TABLE 3

Table to show Method of Calculation of Angles

(See Winkeltabellen, pp. 18, 19 & 19a).

<table>
<thead>
<tr>
<th>Mineral Higginsite</th>
<th>Let. Symb.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>pq</td>
<td>lg p</td>
<td>lg q</td>
<td>lg x = lg p + 1</td>
<td>lg y = lg q + 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= 1.272</td>
<td>= 1.272</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= 0.10449</td>
<td>= 0.10449</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= 0.7940</td>
<td>= 0.7940</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= 0.989982</td>
<td>= 0.989982</td>
</tr>
<tr>
<td></td>
<td>o1</td>
<td>0</td>
<td>0</td>
<td>0.010449</td>
<td>0.989982</td>
</tr>
<tr>
<td></td>
<td>p+1</td>
<td>969897</td>
<td>0</td>
<td>0.980346</td>
<td>0.989982</td>
</tr>
<tr>
<td></td>
<td>r+2</td>
<td>017609</td>
<td>030103</td>
<td>0.028058</td>
<td>0.020085</td>
</tr>
</tbody>
</table>

- **LISTS OF THE ORTHORHOMBIC MINERALS INCLUDED IN GOLDSCHMIDT'S WINKELTABELLEN.**
 EDGAR T. WHEELEY, WASHINGTON, D. C.—As the prism zone is on the whole most characteristic of orthorhombic crystals, it has seemed desirable to arrange the minerals of this system in the order of increasing values of axis a.

Orthorhombic Minerals

<table>
<thead>
<tr>
<th>Mineral</th>
<th>a</th>
<th>c</th>
<th>Page</th>
<th>a</th>
<th>c</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranophanite</td>
<td>0.31</td>
<td>1.01</td>
<td>355</td>
<td>0.53</td>
<td>0.95</td>
<td>346</td>
</tr>
<tr>
<td>Polycrasite (Polycras)</td>
<td>0.35</td>
<td>0.31</td>
<td>271</td>
<td>0.53</td>
<td>1.17</td>
<td>274</td>
</tr>
<tr>
<td>Euxenite</td>
<td>0.36</td>
<td>0.30</td>
<td>137</td>
<td>0.53</td>
<td>0.88</td>
<td>266</td>
</tr>
<tr>
<td>Molybdate</td>
<td>0.39</td>
<td>0.47</td>
<td>243</td>
<td>0.54</td>
<td>1.02</td>
<td>191</td>
</tr>
<tr>
<td>Columbite</td>
<td>0.40</td>
<td>0.36</td>
<td>101</td>
<td>0.54</td>
<td>2.91</td>
<td>391</td>
</tr>
<tr>
<td>Omnerécite (An-nerödit)</td>
<td>0.40</td>
<td>0.36</td>
<td>45</td>
<td>0.55</td>
<td>0.52</td>
<td>309</td>
</tr>
<tr>
<td>Flinkite</td>
<td>0.41</td>
<td>0.74</td>
<td>147</td>
<td>0.56</td>
<td>0.73</td>
<td>232</td>
</tr>
<tr>
<td>Monticellite</td>
<td>0.43</td>
<td>0.58</td>
<td>253</td>
<td>0.57</td>
<td>0.60</td>
<td>64</td>
</tr>
<tr>
<td>Fayalite</td>
<td>0.46</td>
<td>0.58</td>
<td>252</td>
<td>0.57</td>
<td>0.47</td>
<td>180</td>
</tr>
<tr>
<td>Tephroite</td>
<td>0.46</td>
<td>0.59</td>
<td>254</td>
<td>0.57</td>
<td>0.55</td>
<td>66</td>
</tr>
<tr>
<td>Hjelmite</td>
<td>0.46</td>
<td>1.03</td>
<td>177</td>
<td>0.58</td>
<td>3.20</td>
<td>161</td>
</tr>
<tr>
<td>Olivine</td>
<td>0.47</td>
<td>0.59</td>
<td>251</td>
<td>0.58</td>
<td>0.67</td>
<td>49</td>
</tr>
<tr>
<td>Ardenite</td>
<td>0.47</td>
<td>0.31</td>
<td>53</td>
<td>0.58</td>
<td>0.57</td>
<td>318</td>
</tr>
<tr>
<td>Chrysoberyl</td>
<td>0.47</td>
<td>0.58</td>
<td>97</td>
<td>0.58</td>
<td>0.55</td>
<td>318</td>
</tr>
<tr>
<td>Aeschynite</td>
<td>0.48</td>
<td>0.67</td>
<td>31</td>
<td>0.58</td>
<td>0.97</td>
<td>330</td>
</tr>
<tr>
<td>Diaphorite</td>
<td>0.49</td>
<td>0.73</td>
<td>115</td>
<td>Chalocite (Kupferblende)</td>
<td>0.58</td>
<td>0.97</td>
</tr>
<tr>
<td>Pyrostilpnite (Feuerblende)</td>
<td>0.50</td>
<td>0.70</td>
<td>145</td>
<td>0.58</td>
<td>0.58</td>
<td>329</td>
</tr>
<tr>
<td>Wavellite (old data)</td>
<td>0.50</td>
<td>0.38</td>
<td>362</td>
<td>0.58</td>
<td>0.84</td>
<td>329</td>
</tr>
</tbody>
</table>
Caracolite...........0.58 0.42 88
Iolite (Cordierit)......0.59 0.56 103
Niter (Kailispalpeter) ...0.59 0.70 194
Bromite (Alstonit)......0.59 0.74 34
Cotunnite.............0.59 1.19 105
Fischerite.............0.59 -- 147
Carnallite............0.60 1.39 88
Friesite..............0.60 0.74 153
Thenardite............0.60 1.25 341
Orpiment (Auripigment)......0.60 0.67 57
Witherite.............0.60 0.73 365
Euchroite.............0.61 1.04 133
Strontianite...........0.61 1.04 331
Cerussite.............0.61 0.72 89
Schockingerite........0.61 -- 313
Zoisite..............0.62 0.34 379
Aragonite.............0.62 0.72 51
Stephanite (Melanglanz)......0.63 0.69 233
Kentrolite............0.63 0.90 197
Desclaozite.........0.64 0.80 113
Polylahde............0.64 -- 270
Variscite............0.65 -- 358
Nesquehonite.........0.65 0.46 248
Atacamite (Atakaumis)....0.66 0.75 56
Lawsonite.............0.67 0.74 216
Ilvaite (Lievrit)......0.67 0.44 220
Locellinit (Löllinit)......0.67 1.23 223
Lithargite (Bleiox)....0.67 0.98 72
Sudsteite.............0.68 0.45 333
Arsenopyrite (Arsen-
kies)................0.68 1.19 55
Glaucodotite (Glau- kodot)..........0.69 1.19 169
Acanthite (Akanthin)....0.69 0.99 32
Erythrosiderite......0.69 0.72 132
Staurolite...........0.69 0.98 327
Epigenite............0.69 -- 131
Tungsite.............0.70 1.61 352
Hydroxyanite........0.71 1.26 186
Polymagnite...........0.71 0.51 271
Hastigite............0.71 1.01 171
Lauronit.............0.73 0.83 214
Alloclasite (Alloklas)....0.74 0.55 34
Klaprothite...........0.74 -- 199
Marcasite (Marka- sit)..........0.76 1.21 232
Euchlorite............0.76 1.88 133
Fluellite.............0.77 1.87 148
Eosphorite............0.78 0.52 128
Brochantite...........0.78 0.49 393
Childrenite...........0.78 0.53 93
Celestite (Colestim)....0.78 1.28 98
Calamine, Hemimor- phite (Kieselzink- erz)................0.78 0.48 197
Lecontite.............0.78 1.53 218
Valentinite...........0.79 1.41 357
Anglesite.............0.79 1.20 42
Langite..............0.79 0.42 212
Davestite............0.79 0.48 112
Hambbergite...........0.80 0.78 169
Chalcostibite (Wolfsbergit)......0.80 0.63 307
Mendipite.............0.80 -- 237
Sulfur (Schwefel)......0.81 1.91 313
Barite (Baryt)........0.82 1.31 60
Bismite (trigonal?)....0.82 1.60 70
Jamesonite...........0.82 187
Thermonatriite........0.83 0.81 341
Pinskiiolite...........0.83 0.59 267
Hajenderite...........0.84 0.99 108
Prehnite..............0.84 1.12 272
Brookite..............0.84 0.94 80
Manganite.............0.84 0.54 230
Kornrurupite...........0.85 200
Serpierite............0.86 1.36 316
Prismatite............0.86 0.83 273
Mazapilite............0.86 0.99 233
Strengite............0.87 0.98 330
Scorodite (Skorodit)....0.87 0.96 321
Triplylhe............0.87 1.05 350
Enargite.............0.87 0.82 127
Dufrenite (Kraurit)....0.87 0.43 201
Pseuobrookite........0.87 0.89 274
Nadorite..............0.89 1.35 245
Zinkosite.............0.89 1.41 374
Anhydrite.............0.89 1.01 44
Spodiosite............0.89 1.58 325
Zinckenite............0.90 1.14 372
Ochrolite.............0.91 2.01 250
Hematite (Häma-
hibrit)..............0.91 1.74 68
Reddingite............0.91 1.05 293
Tellurite.............0.92 0.95 339
Caledonite............0.92 1.41 87
Danburite.............0.92 0.88 108
Goethite (Göttit)......0.92 0.61 162
Cossitite.............0.92 1.46 104
Synadelphite...........0.92 1.72 337
Gerhardit.............0.92 1.16 156
Stilbite (Desmin)......0.93 0.76 113
Diasporeitte...........0.94 0.60 116
Bournonite............0.94 0.90 76
Dufrenoyelite........0.94 1.33 120
Krennerite............0.94 0.51 202
Stylonitite............0.94 -- 331
Meneghinite..........0.95 0.69 238
Olivenite.............0.95 0.68 251
Lanthanite............0.95 0.90 213
Uranothallite........0.95 0.78 355
Newberyite............0.95 0.94 249
Sartorite (Sklero- klas)..........0.96 0.77 320
Libethenite...........0.96 0.70 220
Empieclite (Empel-ikit)........0.96 0.77 126
Bismuthinite (Wis- muthglanz)........0.97 0.99 364
Adamite..............0.97 0.72 30

Representatives of Classes with Diminished Symmetry

Class Hemimorphic

Struvite 0.55 0.62 Calamine, hemimorphite 0.78 0.48
Bertrandite 0.57 0.60 Prehnite 0.84 1.12

Class Sphenoidal

Epsomite 0.99 0.57
Leucophanite 0.99 0.67
Edingtonite 1.0 0.95

Peri-orthorhombic

Mica group Monoclinic
Polybasite Monoclinic

Notes and News

A Calcium Phosphate with Ratios Between Those of Triplite and Sarcopside. Edw. F. Holden. Hillsboro, N. H.—In the writer’s note on sarcopside in the May number of this magazine (pages 99–102), the formula-types of the various fluo-phosphates and related minerals were compared, in table 3; it was also noted in discussing that table that a ferrous fluophosphate from Stoneham, Maine, has been found to show a composition lying approximately midway between the sarcopside and apatite ratios, R:(F, OH):(PO₄) = 12:3:7. The purpose of the present note is to call attention to another apparently intermediate mineral, also from Stoneham, the analysis of which is given (as a peculiar “apatite”) in U. S. Geol. Survey Bull 591, p. 349. The ratio derivable from this analysis is 11:6:4, which is 2 of the way from sarcopside to triplite (7:2:4 + 2 × (2:1:1) = 11:6:4). The chief base in this mineral is calcium, so the member of the triplite group concerned is spodiosite; but the properties of the Stoneham mineral are so unlike those ascribed to spodiosite as to make its distinctness seem at least possible. Studies of the optical properties, with special reference to homogeneity, of minerals appearing to occupy intermediate positions in the series are necessary, however, before their status can be settled.