}_{48}\cdot 16.91$

H_2O If calculated on the basis of 48 oxygens with no charge imbalance, the formula is:

3) $(\text{Ca}_{4.00}\text{Na}_{0.20}\text{K}_{0.0})(\text{Al}_{7.98}\text{Fe}_{0.02}\text{Mg}_{0.06}\text{Si}_{1.95})\text{O}_{48}\cdot 17.05$

H_2O

Formula 1) treated H^+ as a cation site and is probably incorrect.

Formula 2) implies a charge imbalance and tetrahedral deficiency.

Formula 3) based on charge balance is preferred. The author is grateful to Douglas Coombs for correcting the original calculation to formula 3).