THE CRYSTAL STRUCTURE OF METAstrengite
AND ITS RELATIONSHIP TO STRENGITE AND
PHOSPHOPHYLLITE

PAUL B. MOORE, Department of Geophysical Sciences, University of Chicago, Chicago, Illinois.

ABSTRACT

The crystal structure of metastrengite, Fe³⁺(PO₄)(H₂O)₂, was solved by interpretation of heavy atom vectors on three Patterson projections, by electron density projections, and by three-dimensional least-squares refinements.

The structure consists of linkages of octahedra and PO₄⁺⁺⁺⁺ tetrahedra. The octahedra are insular and are held together to form a three-dimensional structure by the tetrahedra.

As in strengite, the water molecules appear at the ends of an octahedral edge, hence the octahedral structural formula can be written cis-Fe(O₆)₂(O₄)₂, where O₆ is oxygen belonging also to the PO₄⁺⁺⁺⁺ tetrahedral group and O₄ is an oxygen also belonging to a water molecule. Each of the O₄ oxygens is associated with one phosphorus center and one iron center.

The major differences in the strengite and metastrengite structures are attributed to the “tilt” of the tetrahedra. It is further noted that metastrengite-like subcells in the phosphophyllite structure confirm Strunz’s suggestion of structural similarities between metastrengite and phosphophyllite.

INTRODUCTION

Metastrengite, Fe³⁺(PO₄)(H₂O)₂, is a common product of hydrothermally reworked triphylite occurring in Li-Fe phosphate bearing pegmatites, a rare mineral in limonite beds, and a constituent of certain soils. It has one known isotype, metavariscite, Al(PO₄)(H₂O)₂, and one known dimorph, strengite. Strengite, in turn, has three known isotypes—variscite, Al(PO₄)(H₂O)₂; scorodite, Fe³⁺(AsO₄)(H₂O)₂; and mansfieldite, Al(AsO₄)(H₂O)₂.

Metastrengite and strengite commonly occur together in pegmatites and are often difficult to distinguish, as both usually occur as rose-pink aggregates or reniform crusts. Metastrengite is monoclinic and strengite is orthorhombic; pertinent data of their structure cells are given in Table 1.

Some reasons for undertaking solution of the metastrengite crystal structure are

(1) to compare it with the structure of strengite, which is known, (2) to test the suggestion of Strunz (1942) that there may exist a structural relationship with phosphophyllite, Zn₂Fe(PO₄)₂(H₂O)₄, a recently determined structure, and (3) to add another species to the structural classification scheme of Fe-Mn orthophosphate hydrates as proposed in a previous paper.
### Table 1. Cell Data of Metastrengite, Strengite and Phosphophyllite

|                | Metastrengite | Strengite | Phosphophyllite
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kleber Cell</td>
</tr>
<tr>
<td>a</td>
<td>5.30 Å</td>
<td>10.05</td>
<td>10.23</td>
</tr>
<tr>
<td>b</td>
<td>9.77</td>
<td>9.80</td>
<td>5.08</td>
</tr>
<tr>
<td>c</td>
<td>8.73</td>
<td>8.65</td>
<td>10.49</td>
</tr>
<tr>
<td>β</td>
<td>90°36'</td>
<td>—</td>
<td>120°15'</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>S.G.</td>
<td>P21/n</td>
<td>Pcab</td>
<td>P21/c</td>
</tr>
<tr>
<td>Ref.</td>
<td>McConnell (1939)</td>
<td>McConnell (1940)</td>
<td>Wolfe (1940)</td>
</tr>
</tbody>
</table>

### Table 2. Coordinates and Isotropic Temperature Factors for Metastrengite; Fe-O and P-O Interatomic Distances

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.0916 ± 0.0005</td>
<td>0.8270 ± 0.0007</td>
<td>0.1919 ± 0.0003</td>
<td>0.59 ± 0.03</td>
</tr>
<tr>
<td>P</td>
<td>-0.0867 ± 0.0008</td>
<td>0.1506 ± 0.0013</td>
<td>0.1836 ± 0.0005</td>
<td>0.70 ± 0.05</td>
</tr>
<tr>
<td>*O₁</td>
<td>0.3874 ± 0.0022</td>
<td>0.9494 ± 0.0028</td>
<td>0.1799 ± 0.0014</td>
<td>2.83 ± 0.23</td>
</tr>
<tr>
<td>*O₂</td>
<td>0.9871 ± 0.0022</td>
<td>0.8730 ± 0.0028</td>
<td>0.4274 ± 0.0014</td>
<td>1.60 ± 0.18</td>
</tr>
<tr>
<td>O₁</td>
<td>0.3324 ± 0.0022</td>
<td>0.6814 ± 0.0027</td>
<td>0.2383 ± 0.0014</td>
<td>1.29 ± 0.16</td>
</tr>
<tr>
<td>O₂</td>
<td>-0.1152 ± 0.0022</td>
<td>-0.0066 ± 0.0035</td>
<td>0.1708 ± 0.0014</td>
<td>1.17 ± 0.16</td>
</tr>
<tr>
<td>O₃</td>
<td>-0.2010 ± 0.0022</td>
<td>0.7050 ± 0.0028</td>
<td>0.2178 ± 0.0014</td>
<td>0.86 ± 0.15</td>
</tr>
<tr>
<td>O₆</td>
<td>0.0939 ± 0.0022</td>
<td>0.7873 ± 0.0028</td>
<td>-0.0250 ± 0.0014</td>
<td>1.63 ± 0.18</td>
</tr>
</tbody>
</table>

* Water molecules.

**Octahedral distances**
- Fe-O₁ 2.00 Å
- Fe-O₂ 2.10 Å
- Fe-O₃ 1.95 Å
- Fe-O₄ 2.14 Å
- Fe-O₅ 2.08 Å
- Fe-O₆ 1.94 Å

**Average** 2.03 Å

**Tetrahedral distances**
- P-O₂ 1.58 Å
- P-O₃ 1.58 Å
- P-O₄ 1.52 Å
- P-O₅ 1.52 Å

**Average** 1.55 Å

¹ All distances ± 0.03 Å.
Determination of the Structure

The data of McConnell (1939) were confirmed by examining Weissenberg and precession photographs. Metastrengite has four molecules of Fe\textsuperscript{3+}(PO\textsubscript{4})(H\textsubscript{2}O)\textsubscript{2} in a unit cell of space group \textit{P2}1/\textit{n}. Since it is most likely a structure of isolated octahedra (since \(\Sigma\text{Fe} : \Sigma 0 = 1:6\)) linked to tetradentate PO\textsubscript{4}\textsuperscript{3-} tetrahedra, there must be one iron, one phosphorus and six oxygen independent coordinates. The Patterson projections \(P(\text{uv})\), \(P(\text{uw})\), and \(P(\text{vw})\) confirmed the suspicion that all atoms are in general positions.

The \(a\)- and \(c\)-axis precession photographs were used for deriving \(P(\text{uv})\) and \(P(\text{vw})\). Weissenberg photographs of \(b\)-axis 0-, 1-, 2-, 3-, and 4-levels in three sets each (48, 24 and 8 hour exposures) were prepared using Zr-filtered Mo radiation and a single crystal of dimensions 0.24\(\times\)0.43\(\times\)0.43 mm from Pleystein, Bavaria. From these, 678 independent intensities were collected and estimated visually using a spot scale of 25 units prepared from the crystal. Absorption and \((Lp)^{-1}\) corrections were made using the GNABS program of Burnham (1963). Scattering tables were used for Fe\textsuperscript{2+}, P\textsuperscript{2+}, and O\textsuperscript{2-}, derived from self-consistent field calculations and listed in International Tables, Vol. 3. All computations were done on the IBM 7094 facilities at the Institute of Computer Research, University of Chicago.

The equivalent set of general positions for \textit{P}21/\textit{n} is \(x,y,z; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\) and their inversions. Thus, on \(P(\text{uv})\), there will exist a prominent vector somewhere along the line \(v=\frac{1}{2}\), related to the Fe atom \(x\)-coordinate by \(\frac{1}{2} \pm 2x = u\). Likewise, on the line \(u=\frac{1}{2}\), we have a peak occurring at \(\frac{1}{2} \pm 2y = v\), where \(u\) and \(v\) are coordinates in Patterson space. The same holds for \(P(\text{vw})\); at \(v=\frac{1}{2}\), a peak at \(\frac{1}{2} \pm 2z\) defines the possible Fe \(z\)-coordinates. The possible solutions thus derived from the Patterson projections are \(x=\pm.090\), \(y=\pm.161\), \(z=\pm.183\).

Concentrating now on the \(xz\)-projection, the two possible combinations of symmetry independent Fe coordinates are (.090, .183) or (.090, -.183). A rough trial set of structure factor calculations favored the former. The \(P(\text{uw})\) map (Fig. 1) reveals the vector \(Fexz-Fe_{1-x,1-z}\) (labelled “B”) and the phosphorus coordinates were derived from vectors “A” \((Fexz-P_{1-x,1-z})\) and “C” \((Fexz-P_{xz})\). Rough structure factor calculations confirmed the phosphorus coordinates (-.085, .189) and the signs thus derived from the Fe and P coordinates were applied to the observed structure factors. Only four oxygen atoms appeared on the electron density map, but the other two could be located by assuming an octahedral oxygen configuration about the iron atom. Three more elec-
tron density maps resulted in $R_{b01} = 0.20$. The label "D" on P (uw) corresponds to the contributions of the Fe$_{xx} - (O_{xx}^2, O_{xx}^6)$ vectors.

The possible Fe coordinates are (.090, .161, .183) or (.090, -.161, .183). The latter was chosen after some trial structure factor calculations.

Assuming interatomic distances of Fe–O~2.00 Å and P–O~1.54 Å, the y-coordinates of the remaining atoms were calculated, two structural configurations being possible. A three-dimensional three-cycle least squares refinement (Busing et al. 1963) on the favored configuration with fixed temperature factors (B set to 1.0) and using all collected reflections resulted in $R_{hk1} = 0.22$. Inspection of the individual structure factors.
showed almost consistently $|F_{\text{obs}}| - |F_{\text{calc}}| < 0$ for the strong low-angle reflections. This could be due either to extinction errors or nonlinearities in the intensity scale or both. Omission from refinement of $21$ of the strongest intensities resulted in $R_{\text{hk}1} = 0.20$ after one more cycle. Further refinement, now with fixed coordinates and varying temperature factors resulted in $R_{\text{hk}1} = 0.17$. After three more cycles, varying coordinates and isotropic temperature factors, $R_{\text{hk}1} = 0.156$. Final inspection of all the employed structure factors showed no gross disparities between those observed and those calculated. The $F_{\text{obs}}$ and $F_{\text{calc}}$ structure factor tables can be obtained upon request.

**Discussion of the Structure**

The metastrengite structure consists of isolated metal-centered oxygen octahedra linked together via $\text{PO}_4^{3-}$ tetradentate tetrahedra to form a three-dimensional edifice. Two water ligands are associated with each octahedron, the octahedral configuration being $\text{cis-Fe(O}_p)_3(\text{O}_h)_2$, where $O_p$ is oxygen also associated with the $\text{PO}_4^{3-}$ groups and $O_h$ is oxygen also associated with a water molecule. Each $\text{PO}_4^{3-}$ oxygen is associated with only one $P$ atom and one $\text{Fe}$ atom. Figure 2 is a $b$-axis projected polyhedral diagram showing one octahedron (the asymmetric unit of structure), its four associated $\text{PO}_4^{3-}$ tetrahedra, and the remaining $\text{PO}_4^{3-}$ tetrahedra in the unit cell.

**Relation to the Strengite Dimorph.** The metastrengite structure is very similar to the strengite structure. Both are $\text{cis-Fe(O}_p)_3(\text{O}_h)_2$ structures (Fig. 3). The coordinates of the strengite structure are from Hiriyana and Sakurai (1949). The notable differences are the more “open” disposition of the tetrahedra about the octahedron in metastrengite (explaining the lower density of this mineral) and the order of the tetrahedral groupings about the octahedron. In each of the $\text{cis}$-structures, there are two octahedral faces which have three $\text{PO}_4^{3-}$ oxygens at the vertices. Furthermore, in both structures, for the projections chosen, the tetrahedra point either up (solid lines) or down (dashed lines). For the two faces of concern on the metastrengite octahedron, the associated tetrahedra point down-down-up. For strengite, they point down-down-up and down-down-down.

It is now evident that strengite and metastrengite are stereoisomers of each other, even though the order of the ligand species is the same about the octahedral asymmetric unit. The difference, however, is in the “tilt” or “twist” of the $\text{PO}_4^{3-}$ ligands.

It is interesting to speculate as to whether a trans- array of tetrahedra could exist about an octahedron with the possibility of a third hypotheti-
Fig. 2. Metastrengite crystal structure projected on ac-plane. One octahedron (an asymmetric unit of structure), the PO₄³⁻ tetrahedral environment, and the remaining tetrahedra in the cell are shown. The H₂O oxygens are specified; the circles represent Fe atoms.

Fig. 3. Environment of tetrahedra and H₂O groups about octahedron in metastrengite (left) and strengite (right).
cal polymorph. The tetrahedra would form a "girdle" about the octahedron and crude models show that such tetrahedra and octahedra can fit nicely. However, with two molecules of water on opposing octahedral vertices, there results a more open structure. This is because the tetrahedra sterically hinder any reasonable packing of the ends occupied by water molecules. To better facilitate packing of such octahedra, the open ends (the positions of the water molecules) would have to become fused to form chains of octahedral structure as in laueite (Moore, 1965). In that arrangement, the tetrahedral groups would zigzag up this chain, connecting neighboring octahedral links and cross-linking to other similar chains. Laueite often occurs in close association with strengite and metastrengite indicating that configurations of chains of octahedra as well as isolated octahedral groups can arise in very similar environments.

The name redondite for ferrian "variscite" was resurrected by Čech et al. (1962). This mineral was originally named by Shepard (1869) and work by Čech et al. suggests redondite to be another polymorph of AlPO₄(H₂O)₂. Further studies on this material would be most informative.

Relation to Phosphophyllite, Zn²⁺Fe³⁺(PO₄)₂(H₂O)₄. We turn now to the possibility of a structural relationship between metastrengite and phos-
phosphophyllite. Figure 4 shows a b-axis projection of the phosphophyllite structure, $\left[\text{Zn}_2\text{Fe}(\text{PO}_4)_2(\text{H}_2\text{O})_4\right]$, $P2_1/c$, $a=10.23$, $b=5.08$, $c=10.49$ Å, $\beta=120^\circ 15'$ as determined by Wolfe (1940) and used in the structure analysis of Kleber et al. (1961). Four cells of the Kleber structure are shown, and the B-face centered cell of twice the area (Strunz, 1941) is sketched in. This cell has the dimensions $a'=10.32$ and $c'=17.97$ Å, each nearly twice the dimensions of the metastrengite $a$- and $c$-axes. The Strunz cell is further partitioned into sub-cells A and B, each approximately of metastrengite dimensions. Cell A contains two $\text{PO}_4^{3-}$ tetrahedra whose centers closely resemble $x$, $z$ and $\bar{x}$, $\bar{z}$ coordinates associated with the phosphorus atoms and the $\text{O}_p$ oxygen atoms in metastrengite. Cell B contains the remaining atoms with $\frac{1}{2}+x,\frac{1}{2}-z$ and $\frac{1}{2}+x,\frac{1}{2}+z$ coordinates, and, furthermore, contains zinc atoms strung along the cell diagonal. In metastrengite, these zinc coordinates resemble those of iron, which are somewhat displaced from the diagonal. The zinc in phosphophyllite is in a distorted $\text{O}_p$ tetrahedron. Further analogy breaks down when water and iron in phosphophyllite are considered, as these atoms are associated with octahedra centered at $00$, $\frac{11}{4}$, and $\frac{3}{2}$ positions in the Strunz cell and are not present in metastrengite. It is interesting to note that the y-coordinates of P, the $\text{O}_p$ oxygens, and Zn, as determined by Kleber et al. (1961) bear similarity to those for P, $\text{O}_p$ oxygens and Fe in metastrengite. The similarity in coordinates as well as the existence of pseudocells in phosphophyllite made up of pieces of metastrengite-like structure explain the similarity in powder data of the two minerals, as noted by Strunz.

**Conclusions**

Metastrengite is a cis-structure as is strengite, though more open. Though the ligands in the two species are in the same order, they tilt differently, thus affecting packing of the tetrahedra and octahedra. The similarity of the metastrengite structure to that of phosphophyllite is due to similarities in the packing of the $\text{PO}_4^{3-}$ tetrahedra as well as the position of the Zn atoms (in phosphophyllite) and Fe atoms (in metastrengite). The arrangement is such that subcells of phosphophyllite bear striking similarity to pieces of the metastrengite structure.

**Acknowledgements**

This work was undertaken while I was a NSF Predoctoral Fellow at the Department of Geophysical Sciences, University of Chicago. I wish to also acknowledge Dr. J. V. Smith who supplied funds for computation through the NSF GP-443 grant.
References


HIRIVANA, R. AND K. SAKURAI (1949) The crystal structure of scorodite. X-rays 5, 85-88.


STRUZ, H. (1942) Isotypie unter Besetzung vakanter Gitterorte. Fe$_2$(PO$_4$)$_2$·4H$_2$O und Fe$_2$(PO$_4$)$_2$·4H$_2$O. Naturwissen. 30, 531.

WOLFE, C. W. (1940) Classification of minerals of the type A$_3$(XO$_4$)$_2$·nH$_2$O. Am. Mineral. 25, 787-808.

Manuscript received, March 14, 1965; accepted for publication, May 20, 1965.