COMPOSITONS OF NATURAL SILLIMANITES FROM VOLCANIC INCLUSIONS AND METAMORPHIC ROCKS

TEUNIS A. P. KWAK, Vening Meinesz Laboratorium, Rijksuniversiteit te Utrecht, Utrecht, The Netherlands

ABSTRACT

Thirty-two sillimanites from numerous world-wide localities and geological environments were analyzed for Al, Si, Fe, and Ti by use of the electronmicroprobe. These sillimanites occur as fibrolitic, tabular, and granular crystals in middle almandine amphibolite (600°C, ± 5 kbar minimum?) to granulite facies rocks and within inclusions in dacitic and olivine basaltic lavas (about 1150°C, ± 0.5 kbar pressure?). All the sillimanites analyzed were within very close limits pure Al_2SiO_5 indicating that the possibility of sillimanite-mullite solid solution in most natural environments need not be considered at values greater than the 3% level (the maximum error of measurement). This was even found true of corundumbearing samples (Al_2O_3 -buffered), which occurred in high temperature-low pressure olivine basalts. The conclusion does not, of course, eliminate order-disorder effects in sillimanite nor slow kinetics as possible reasons for the too common occurrence of kyanite-sillimanite pairs.

Introduction

The problem involving the Al₂SiO₅ polymorphs is known to all petrologists and need not be elaborated upon here. Zen (1969), Pitcher (1965), and Fyfe (1969) give excellent reviews with newer ideas.

The possible influence of minor elements such as Fe, Ti, Mn, and Cr may, theoretically, produce a two phase area (Strens, 1968) but field studies have not substantiated this as being important (Albee and Chodos, 1969; Chinner et al., 1966). The possible drastic effects of order-disorder in sillimanite at constant composition have been considered by a number of investigators (Zen, 1969; Greenwood, 1970), and some crystallographic evidence supports this hypothesis from experimental studies (Beger, Burnham, and Hays, 1970).

Theoretically, there is no reason why a solid solution series from sillimanite Al₂SiO₅ to pure Al₂O₃ should not exist (Burnham, 1964), and some evidence does exist for such a series between sillimanite and mullite (Aramaki, 1961; Aramaki and Roy, 1963). Aramaki (1961) found a fibrous sillimanite in a glassy inclusion from the Asama Volcano, Japan, which had an apparent Al₂O₃: SiO₂ molecular ratio of 52.4:47.6, lying compositionally and crystallographically between sillimanite and mullite. This raises the question as to whether the complete solid solution series exists.

As pointed out by Chinner (1961) and many other investigators, sillimanite is found both as large prisms and as fine mats of "fibrolite",

often together. The fibrolite is not usually analyzed (Zen, 1969, p. 304) and may well show limited mullite solid solution (or order-disorder effects). Moore and Best (1969) have crystallographically analyzed fibrolite from two pyroxene hornfels facies contact aureoles and have found no mullite, nor do the results suggest a solid solution series. Analysis of sillimanite in inclusions from low pressure-high temperature environments such as lavas are also scarce and should show the solid solution to the degree Aramaki's work suggests, especially if corundum occurs as a buffering phase.

ANALYTICAL RESULTS

All of the sillimanite samples from volcanic inclusions, most of the fibrolite, and most of the other samples were X-rayed and found to have a pure sillimanite pattern with no mullite reflections.

The chemical analyses were made on carbon-coated, polished thin-sections and grain mounts with a Norelco TPD low-angle (15°) electron microprobe. Wavelength scans were made on each sillimanite sample that did not fall within close limits (1.5 percent) of a 100 percent total, to see if other elements besides Al, Si, Ti, and Fe were present. Other elements were never detected above the 0.01 percent level and most of the variation is probably due to the orientation of the sample, to which analyses with the low-angle probe are sensitive.

The analytical conditions were 16.5 kV, 0.1 to $0.2~\mu\text{A}$ for Fe and Ti and 17.5 kV for Al and Si at constant beam current. The standards used were kyanite from St. Gothard, Switzerland, Ti metal, and hematite (Fe₂O₃). The kyanite contained only 0.02 percent Fe₂O₃ (some of the Fe may have been Fe²⁺), and no detectable Ti. The stoichiometry of the kyanite was independently checked by use of corundum and quartz standards and found to have essentially a 1:1 ratio of Al₂O₃:SiO₂ (molecular proportion). In the samples and standards, sufficient counts were accumulated at each analyzed point to reduce statistical counting errors for Fe and Ti to less than 2 percent and for Al and Si to less than 0.3 percent. At least 5 grains were measured in each section, except in some fibrolites with insufficiently large crystals, where an area was measured. These areas gave an Al₂O₃:SiO₂ ratio identical to the sillimanite occurring as crystals larger than $10~\mu\text{m}$.

To check the supposition that matrix effect corrections are unimportant when the standard (kyanite) is essentially identical in composition to the sample (sillimanite), corrections were done on a number of samples using the method of Springer (1967). These corrections generally were within 0.2 weight percent of the particular oxides of the samples and are well within the uncertainty of the total measurement. Some of the sillimanite crystals measured were very small (10–15 μ m), and surface effects (orientation) play a significant part in the uncertainties of the analysis.

Tables 1 and 2 show respectively the pertinent geological and analytical data. As can be seen, the variation of the Al₂O₃:SiO₃ ratios (molecular proportions) are small. Sample 9 has a high value of Al₂O₃ approaching that of Aramaki's. The reason for this is unknown, but this sample and 13, which has a high SiO₂ proportion, both have relatively large uncertainties of analysis. It must also be remembered that the uncertainties are calculated from the variation of the radiation readings and include problems of orientation as mentioned earlier. Samples 1, 3, 5, 9, 19, 21, 28, and 32 contain between 0.34 and 0.88 weight percent of calculated Fe₂O₃ and samples 1, 7, 26 and 28 between 0.25 and 0.81 weight percent of calculated TiO₂. These relatively low values may have a limited effect on the sillimanite

Table 1, Geological Information About the Analyzed Sillimanite Samples and Some Interpretted P-T Conditions

Number	ber Location	General geology	T-P (approx) interpretation	Assemblage	Form and size of crystals	Petrographic association of Si	Collector	Collector & collection number of source
		Almandin	Almandine amphibolite factes—quartz bearing (buffered)	quartz bearing (buff	ered)			
-	1 Northern Naxos, Greece	Between Ky isograd and begin of migmatization	~650°C ~6 kbar	ВМОР	Fib.; fine	Intergrown with B	Nax. 73, R. V.M.L.	Nax. 73, R. D. Schuiling V.M.L.
61		Unknown	Unknown	Ö	Fib.; fine	Fi ⁵ . vein in B schist	Ben Jansen, V.M.L.	V.M.L.
15		Between Ky isograde & begin of migmatization	~550°C ~6 kbar	Ky BPQM	Fib.; fine	From border of ky Nax. 260, R. S. Schuiling Q vein V.M.L.	Nax. 260, R V.M.L.	S. Schulling
4		Grenville Prov. Dill township Above Ky and M isograds; near Sudbury, Ont. below granulite facies	~550to750°C ~6 kbar	~550to750°C GPBKQRMg ~6 kbar	Fib.; fine	No specific rela- tionships		T-296, T. Kwak, V.M.L.
ir					Gran; medium	ě.	T-293,	
o		Above Ky isograd below M isograd		GPBKQRMgM	h,		T-249,	
17		Same as 4		GPBKQRMg	b;	₹:	T-292,	
sc.		Between S and K (+M) isograds	•	MGPBKyQRMg	Fib.; fine	Intergrown mainly T-232-1c with B	T-232-1c	,
6		ě.		MGPBKyQRMg	že.	k	T-156-1B	
10		k.	÷	MGPBKyQRMg (S)	•	žt.	T-232-1B	¥
Ξ		è		MGPBKyQRMg	ь	*	T-150-1B	•
12				MGPBKyQRMg (S)	že.	b	T-120-1A	

Table 1.—(Continued)

Number	oer Location	General geology	T-P (approx) interpretation	Assemblage	Form and size of crystals	Petrographic association of Si	Collector & collection number or source	lection urce
13		X		MGPBKyQRMg (S)	ži.		T-290-1A	
14	14 Custer, N. Dak.	Unknown	Иаквоwв	With Q in vein in Fib.; fine B schist	Fib.; fine	No specific rela- 70-Sil-1 V.M.L., collectionships tion (from Wards)	70-Sil-1 V.M.L. tion (from Wards)	collec- s)
			Granulite facies quartz bearing (buffered)	bearing (buffered)				
15	Rohrsdorf near Chemnitz, Saxony, W. Germ.	Pyroxene granulite	Beyond M isograd	QPKBG(Ky)	Fib. and tab fine	Fib. and tab : Formed from Ky	72-1882, M.G.I.U. collection	collec-
16	Waldheim, Sax., W. Germany	ь	v	QBPKG	Tab.; fine	Longate masses of crystals parallel to layering	372-1884	
17	Rohrsdorf, Sax. W. Germany		×	KKyGPBQ	Tab.; fine		47-1880	
18	Waldheim, Sax. W. Germany	Ł	٠	KPQGB	Gran.; fine	"Clots" after Ky?	375-1884 **	
19	Saxony, W. Germany	Hornblende granulite	ν.	KPBQI	Fib.; fine	Intergrown mainly 163 with B	163	
20	Adirondack Mts. N.Y.	Granulite facies	4.	BQP(K?)	Tab.; large	Mainly in Q-P masses	AD8, R. D. Schuiling V.M.L.	huiling
21	S. Rogaland near Moi, Nor- Pyroxene granulite	Pyroxene granulite	Beyond orthopyrox- ene isograd	KQPGI	Tab.; large	No specific rela- tionships	R. Poorter	
22	Khasia, India	Unknown	Unknown	QKR	Tab.; large	Radiation and In- terlocking aggre- gates	70-Sil-2, VML collection (from Wards)	llection

Table 1.—(Continued)

Number	ber Location	General geology	T-P (approx) interpretation	Assemblage	Form and size of crystals	Petrographic association of Si	Collector & collection number of source
			Granulita factes corundum bearing	rundum bearing			
23	Haldummula, Uva Prov., Ceylon	Unknown		CBP	Tab.; large	85% Si; in sub- parallel sheaths	R.G.M.
			Volcanic Inclusions-quarta bearing	-quartz bearing			
24	Finkenberg, Eifel Mts. W. Germany	6 cm long equant inclusion in olivine—pyroxene lava	~1150°C? ~0.5 kbar	Sp GI QP	Tab.; medium	Equant Q-S bodies in Sp-Gl matrix	Equant Q-S bodies H. M. E. Schurman in Sp-Gl matrix
25	*	10 cm-long equant inclusion in olivine-pyroxene lava		FQ Mg(+altered glass)		Fib. and gran.: 2 types of Si crys- fine and large tals	59-1908, MGIU
26	Cerro del Hoyazo, S.E. Spain Large inclusion in BCP dacite lava	Large inclusion in BCP dacite lava	~1000°C2 ~0.5 kbar?	BCGQ "G-B-Si gneiss"	ti.	Clots of Si commonly n & around B	Z 73 Но, "
27	*	£		BCGQ "Q-Co. rock"	2		Z 46 Ho
		Volcanic In	clussons—neither qu	Volcanic Inclusions—neither quartz nor corundum bearing	earing		
28	Cerro del Hoyazo, S.E. Spain "clot" of fib. & 1 large crystal in BCP dacite lava	"clot" of fib. & 1 large crystal in BCP dacite lava	~1000°C? ~0.5 kbar?	Only Si in clot	Fib.; fine	As under general geology	Z 208 A, H. P. Zeck, U. of A.
20		Large inclusion in BCP dacite lava	٤	ABCGPSp"Sp-Co hornfels"	k	A parily altered to Si; Si also around relict A crystal	Zo 9,
		A	Volcanic Inclusions—corundum bearing	corundum bearing			
30	Finkenberg, Eifel Mts. W Germany	6 cm long elliptical inclusion in olivine-pyroxene lava	Þ	PCMg (+altered glass)	Fib.; large crystalsto2 cm long	Fibrolite in form but much larger size crystals	Fink 412, H. M E. Schürmann

Q=quartz S=staurofite Si =sillimanite

C=corundum

TABLE 1.—(Continued)

Number	Location	General geology	T-P (approx) interpretation	Assemblage	Form and Size of crystals	Petrographic Collector & collection association of Si nvmber of source	Collector & collection nvmber of source	source
31		5 cm long elliptical inclusion in oliving-pyroxene lava	+	÷			Fbg 57,	
32	i.	3 cm long elliptical inclusion in olivine-pyroxene laya		,	÷	·	71-1908, MGIU	b

Minerals.

A=andalusite	M=muscovite	Co =cordierite	Ky = kyanite	moured") in a particular mineral.
Sp=spinel	B = biotite	K = K-feldspar	R = rutile	ed to another mineral or only enclosed ("ar
Gl=glass	Mg = magnetite	P = plagioclase	I=ilmenite	()=metastable—partly alter

Grain shapes of sillimanite

tab. = tabular -- maximum to minimum length ratio 3:1 to 10: fib. =fibrolite-maximum to minimum length ratio > 10:1 gran. =granular-maximum to minimum length ratio < 3:1

Grain size

medium = 30 mµ to 500 mµ (0.5 mm) wide large = >500 mµ wide fine = <30 mµ wide

RGM = Rilksmuseum van Geologie and Mineralogie, Lelden, Neth. MGIU = Mineralogisch-Geologisch Instituut, Utrecht

VML = Vening Meinesz Laboratory, Utrecht, Neth.

U of A = Universiteit van Amsterdam, Amsterdam, Neth.

Dr. H. M. E. Schürmann = Ph.D. thesis materials (1914), 149 Waalsdorperweg, The Hague, Neth.

Table 2, Chemical Analysis of Sillimanite Samples in Weight Percent and Molecular Proportions of Al₂O₅:SiO₂

22 62 37 37 37 37 37 37 37 37 37 37 37 37 37		Thirming	Armendane amphibolite factes samples	21727 217		- quartz bearing	Sur					
62.78 62.72 62.37 61.17 61.91 64.37 62.28 63.95 63.48 37.28 36.53 37.53 36.93 35.88 36.88 37.54 37.95 35.77 0.34 0.01 0.00 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01		_	2	3	4	2	9	7	80	6	10	
37.28 36.51 37.33 36.88 35.88 36.88 37.54 37.57 37.73 37.28 36.88 37.54 37.54 37.57 37.71 0.03 0.01 0.02 0.01 </td <td>A1203</td> <td>62.78</td> <td>62.72</td> <td>62.37</td> <td>61.17</td> <td>61.91</td> <td>64.37</td> <td>62.28</td> <td>63.95</td> <td>63.48</td> <td>61.72</td> <td></td>	A1203	62.78	62.72	62.37	61.17	61.91	64.37	62.28	63.95	63.48	61.72	
0.33 0.01 0.02 0.01 0.02 <th< td=""><td>SiO2</td><td>37.28</td><td>36.57</td><td>37.53</td><td>36.93</td><td>35.88</td><td>36.88</td><td>37.54</td><td>37,95</td><td>35.77</td><td>36.28</td><td></td></th<>	SiO2	37.28	36.57	37.53	36.93	35.88	36.88	37.54	37,95	35.77	36.28	
10.0.75 99.31 100.65 98.32 98.14 101.36 100.78 102.00 99.56 49.9:50.1 50.3149.7 49.5150.5 49.4150.6 50.4149.6 50.7149.3 49.4150.6 49.8150.2 51.1148.9 1 43 41 40.1 40.2 40.4150.6 50.4149.6 50.7149.3 49.4150.6 49.8150.2 51.1148.9 1 1.	Ti02	0.34	0.01	00.00	0.01	0.01	0.01	0.81	0.01	10.0	0.01	
100.75 99.31 100.65 98.32 98.14 101.36 100.78 102.00 99.56 49.9:50.1 50.3:49.7 49.5:50.5 49.4:50.6 50.4:49.6 50.7:49.3 49.4:50.6 49.8:50.2 51.1:48.9 4.3	$Fe_{2}^{0}_{3}$	0.35	0.01	0.75	0.21	0.34	0.10	0.15	0.09	0.40	0,17	
49.9:50.1 40.3:49.7 49.5:50.5 49.4:50.6 50.4:49.6 50.7:49.3 49.4:50.6 49.8:50.2 51.1:48.9 49.6:50.1 1	total	100.75	99.31	100.65	98.32	98.14	101.36	100.78	102.00	95.66	98.18	
1. 1. 40.1 40.2 40.2 40.3 40.5 40.3 40.6 1. 1. 1. 1. 1. 1. 1. 1.	Al ₂ 0 ₃ :Si0 ₂ molecular	49.9:50.1	50.3:49.7	49.5:50.5	49.4:50.6	50.4:49.6	50.7:49.3	49.4:50.6	49.8:50.2	51.1:48.9	50.1:49,9	
13 12 13 14 Granulite facies - quartz beatri 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 16 17 17 10 10 18 10 10 19 20 21 19 20 21 20 21 20 21 36.16 36.16 36.17 36.28 36.29 36.29 36.29 36.29 36.29 36.29 36.29 36.20	ratio	e: +1	- .	+0.1	+0.2	+0.2	+0+3	+0.2	+0.3	9.0+	+0.2	
15 16 17 18 16 17 18 18 18 18 18 18 18		=======================================	12	13	71			Granulite	e facies -	quartz bear	ing	
10 10 10 10 10 10 10 10								15	16	17	18	
36.56 38.03 36.75 37.36 36.99 36.86 36.57 0.01 0.01 0.07 0.07 0.00 0.00 0.17 0.03 0.13 0.06 0.16 0.06 0.17 0.00 98.61 97.3 100.57 100.03 101.04 98.72 99.66 50.2149.8 48.1151.9 50.649.4 49.6:50.4 49.6:50.4 50.549.5 49.6:50.4 50.00 40.3 48.1151.9 50.649.4 49.6:50.4 49.6:50.4 50.3:49.7 49.6:50.4 50.3:49.7 40.3 40.6 40.1 40.1 40.1 40.4 40.2 40.2 63.02 61.72 40.1 20 23 23 23 20 65.6 36.07 37.56 37.81 36.10 0.00 0.00 0.00 0.00 0.8 0.24 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	$^{A1}_{2}^{0}_{3}$	62.01	59.86	63.75	62.44			64.05	61.64	62.92	61.87	
0.01 0.01 0.01 0.07 0.07 0.00 0.00 0.01 0.03 0.13 0.06 0.16 0.00 0.00 0.01 98.61 97.3 100.57 100.03 101.04 98.72 99.66 90.2149.8 48.1151.9 50.6149.4 49.6150.4 90.524 50.5149.7 40.3 40.6 40.2 40.61 40.61 40.61 40.61 91.04 92.0 21 22 23 92.06 91.12 62.90 62.81 62.14 92.07 92.0 92.00 92.00 93.00 92.0 92.00 92.00 93.00 93.00 93.00 93.00 93.0	sio_2	36.56	38.03	36.75	37.36			36.99	36.86	36.57	36.74	
0.03 0.13 0.06 0.16 0.00	Tio_2	0.01	0.01	0.01	0.07			0.00	00.00	0.17	0.00	
98.61 97.3 100.57 100.03 101.04 98.72 99.66 50.2149.8 48.1151.9 50.6149.4 49.6150.4 50.5149.7 49.6150.4 50.2149.7 40.1 40.03 100.03 100.04 98.72 99.66 50.2149.7 40.2 40.6149.4 49.6150.4 49.6150.4 50.3149.7 40.2 40.1 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2	Fe203	0.03	0.13	90.0	0.16			0.00	0.12	00.00	0.29	
\$0.2:49.8 48.1:51.9 \$0.6:49.4 49.6:50.4 \$0.5:49.5 49.6:50.4 \$0.3:49.7 \$0.2:49.8 48.1:51.9 \$0.6:49.4 49.6:50.4 \$0.3:49.7 \$0.5:49.8 49.6:50.4 \$0.3:49.7 \$0.3:49.7 \$0.5:49.8 \$0.3:49.7 \$0.5:49.8 \$0.6:49.8 \$0.6:4	total	98.61	97.3	100.57	100.03			101.04	98.72	99.66	16.86	
+0.3 +0.6 +0.2 +0.1 +0.4 +0.2 +0.2 +0.2	Al ₂ 0 ₃ :Si0 ₂ molecular	50.2:49.8						50.5:49.5	49.6:50.4			
19 20 21 22 63.02 61.72 62.90 62.81 36.56 36.07 37.56 37.81 0.00 0.01 0.00 0.00 0.88 0.24 0.68 0.14 100.46 98.04 101.14 100.76 30.4.49,6 50.7149,3 49.7150.3 49.5150.5 ±0.1 ±0.2 ±0.3	ratio	+0.3	9.0+	+0.2	+0.1			+0.4	+0.2	+0.2	+0.1	
19 20 21 22 63.02 61.72 62.90 62.81 36.56 36.07 37.56 37.81 0.00 0.01 0.00 0.00 0.88 0.24 0.68 0.14 100.46 98.04 101.14 100.76 30.4.49,6 50.7149,3 49.7150.3 49.5150.5 ±0.1 *0.1 ±0.2 ±0.3								Granulite 1	facies - co	rundum bear	Ing	
63.02 61.72 62.90 62.81 36.56 36.07 37.56 37.81 0.00 0.01 0.00 0.00 0.88 0.24 0.68 0.14 100.46 98.04 101.14 100.76 50.4:49.46 50.7:49.3 49.7:50.3 49.5:50.5 ±0.1 ±0.2 ±0.3		19	20	2.1	22			23				
36.56 36.07 37.56 37.81 0.00 0.01 0.00 0.00 0.88 0.24 0.68 0.14 100.46 98.04 101.14 100.76 50.4:49.46 50.7:49.3 49.7:50.3 49.5:50.5	A1203	63.02	61.72	62.90	62.81			62.14				
0.00 0.01 0.00 0.00 0.88 0.24 0.68 0.14 100.46 98.04 101.14 100.76 50.4:49.6 50.7:49.3 49.7:50.3 49.5:50.5	Sio ₂	36.56	36.07	37.56	37.81			36.10				
0.88 0.24 0.68 0.14 100.46 98.04 101.14 100.76 50.4:49,6 50.7:49,3 49.7:50.3 49.5:50.5 +0.1 +0.1 +0.2 +0.3	TiO2	0.00	0.01	00.00	00.00			0.00				
100.46 98.04 101.14 100.76 50.4:49.6 50.7:49.3 49.7:50.3 49.5:50.5 +0.1 +0.1 +0.2 +0.3	Fe203	0.88	0.24	0.68	0.14			0.17				
50.4:49.6 50.7:49.3 49.7:50.3 49.5:50.5 +0.1 +0.1 +0.2 +0.3	total	100.46	98.04	101.14	100.76			14.86				
+0.1 +0.1 +0.2 +0.3	$^{\rm Al}_{2}^{\rm 0}_{3}{:}^{\rm sio}_{2}$	9.64:4.05	50.7:49.					50.4:49.6				
	molecular	+0.1	+0.1	+0.2	+0.3			+0.2				

Table 2.—(Continued)

9.8 /olca	26×			Volcanic Inc.	lusions- neither	Volcanic inclusions- neither quarkz nor corundum bearing
63.5c 37.15 0.00 0.10 100.75 100.		27 ^X		28*	29	
37.15 0.00 0.00 100.75 100.75 100.75 100.75 30 63.31 36.52	62.14	61,59		61.20	61.49	
0.00 0.10 100.75 SiO ₂ 50.2:4 ±0.3 40.3 30 63.31	38.70	37.01		38.50	36.79	
SiO ₂ 50.2:4 100.75 SiO ₂ 50.2:4 -10.3 -20.3 30.52 36.52	0.49	0.03		0.27	0.01	
100.75 SiO ₂ 50.2:4 Llar +0.3 30 63.31 36.52	0.17	0.23		0.72	0.09	
SiO ₂ 50.2:4	101.50	98.86		100.69	98.38	
+0.3 30 63.31 36.52 0.00	49.7:50.3 48.6:51,4	49.5151.5		48.4:51.6	49.6:50.4	
30 63.31 36.52 0.00	9.01	5.01		9 0 0 7	5-01	
30 63.31 36.52 0.00	usions - co	rundum bearing				
63.31 36.52 0.00	32		Average of	Average of Almandine Amphibole samples (14)	le samples (14)	= 49.9:50.1
36.52	16.19 6	11	1,1	Granulite samples (9)	(6)	= 50.1:49.9
0.00	7 35,86	99	1,,,-1	Volcanic inclusion samples (9)	ı samples (9)	+9.6:50.4
0	0.00	00	1::1	Corundum bearing samples (4)	samples (4)	= 50.3:49.7
e ₂ 0 ₃ 0.10 0.03	5 0.60	90	-,,-	Quartz bearing samples (22)	nples (22)	= 50.0:50.0
0,	71.86	.2	1,,-1	Quartz and Corundum free samples $(2) = 49.0:51.0$	um free samples	(2) = 49.0:51.0
Al ₂ O ₃ :SiO ₂ 50.5:49.5 49.7:50.3 molecular r		50.6:49.4				a
ratio +0.3 +0.3	3 +0.2	7				

A measurement of fibrolite mass and not individual crystals

* both fibrolite and granular sillimanite gave essentially identical values

viation of the raw probe data, either the SiO, or the Al₂O, analysis; taking whichever is the largest. Averages of analyses of sillimanites are The proportions were calculated to 100% and do not include TiO2 or Fe₂O₈. The uncertainty stated is the maximum positive or negative degiven for various metamorphic canditions as well as corundum-bearing (Al₂O₂-buffered), quartz-bearing (SiO₂-buffered) and corundum- and quartz-free assemblages. Some of the deviation from 100% total (weight percent) is probably due to the orientation of the sample and is not described by the uncertainties stated, stability, but, as mentioned in the introduction, such minor amounts have not been found to be a major factor.

As can be seen in table 2, the samples from the three different environments—almandine amphibolite facies, granulite facies, and from inclusions in lava show no important variations. The samples from corundum-bearing, quartz-bearing, and quartz- and corundum-free assemblages are also fairly similar, although the latter have a higher SiO₂ content. The reason for this is unknown, and the average is only of two analyses, both of which are themselves highly uncertain. The corundum-bearing samples have an average Al₂O₃:SiO₂ ratio that is highest but well within the uncertainties of measurement, and no conclusion can be drawn.

DISCUSSION

Some of the sillimanites from inclusions in volcanic lavas (Finkenberg) must have been subjected to temperatures near or greater than those of Aramaki's (1961) sillimanite; and, like Aramaki's sillimanite, have corundum as a buffering Al₂O₃ phase, but show no significant excess of Al₂O₃ over the ideal composition. The olivine-bearing basalts at Finkenberg probably were quenched at temperatures near 1150°C and a few bars pressure and, if Aramaki's sillimanite is a metastable phase, these should theoretically also have persisted. A pre-existing mullite may have reacted as follows,

mullite ⇒ sillimanite + corundum

but this seems unlikely in the Finkenberg samples in view of the coarse grain (averaging 2 cm long and 1 mm wide) that can hardly be attributed to quench conditions. No reason is known for the differing conclusions of Aramaki (1961) and the present study, but it appears that possible mullite-sillimanite solid solutions at values greater than the 3 weight percent (the maximum error of measurement) in nearly all geological materials need not worry the petrologist.

ACKNOWLEDGEMENTS

I wish to thank Ir. G. A. E. M. Hermans of the Geologische Institute, Rijksuniversiteit te Utrecht; the members of the Mineralogy Section of the Rijksmuseum van Geologie and Mineralogie, Leiden; Drs. H. Helmers and W. R. de Roever of the Gemeentilijke Universiteit te Amsterdam, Dr. H. M. E. Schürmann, and Mr. B. Jansen and Dr. R. D. Schuiling of this department for many of the samples. Dr. Schuiling is also thanked for numerous helpful discussions. Miss P. L. Baldwin is thanked for much of the preparation and arithmetic work. Mr. R. Poorter is thanked for aid with the electron microprobe. If errors exist in the manuscript, however, they are purely my own.

REFERENCES

AGRELL, S. O., AND J. V. SMITH (1960) Cell dimensions, solid solution, polymorphism and identification of mullite and sillimanite. *Amer. Ceram. Soc. J.*, **43**, 69–76.

ALBEE, A. L., AND A. A. CHODOS (1969) Minor element content of coexisting Al₂SiO₅ polymorphs. Amer. J. Sci. 267, 310-316.

- ARAMAKI, S. (1961), Sillimanite and cordierite from volcanic xenoliths. Amer. Mineral. 46, 1154–1165.
- AND R. Roy (1963) A new polymorph of Al₂SiO₅ and further studies in the system Al₂O₅-SiO₅-H₂O. Amer. Mineral. 48, 1322–1347.
- Beger, R. M., Burnham, C. W., and Hays J. F. (1970) Structural changes in sillimanite at high temperature (abstr.) Geol. Soc. Amer. Meet., Milwaukee, Wisconsin. 490-491.
- CHINNER, G. A. (1961) The origin of sillimanite in Glen Cova, Angus. J. Petrology 2, 312–323.
- ——, C. R. KNOWLES, AND J. V. SMITH (1966) Iron content of aluminum silicate polymorphs (abstr). *Int. Mineral. Assoc. Meet.*, Cambridge.
- KWAK, T. A. P. (1968) Metamorphic Petrology and Geochemistry Across the Grenville Province, Southern Province Boundary, Dill Twp., Sudbury, Ontario. Ph.D. thesis, McMaster University.
- Moore, J. M., and M. G. Best (1969), Sillimanite from two contact aureoles. Amer. Mineral. 54, 975-979.
- PITCHER, W. S. (1965) The aluminum silicate polymorphs. In W. S. Pitcher and G. W. Flinn, eds. Controls of Metamorphism. Oliver Boyd, Edinburgh, 119–139.
- Schulling, R. D., and M. G. Oosterom (1967) The metamorphic complex on Naxos (Greece) and the strontium and barium content of its carbonate rocks. *Proc. Kon. Ned. Akad. Wetensch.* B 70, 165-175.
- SPRINGER, G. (1967) Die Berechnung für die quantitative Electronenstrahl—Mikrvanalyse. Fortschr. Mineral. 45, 103-124.
- STRENS, R. G. J. (1968) Stability of Al₂SiO₅ solid solutions. Mineral Mag. 36, 839-849.
- Wones, D. R., and H. P. Eugster (1965) Stability of biotite: experiment, theory and application. *Amer. Mineral.* 50, 1228-1272.
- Zeck, H. P. (1968) Anatectic Origin and Further Petrogenesis of Almandine Bearing Biotite-Cordierite-Labradorite-Dacite and Many Inclusions of Restite and Basaltoid Material; Cerro del Hoyazo, S. E. Spain, Ph.D. thesis, Univ. of Amsterdam, 1-161.
- Zen, E-An. (1969) The stability relations of the polymorphs of aluminum silicate: a survey and some comments. *Amer. J. Sci.* **267**, 297–309.
- Manuscript received, February 17, 1971; accepted for publication, March 26, 1971.