X-RAY DIFFRACTION STUDY OF OLIVINE SOLID SOLUTION SERIES

I. Cyrus Jahanbagloo, Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802.

ABSTRACT

Lattice constants of sixteen analyzed olivines fit a linear relation against mole % forsterite within about 5 mole % forsterite. Using calculated lattice constants and atomic coordinates estimated from Gibbs' structures of two olivines, spacings and intensities of powder patterns were synthesized for the whole solid solution series.

Olivine (Mg,Fe)₂SiO₄ is a mineral which forms continuous solid solutions between forsterite Mg₂SiO₄ and fayalite Fe₂SiO₄. The Mg/Fe ratio in the mineral can be estimated by measuring certain physical constants such as refractive indices, optic angle, or the density of the mineral (Poldervaart, 1950; Bloss, 1952). It is also possible to determine the composition from the X-ray diffraction powder data. Yoder and Sahama (1957) found the following relationship between the interplanar spacing of the (130) reflection and the amount of forsterite substitution (Fo%) in the mineral:

Fo(mole
$$\%$$
) = $(4233.91 - 1494.59 d(130) \pm 3-4\%$ (1)

In this work new relationships have been established between the lattice

References	a (Å)	b (Å)	c (Å)	v (ų)	Fo(mole %			
Yoder & Sahama (1957)	4.817	10.477	6.105	308.1	0			
ASTM 7-164	4.816	10.482	6.095	307.7	6			
ASTM 7-163	4.808	10.452	6.080	305.5	15			
ASTM 7-158	4.799	10.393	6.063	302.4	41			
Heckroodt (1958)	4.789	10.330	6.041	298.9	53			
ASTM 7-157	4.783	10.335	6.031	298.1	54			
ASTM 7-73	4.787	10.332	6.035	298.5	56			
ASTM 7-159	4.784	10.318	6,027	297.5	64			
Heckroodt (1958)	4.768	10.242	6.004	293.2	79			
Heckroodt (1958)	4.760	10,236	6,003	292.5	80			
Heckroodt (1958)	4.760	10.219	5.994	291.6	88			
ASTM 7-156	4.763	10.225	5.993	291.9	88			
ASTM 7-75	4.760	10.223	5.992	291.6	90			
ASTM 7-74	4.758	10.207	5.988	290.8	96			
Yoder & Sahama (1957)	4.756	10.195	5.981	290.0	100			
Swanson & Tatge (1953)	4.76	10.20	5.99	290.8	100			

TABLE 1. OLIVINE DATA

constants as well as the X-ray intensities of certain reflections versus the ${\rm Mg/Fe}$ ratio in the series.

The lattice parameters and the unit-cell volumes of 16 chemically analyzed olivines, reported in the literature, are listed in Table 1. Graphs constructed from this data are shown in Figure 1. These graphs show the existence of linear relationships (within the limits of error) between these

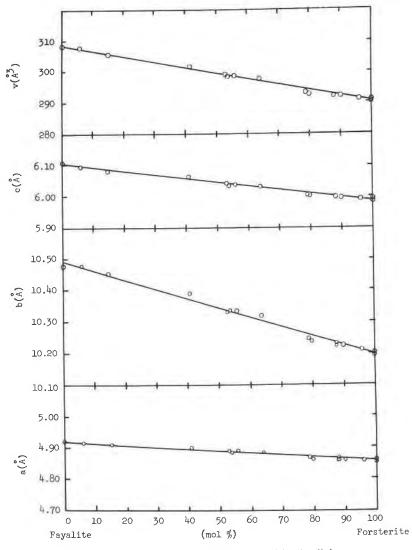


Fig. 1. Unit cell parameters versus composition in olivines.

parameters and the composition. Eliseev (1958), however, found small deviations from linearity in both a- and b-axes functions. Eliseev's conclusion was based on fewer samples and the compositions were determined only by their refractive indices. Therefore, this slight discrepancy may be due to the inaccuracy of his chemical data.

The following equations, obtained with a least-squares technique from the data of Table 1, can be used to determine the amount of forsterite substitution (Fo%) from the unit cell parameters in unanalyzed olivines.

Fo(mole %) =
$$(7288.27 - 1511.77a) \pm 5.8\%$$

Fo(mole %) = $(3417.44 - 325.53b) \pm 3.8\%$
Fo(mole %) = $(4977.01 - 815.40c) \pm 3.7\%$
Fo(mole %) = $(1625.96 - 5.265V) \pm 3.6\%$

Table 2 demonstrates the good agreements (within the limits of error) between the results obtained with the relationships established in this work and those obtained by other methods of analysis.

References to the samples	Chemical analysis	This work ^a	From Yoder & Sahama's equation
ASTM 7-74	96	94.8	96.9
ASTM 7-156	88	89.0	92.1
ASTM 7-73	56	54.0	53.5
ASTM 7-163	15	17.8	17.7
ASTM 7-164	6	6.5	4.7
Yoder & Sahama (1957)	100	99.3	100
Yoder & Sahama (1957)	0	2.4	0

Table 2. Results According to Various Methods—Fo (mole%)

The X-ray powder patterns of six members of the olivine series between forsterite and fayalite (with intervals of 20 percent forsterite) have been calculated by a computer program prepared by the author. This program differs from Deane Smith's program only in that it modifies the intensities for the anomalous scattering of the constituent atoms. These patterns are listed in Table 3 and can be used as standards for the X-ray

^a Average of the four values obtained from equations (2).

¹ Materials Research Laboratory, Pennsylvania State University.

² Smith, Deane K. (1963). A Fortran program for calculating X-ray powder diffraction patterns. UCRL-7196, Lawrence Radiation Laboratory, Livermore, California.

Table 3. Calculated X-ray Powder Patterns of Olivines—CuKα-Radiation

Forsterite	Chrysolite ²	Hyalosiderite ⁵	Hortonolite4	Ferro- Hortonolite ⁵	Fayalite ⁶	
h k &	d I*		ď I	d I*	đ I	d I*
0 2 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	5.096 20 4.310 1 3.879 22 3.497 15 3.006 6 2.991 66 2.971 66 2.579 1 2.509 80 2.457 100 2.344 2 2.316 10 2.267 44 2.246 30 2.267 44 2.246 30 2.160 30 1.948 3 1.948 3 1.948 3 1.874 1 1.861 2	3,899 44 3,734 15 3,509 26 3,491 11 3,018 6 3,003 14 2,778 71 2,591 5 2,565 1 2,521 75 2,466 100 2,384 2 2,358 13 2,322 9 2,277 33 2,258 25 2,216 16 2,039 5	1 894 5	5.187 11 4,352 3 3.939 2 3.758 7 3.554 45 3.627 9 2.805 85 2.614 18 2.594 68 2.485 100 2.397 9 2.384 13 2.336 9 2.295 20 2.281 17 2.179 11 2.057 6 2.057 6 1.970 1 1.970 2 1.990 4 1.879 1	2.293 15 2.186 9 2.066 6 2.055 1 1.980 2 1.914 3	5.248

^{1.} Mg_SiO,

powder patterns of olivines. In the calculation of these patterns the crystallites composing the powder were assumed to be uniform in size and randomly oriented. These patterns are for copper radiation. The intensities reported are integrated intensities and have not been corrected for absorption. Therefore, these patterns can best be used in conjunction with diffractometer studies. The lattice constants for these patterns were obtained from equations (2) and their atomic coordinates and temperature factors were estimated by interpolation and extrapolation of two members of the olivine series: forsterite Fo₉₀Fa₁₀ and hortonolite Fo₄₇Fa₅₃ refined by Gibbs *et al.* (1964) and Gibbs¹. The variation of calculated intensities with composition for several of the reflections are illustrated in Figure 2. These graphs can greatly enhance the reliability of determination of the forsterite substitution in unanalyzed olivines.

The method described in this paper, based on X-ray diffraction, possesses many advantages. It can be used to determine the composition of single grains of olivine removed from thin or polished sections. It can also be used to study the compositional variations in zoned olivine crystals, and to determine the average composition of a powder sample.

^{3- (}Mg 60Fe 40)2SiO4

^{5. (}Fe 80 Mg . 20 2 SiO4

^{2, (}Mg_80Fe_20)2SiO4

^{4. (}Fe 60 Mg 40) SiO4

^{6.} Fe_oSiO_h

^{*}Integrated intensities.

¹ Gibbs, G. V. (1964). Private communication.

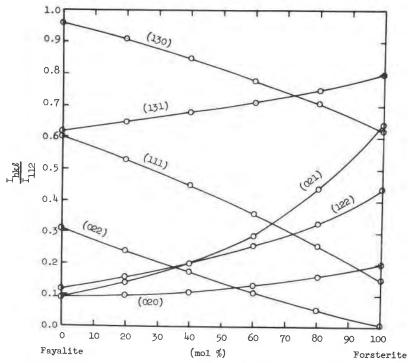


Fig. 2. Variation of the calculated intensity ratios with composition, for several of the reflections in olivines.

ACKNOWLEDGMENTS

Special thanks are due Dr. Tibor Zoltai for his guidance and suggestions during this work. Dr. Gerald Johnson, Jr. is also acknowledged for reading the manuscript critically. This work was in part supported by The Joint Committee on X-ray Powder Diffraction Standards (Grants Nos. 2212–2112).

REFERENCES

Bloss, F. D. (1952) Relationship between density and composition in mol percent for some solid solution series. *Amer. Mineral.*, **37**, 966–981.

ELISEEV, E. N. (1958) New data on the crystal structure of olivine. *Kristallografiya* [Transl. Sov. Phys.-Crystallogr. 3, 163-169.]

Gibbs, G. V., P. B. Moore, AND J. V. Smith (1964) Crystal structures of forsterite and hortonolite varieties of olivines (abstr.). Geol. Soc. Amer. Spec. Pap., 76, 66.

Heckroodt, R. O. (1958) An X-ray method for the determination of olivine. Geol. Soc. S. Afr. 61, 377-386.

POLDERVAART, A. (1950) Correlation of physical properties and chemical composition in the plagioclase, olivine, and orthopyroxene series. *Amer. Mineral.*, **35**, 1967–1079.

Swanson, H. E., and E. Tatge (1953) Standard X-ray diffraction powder patterns. U. S. Nat. Bur. Stand. Circ., 539, pt. 1, 83.

YODER, H. S., AND T. G. SAHAMA (1957) Olivine X-ray determinative curve. Amer. Mineral., 42, 475-490.

Manuscript received, June 20, 1968; accepted for publication, September 21, 1968.