Appendix—(continued)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>% Blackening at Saturation</th>
<th>ppm Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>10—Banded gneiss-bands of biotite mixed with quartz, feldspar, and muscovite</td>
<td>New England</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>11—Gneiss-schist</td>
<td>New England</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

VI. Rhyolitic Quartz

No. 1—Rhyolite
7—Light grey rhyolites with phenocrysts of quartz, hornblende, and feldspar
8—Rhyolite with phenocrysts of quartz and feldspar
10—Rhyolite porphyry
12—Extrusive rhyolite
13—Quartz porphyry

About one mile west of Milan, Ohio, which is two miles south of Exit 7 on the Ohio Turnpike, the Huron River cuts through flat-lying beds of the marine Ohio and Olentangy shales of Upper Devonian age. Concretions one to three feet in diameter are quite common here and many are septarian. Three years ago Clarence Raver, an amateur rock hound from Clarksfield, Ohio, began breaking these open and collecting specimens of fluorescent calcite, dolomite, ankerite, barite, marcasite, quartz and sphalerite. He was unable to identify one colorless crystalline material, several pounds of which he found in more than 25 septarian concretions.

Well crystallized samples about 3 X 2 X 1 in. were brought to our attention in October 1963 and have since been identified as whewellite, calcium oxalate monohydrate.

Powder x-ray diffraction data were in excellent agreement with those of Pecora and Kerr (1954) and Gude et al. (1960).

Chemical composition was similar to the theoretical for whewellite and to other analyses for this mineral from Europe. Table 1 contains the several analyses. Samples were also submitted for x-ray spectrographic examination and were found to be exceptionally pure.

1 Present address: Department of Geology, Allegheny College, Meadville, Pennsylvania
Table 1. Chemical Composition of Whewellite from Various Sources

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>38.38</td>
<td>38.46</td>
<td>38.83</td>
<td>38.36</td>
<td>38.23</td>
</tr>
<tr>
<td>C₂O₅</td>
<td>49.28</td>
<td>49.65</td>
<td>49.38</td>
<td>50.28</td>
<td>48.69</td>
</tr>
<tr>
<td>H₂O</td>
<td>12.34</td>
<td>12.14</td>
<td>12.31</td>
<td>11.36</td>
<td>Not Determined</td>
</tr>
</tbody>
</table>

1. Ca(C₂O₅)·H₂O
2. Pchery, Bohemia
3. Brux, Bohemia
4. Maikop, Caucasus
5. Milan, Ohio

Note: Analyses 2, 3 and 4 from Palache et al. (1951).

This find is of interest for the following reasons:
1. It is the first reported in eastern United States.
2. It is the first of any sizable quantity in the United States.
3. It is found in older rocks than previous finds.
4. The location is readily accessible to interested petrologists.

We are glad to acknowledge the help of Mr. Owen Keim who performed the chemical analysis and Mr. C. R. Tipton, Jr. who made this work possible, both of whom were the authors’ associates at the Basic Incorporated Research Center. Of course, special thanks and recognition must go to Mr. Clarence Raver who supplied us with the samples.

References


The American Mineralogist, Vol. 51, January-February, 1966

Lacustrine Glauconitic Mica from Pluvial Lake Mound, Lynn and Terry Counties, Texas

W. T. Parry and C. C. Reeves, Jr., Texas Technological College, Lubbock, Texas.

Glauconitic mica from lacustrine sediments in pluvial Lake Mound, Lynn and Terry counties, Texas is identified by x-ray diffraction, optical