TABLE 1

Author	Specimen locality	Method and results of analysis	Proposed formulae
Van Tassel (1959)	Argenteau, Belgium	Chemical Analysis (recalculated) Al: 18.8 F: 16.0 PO4: 27.6	3Al ₂ O ₃ ·4AlF ₃ ·2P ₂ O ₆ ·27H ₂ O (from Van Tassel, no OH content)
		OH: 6.5 OH calculated value to balance Al charge. $H_2O: 31.1$ H_2O by difference. $D_m = 2.12$. Powder data for material from Cornwall, Bavaria, and Belgium.	Al _{2,4} PO ₄ F _{2,9} (OH) _{1,8} ·6H ₂ O (calculated, assuming Al balanced by OH)
Chukrov (1963)	Kazakhastan	Chemical Analysis: Al: 16.83 17.04 F: 14.80 14.62 PO ₄ : 28.44 28.97 OH: 3.32 3.59 OH calculated to HsO: 35.89 35.36 balance Al charge, etc: 0.77 0.33 $D_{\rm m}\!=\!2.17$ (both specimens) Powder data for Kazakhastan material.	Al ₂ (F·OH) ₃ PO ₄ ·7H ₂ O (may be 6 or 7 H ₂ O per formula unit, F:OH is 4:1)

GUY, B. B. AND G. A. JEFFREY (1966) The Crystal Structure of Fluellite, Al₂PO₄F₂(OH) ·7H₂O. Amer. Mineral. 51, 1579-1592.

Van Tassel, R. (1959) Autunite, apatite, delvauxite, évansite et fluellite de la région de Visé. Bull. Soc. belge Géol., 68, 226–248.

THE AMERICAN MINERALOGIST, VOL. 52, SEPTEMBER-OCTOBER, 1967

BARIUM-VANADIUM MUSCOVITE AND VANADIUM TOURMALINE FROM MARIPOSA COUNTY, CALIFORNIA: A CORRECTION

Kenneth G. Snetsinger, NASA Ames Research Center, Moffet Field, California.

Dr. L. G. Berry has drawn my attention to the absence of the (006) and (024) reflections from the X-ray data for barium-vanadium muscovite in my paper (Amer. Mineral. 51, 1623–1639); both reflections are typical of $2M_1$ muscovite. I neglected to include (006) in the data; it has d (meas.) = 3.339 Å, and an intensity of 90. These values were obtained from film because in diffractometer work the 2θ range in question was swamped by the intense internal standard quartz peak; d (calc.) of (006) is 3.336 Å. I find no indication of (024) on the X-ray film of the mica; (024) is considerably less intense than nearby (006) (cf. ASTM card 6-0263), and presumably is masked by (006).

ERRATA

Nester, J. F. (1967) Growth of synthetic calcite crystals. 52, 276–280: p. 276, for "Li₂O₃" read "La₂O₃."