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INTRODUCTION

In the past ten years a large amount of highly precise experimental
data on the crystal structures of inorganic compounds has been
gathered. Various attempts have been made to systematize this knowl-
edge according to different viewpoints. But, short of doing an experi-
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mental investigation, we still are not able to give a definite concrete
answer to the question: what is the crystal structure of a certain
chemical compound at given P, T' conditions? Using the available
empirical knowledge we can supply partial answers and predict with
reasonable success interatomic distances and coordination numbers
of anions around cations. To take as a specific example the compound
Mg:SiO4, we can say that at atmospheric pressure and room tempera-
ture the Mg atoms should be surrounded octahedrally by oxygen
atoms (although Mg is known to occur in 4-, 5-, and 8- coordination
against oxygen) while the Si-atoms should be tetrahedrally coordi-
nated (however six coordinated silicon is also known). Assuming
octahedrally coordinated Mg and tetrahedrally coordinated Si we
can predict that the interatomic distances Mg-O and Si-O should
be about 2.1 and 1.6 A, but we have no way of predicting in which
way the Mg and Si-coordination polyhedra should be connected to
each other. Out of the multitude of possible polyhedral linkages, three,
the olivine type, the B-MgaSiO4-type and the spinel phase are known
to be stable at various pressures. Their crystal structures have been
determined. But we could not predict from the structure types what
the details of the structures would be. Our knowledge of bonding
mechanisms is so incomplete that we cannot predict a priori which
distortions of interatomic distances and of bond angles should oceur in
a given crystal structure and more importantly which effect these
distortions would have on the stability of a structure. The particular
problems of the polymorphism of Mg,Si0, and/or of the polyhedral
distortions in olivine have been discussed by Hanke (1965), Kamb
(1968), Birle et al. (1968), and Moore and Smith (1970). These
authors used Pauling’s rules for ionic compounds and mostly qualita-
tive geometrical arguments in their interpretations of the observations.
In this paper I am trying to put the geometrical arguments on a
more quantitative basis than has been done before.

OBSERVED PoLYMORPHS OF MgsSiOy

Three polymorphs of Mg,SiO, are known presently (Table 1). Only
one of these, forsterite or a-Mg,SiOy, occurs as a mineral. The erystal
structure of forsterite can conveniently be described as consisting of
an approximately hexagonal close packed (h.c.p.) arrangement of
oxygen atoms in which one half of the octahedral coordination sites
is occupied by Mg-atoms and one eighth of the tetrahedral sites by
Si-atoms. This hexagonal close packing of the oxygen atoms was recog-
nized by Bragg and Brown (1926) and helped them to solve the crystal
structure of olivine. Although a spinel phase of the composition
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Table 1. Observed and hypothetical Mg,Si0. structure types.
X: experimental unit cell data; L: unit cell from DLS;
S: synthetic;N: naturally occuring; H: hypothetical;
Z: formula units per unit cell; V: volume per Mg,Si0,;
D: density for chemical composition (Mg0 9Fe0 ])251'04.

Compound 74 gazﬁ; a b c v D
Forsterite (4:4) SN 4 pbnm  X') 4,762 10.2258 5.9948 73.08% 3.349.ch3
L 479 1019 s5.85 71.4  3.42
B-Mg,510, s s tbem  x%) 248 11,444 5.696 67.2  3.63
L 8.16  11.68  5.71 68.0 3.59
v-Mg,5i0,(normal) (sN) 8 Fa3m  x3) 8.001  8.001 8.091 66.2 3.69
L 8.12 8.12  8.12 66.9 3.65
¥-Mg,S10, (inverse) H 8 Fd3m L  8.17 8.17  8.17 68.2 3.58
Model I (7:1) W4 P2/m L 10.11 5.77  4.70  68.6  3.56
Model IT (6:2) H o 4czm L 10.05 5.75  4.87  70.4  3.47
Model III (8:0) H 4 c2/m L 10.03 5.77 4.52  65.4 3.73
Sr,PbO,-type W 2pbam L 4.08 8.85  2.75 60.6 4.03
KoM - type Ho 2 T4/mmm L 3.5 3.51  10.45 64.5 3.53

1) Birle et al., 1968; 2) Moore and Smith, 1970; 3) Ringwood and Major, 1970

(Mgo.74Feq, 26)2510, has been described as a mineral (ringwoodite, Binns,
1970) pure y-Mg,SiO, has not been found in nature nor has it been
synthesized yet. The Mg-richest spinel in the system Mg,SiO,—~Fe,SiO,
synthesized so far is (Mg, sFe,_»),Si0,, and it is conceivable, but not at
all certain, that pure y-Mg;SiO, might form at still higher pressures
(see the discussion by Ringwood and Major, 1970). The v-(Mg, Fe),SiO,
structure appears to be the normal spinel type (Kamb, 1968). It is
based on a cubic close packed (c.c.p.) arrangement of oxygen atoms,
as is the structure of 8-Mg,SiO,, the other high-pressure polymorph
of Mg,Si0,. Moore and Smith (1970) determined the crystal structure
of the B-phase from a powder pattern of a sample of composition
(Mgo.sNio 1),8i0,, while' Morimoto et al. (1970) studied, by single
crystal methods, the isostructural compounds Mn,GeO, and Co,SiO,.
The 8-Mg,SiO, phase should be formulated as Mg,08i,0,, since it
contains discrete Si,0,°~ groups and one of the oxygen atoms is bonded
only to the octahedrally coordinated Mg-atoms. According to Ringwood
and Major (1970) the 8-Mg,SiO, structure is the stable phase at. pres-
sures between 120 kb and 200 kb for compositions between Mg,SiO,
and (Mg, sFe,.»).S10,.
HyroTHETICAL PoLYMORPHS oF Mg,SiO,

In order to shed further light on the reasons for the relative stabil-
ities of a-, 8-, and y-Mg.SiO4 phases it is useful to investigate other
hypothetical phases which are geometrically possible but which have
not yet been observed. Starting with an h.c.p. array (ABA) of oxygen
atoms and without limiting the size of the unit cell, there is an infinite
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the Mg-atoms per unit cell are approximately at a height of zero
(between the A and B layers) and the remaining four Mg-atoms are
at a height of 1/2 (between the B and the A layers). The Si-atoms
are distributed over such remaining tetrahedral voids which do not
share faces with the Mg coordination octahedra. Model I is con-

Model IT is identical with the “hypothetical structure with olivine
stoichiometry” mentioned by Birle et al. (1968).

the Sr,PbO, type.
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The six hypothetical structures selected and discussed here are of
course not presented in an attempt to enumerate all conceivable Mg,SiO,
structure types. They are merely used as examples to illustrate the
approach discussed in this paper.

GEOMETRIC DETERMINATION OF THE CRYSTAL STRUCTURES

The nine crystal structures of MgsSiO, were refined geometrically
by distance least squares (DLS) using the program written by Villiger
(1969). A DLS refinement of a crystal structure is possible whenever
the interatomic distances used as input to the refinement can be pre-
dieted with sufficient accuracy. The procedure followed these steps:

1) Average Mg-O and Si-O distances were derived from the em-
pirical effective ionic radii tabulated by Shannon and Prewitt (1969),
taking due account of both the coordination of oxygen atoms around
the cations and the cation coordination around the oxygen atoms. For
easier comparison with the forsterites refined by Hanke (1965) and by
Birle et al. (1968), which both had the composition FogoFae1, a 10
percent Fe-component was assumed throughout, resulting in an imput
value of d(Mg,Fe-0O) of 2.105 A for Mg in six and O in four coordi-
nation (instead of 2.10 A for pure Mg-O bonds). Therefore in the
following discussions “Mg” always means “Mg,oFeo.”. For four co-
ordinated magnesium the value d(Mg-0) = 1.955 A, determined in
K>Mg;Si;2030 was used (Khan, Baur, and Forbes, 1972). The radius
of magnesium in trigonally prismatic coordination was assumed to be
the same as in octahedral coordination. The distance Mg-O for nine-
coordinated Mg was taken to be 3 percent larger than for eight-
coordinated Mg. Shannon and Prewitt (1969) have pointed out that
in highly symmetrical structures, such as perovskites, the calculated
interatomic distances are systematically longer than the observed
distances. The same effect can be observed for compounds crystallizing
in the K;MgF, type, as a survey of the a cell parameters of 22 such
compounds showed. Accordingly the Si-O distance of six coordinated
silicon in the K,MgF, type was taken to be 3 percent smaller than
the calculated sum of the radii of silicon and oxygen.

2) The individual Mg-O and Si-O distances were calculated from
the extended electrostatic valence rule (Baur, 1970; 1971a) for those
oxygen atoms for which Pauling’s (1960) second rule for ionic
crystals was not satisfied. In the equation for the individual cation-
oxygen distances

d(M-0) = (A(M-O)mesn + bAPs) & m
b was taken as 0.12 A/v.u. for Mg and as 0.091 & /v.u. for Si (Baur,
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1970). This calculation was only necessary for 8-MgeSiO, and for the
K.MgF, type. No attempt has been made (for the high pressure
phases) to account for the possible shortening of bonds under hydro-
static pressure. While the compressibilities of many minerals are
known, the effects of high pressure in complicated structures on the
bonds themselves are not known. For pressures around 100 kb the
shortening of cation-anion bonds may very well amount to less than
1 percent of the bond length at atmospheric pressure (as can be
estimated from the compressibility values tabulated by Birch, 1966).

3) In order to account for the well known shortening of shared edges
(Pauling, 1960, rule 3 for ionic compounds), any edge shared between
two coordination polyhedra was assumed to be 0.15 A shorter than an
unshared edge. The shortening of shared edges has no effect on the
sum of the lengths of all edges in a tetrahedron or octahedron as has
been pointed out by Drits (1971). Consequently care’ was taken to
lengthen the unshared edges by the same amount by which the shared
edges were shortened. This calculation was straightforward for the
tetrahedra because in the structures considered they either share no
edges or half of their edges. For the octahedra the sum of the lengths
of the edges (Z) was obtained from () = 12v/2d (M~O)mean (Drits,
1971). The length of an unshared edge was then
qd(0-0)r + 0.15n

m+ 7 & @
where ¢ and d(0-0) ¢ are the number and the length of the tetrahedral
edges shared with the octahedron, and m and n are the numbers of the
unshared edges and those shared with other octahedra, respectively.

4) Each of the M—O distances was assigned a weight which was
proportional to the Pauling electrostatic bond strength of the cor-
responding bond. All the O-O distances were given the same weight,
which was set arbitrarily at 0.07 of the weight assigned to the tetra-
hedral Si-O bond. This weighting scheme (Baur, 1971b) gives sub-
stantially different results from the weighting applied by Meier and
Villiger (1969) who assign to the O-O distances weights from 0.3 to
0.5 relative to a weight of 1.0 for (Si, Al)-O. With such relatively
high values for the weights of the O-O distances the coordination
polyhedra tend to remain rather regular, while the smaller values
used here allow distortions in O-O distances of the same magnitude
as observed experimentally in olivine and comparable crystal struc-
tures.

5) The calculated M-O and O-0O distances with their assigned
weights were the input for a distance least-squares refinement (Shoe-

d(O0-O)pns = 2=
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CoOMPARISON OF OBSERVED AND D-STRUCTURE OF AN OLIVINE

A detailed comparison of the geometrically refined structure of
forsterite with the experimental results of Birle et al. (1968) shows
that the mean deviation between the calculated and the observed inter-
atomic distances is 0.04 A (Table 3). The Si-O distances of the D-
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Table 2. Calculated positional coordinates (x104) for three experimental
and six hypothetical Mg2Si0« structures. Experimental values
for forsterite from Birle et al. (1968), for B-Mg,Si0, from Moore

and Smith (1970), standard deviations in parentheses.

X X
Forsterite Model I
si(DLS) 0945 4078 2500 si(1) 8420 5000 8752
(Exp)  0731(3)  4057(1) 2500 s5i(2) 3226 0000 8824
Mg (1) 0000 0000 0000 Mg (1) 5000 5000 0000
(Exp) 0000 0000 0000 Mg(2) 0000 0000 5000
Mg (2) 0056 2632 7500 Mg(3) 0000 5000 5000
(Exp) 0103(3) 2774(2) 7500 Mg(4) 5000 0000 5000
0(1) 2499 0907 7500 Mg(5) 2482 2527 4990
(Exp)  2342(7) 0919(4) 7500 o(1) 3154 5000 2105
0(2) 2832 0578 2500 0(2) 1642 5000 7757
(Exp) 2799(7) 0522(4) 2500 0(3) 8305 0000 2334
0(3) 2312 3370 4707 0(4) 3330 0000 2309
(Exp) 2219(5) 3365(3)  4657(5) 0(5) 0851 2601 2287
B-Ma,$10, 0(6) 5932 2281 2210
Si(DLS) 1303 1255 2500 nede L
si 3330 0000 8987
[ Nt pme e e m
Mg (2) 5000 0000 5000
(Exp)  2271(13) 0000 7500 Me(3) 2500 2500 =000
Mg (2) 2500 2500 7500 0(1) 8194 0000 2220
S SO o A S L A o S 4
0(3) 0908 2703 2253
(Exp) 0000 3675(7) 0000
0(1) 0300 0000 2500 Model IIT
(Exp) 0496(38) 0000 2500 Si 3309 0000 8538
0(2) 4799 0000 7500 Mg (1) 0000 0000 5000
(Exp) 4702(37) 0000 7500 Mg(2) 5000 0000 5000
0(3) 0040 2348 2500 Mg (3) 2500 2500 5000
(Exp) 9779(25) 2353(18) 2500 0(1) 8292 0000 2219
0(a) 2557 2751 0168 0(2) 3337 0000 2163
(Exp)  2550(19) 3757(12) o245(26) 003 0864 2606 2196
¥-Mg,Si0, {normat) Sr,Pb0,-type
Si 1250 1250 1250 S 0000 0000 0000
Mg 5000 5000 5000 Mg 0819 3329 5000
0 . 2416 2416 0(1) 2164 0448 5000
0(2) 3925 3087 0000

y—MgZSiO4 {(inverse)

Mg 1250 1250 1250
Mg,Si 5000 5000 5000

KZMgF4-type
si 0000 0000 0000
Mg 0000 0000 3740
0 2630 2630 2630 0(1) 0000 5000 0000
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Table 4.

hexagonal close packing.
The multipliers refer to ©

octahedron.

B-Mg,Si0,

]
1
1
2
2
2
2
2
2

.658K

628
628

671
L6771
.671

671

. 145
.065

v-Mg,810, (normal)

4xS1-0
6x0-0

1

.639R
2.

677

y-MgZSiO4 (inverse)

4xMg-0
6x0-0

Model I

si{1)-0(1)
Si(1)-0(2)
2x51(1)-0(5)
0(1)-0(2)
2x0(2)-0(5)
2x0(1)-0(5)M5]
0(5)}-0{5M3]
Si(2})-0(3)
Si(2)-0(4)
2xSi{2)-0(6)
0(3)-0(4)
2x0(4)-0(6}
2x0(3)-0(6IM5]
0(6)-0(6IM4]
2xMg (1)-0(1)
4xMg(1)-0(6)
Model II

Si-0{1}

5§-0(2)
2xSi-0(3)

0(1)-0(2)
2x0(1)-0(3)[M3]
2x0(2)-0(3)

0(3)-0(3)[M2]
2xMg{1)-0(1)
4xMg(1)-0(3)
Model 111

$§-0(1)
si-0(2)
2x51-0(3)
0(1)-0(2)
2x0(1)-0(3)[M3]
2x0(2)-0(3}
0(3)-0{3)[M2]
2xMg{1}-0(1)

1.
.193

w

9558

6398
.639
.639

752
752

.602

602
639
639
639
752
752
602
602
105
105

6398
639

.639
.752

602
752

.602

105
105

.639R
.639

639
752
602
752

.602
.105
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4xMg(
4x0(1
4x0(2
2x0(4
2x0(4
2xMg (
axMg(2
4x0(3)
4x0(3)-

1)-0(4
}-0(4)

)-0(4)[M3]
)-0(4)[m2]
)-0 )
(2

)-
)

6xMg-0
6x0-0[M3

6x(Mg,S1)-0
6x0-0[M]

4x0(1)-0(6)
4x0(1)-0(6)
2x0(6)-0(6}
2x0{6)-0(6)
2xMg(2)-0(3)
4xMg(2)-0(5)
4x0(3)-0(5)
4x0(3)-0(5)[M5]
2x0(5)-0(5)
2x0(5)-0(5)[M3]
2xMg(3)-0(2)
4xMg(3)-0(5)
4x0(2)-0(5)
4x0(2)-0(5)[M5]
2xMg (4)-0(4)
4xMg(4)-0(6)

4x0(1)-0(3)
4x0(1)-0(3)
2x0(3)-0(3)
2x0(3)-0(3)
2xMg(2)-0(2)
4xMg(2)-0(3)
4x0(2)-0(3)[M3]
4x0(2)-0(3)

4xMg(1)-0(3)
4x0(1)-0(3)
4x0(1)-0(3)[M3]
2x0{3)-0(3)[M2]
2x0(3}-0(3)
2xMg(2)-0(2)
4xMg{2)-0(3)
4x0(2)-0(3)[M3]

SIS

R -

W R W NN WN

RMRRN W RN WN QR NRNRN NN

MR W NN W N

1058

.052

902

.902
.052

105

.105

902

.052

.105R
.902

.940R
669

.977R
977

977
977
105

.105
.052
.902
.052

902
105
105
142

992

105
105

977R

.977
.977
.977

105
105

.962
112

1058

.052
.902
.902
.052
.105
.105
.992

DLS-input values for Mg,Si0, polymorphs based on cubic and
" 5 S;ared polyhedral edges are identified.
he number of distances per coordination

2x0(4)-0(4)
2xMg(3)-0(2)
2xMg(3)-0(3)
2ng(3)-0(4)
0(2)- 0(2)[M3]
2x0{2)-0(3)[M3]
2x0( 2) o4 )
2)-0(3
2x0( 3) 0(4

6x0-0

6x0-0

4x0{4)-0(6)

4x0(4)-0{6)[M5]

2x0(6}-0(6)
Mg(5)-0{1)
Mg(5)-0(2)
Mg(5)-0(3)
Mg(5)-0(4)
Mg (5)-0(5)
Mg(5)-0(6)
0(1}-0(s6)
0(2)-0(6)
0(4)-0(5)
0(1)-0(2)[M5]
0(1)-0(4)
0(2)-0(3)
0(3)-0(4)[M5]

2x0(3)-0(3)
2xMg(3)-0(1)
2xMg(3)-0(2)
2xMg(3)-0(3)
2x0(2)-0(3)
2x0(1)-0(3)
2x0(1)-0(2)[M3]
2x0(1)-0(2)

2x0(2)-0(3)
2xMg(3)-0(1)
2xMg(3)-0(2)
2xMg(3)-0(3)
2x0(2)-0(3}
2x0(1)-0(2)[M3]
2x0(1)-0(2)

w

~

2

2
3

Wew W RN NN N W

NOW W N W W RN NN W N W

WO W W NN N W

052R

.079
.118
.118
.915
.915
.065
.065
.065

0528

.819R

J112R
.962
12
105
105

105
105

.105
.105
127
.27
127

977
127
127

.977

1128
105

.105
.105
a2
.1z
.962

112

3.142R
2.
2.105
105
3:

105

142

.992
.142



POLYMORPHS OF Mg.Si0, 719

Mg(2)-O distance in the D-structure is slightly higher (2.121 A) than
the mean Mg(1)-O distance (2.109 A). The same is true of the ob-
served structure, where the values are 2.135 and 2.103 A, respectively.
This particular similarity between the D-structure and the actual
structure lends further credence to Kamb’s (1968) interpretation “that
structural strains set up in the distortion from ideal close-packed
geometry are such as to distend the Mg(2) octahedral site”. The D-
structure however does not reflect, at all the distribution of individual
Mg-O distances observed in Torsterite, which vary from 2.06 to 2.22 A
in length. This variation is not connected with variations in the electro-

oxygen atoms which participate in edges shared between different

cations), while the anion-anion distances within the shared edge are
shortened in comparison with unshared edges. This allows a wider
separation of the cations and increases therefore the stability of the
compound. The stabilizing influence of cation recoil is demonstrated

cations, it is not surprising that the Mg-O distances do not reflect
variations which are due to these ionic forces.

and 3.35 A, and for the short edges which without exception are also.
shared edges. This is unexpected because shared edges are generally
thought to be short because of the electrostatic interactions between
the- cations. The DLS refinement shows however that part of the
shortening must be attributed to the adjustment stresses due to the
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fitting of the polyhedra to each other (Baur, 1971b). The observed
difference between the average lengths of the shared and the un-
shared edges in the octahedra is 0.26 A (Table 5), while in the D-
structure it is 0.17 A. This can be taken to mean that 2/3 of the
difference is due to adjustment stresses, and only 1/3 due to electro-
static interactions. For the tetrahedron the differences (Table 5) are
0.18 & and 0.09 X respectively, that is 1/2 of the difference can be
attributed to adjustment stresses. It cannot be argued that the DLS-
results merely reflect the DLS-input values, because even when all
0-O distances in the octahedra were entered with the same length,
the computed shared edges still tended to be short. In order to obtain
shared and unshared tetrahedral edges of the same length, the input
values of the shared edges had to be 0.15 A longer than those for the
unshared edges. Furthermore the experiences with the DLS-refine-
ments of B-MgsSiO; and the hypothetical structures show that the
small input values for the shared edges can easily be overridden when
the geometric adjustments so require.

D-sTRUCTURES 0F OTHER Mg,!®18i(410, PoLYMORPHS

The geometric refinement of 8-MgeSiOy, reported by Baur (1971b)
is considered to be more precise than the X-ray structure determina-
tion by Moore and Smith (1970), which is based on powder data.
The DLS positional parameters reported in Table 2 are slightly dif-
ferent from those given in the earlier publication (Baur, 197 1b), be-
cause the older geometric refinement was based on d(Mg-O)mean =
2.085 & and the mean value of the lengths of the polyhedral edges was
not kept constant, as actually is required (Drits, 1971). The mean
deviation between the D-structure bond lengths and the experimental
bond lengths for 8-Mg,SiO, is 0.073 A. This deviation must be partly
due to experimental error in the powder data refinement since an
analogous calculation for 8-Co28i0, gave a mean deviation between
D-structure and observed structure of only 0.027 A, which apparently
is related to the fact that B-CosSi0s was determined with higher
precision by single crystal diffraction. An inspection of the averaged
dimensions of some key distances in 8-MgsSiO, (Table 5) shows that
the only major difference between the D-structure and the experi-
mental structure concerns the length of the shared and the unshared
edges in the Mg-coordination octahedra: the observed average lengths
are equal, the calculated lengths are longer for the shared edges. The
difference between observed and calculated structure is of the same
type as for forsterite and seems to be connected with the fact that the
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geometric model neglects the electrostatic interactions. It was already
observed by Moore and Smith (1970) that “there is no systematic
pattern of shortening of shared edges in the B-structure”. However
they did not discuss this point further because of the low accuracy of
their crystal structure determination. The present geometric refinement
gives additional evidence on this point, as does the structure deter-
mination of 8-Cos8i0, by Morimoto et al. (1970) who observed that in
this structure the mean lengths of the shared and the unshared edges
are also approximately equal.

The shared edges are longer than the unshared edges in the D-struc-
ture of the normal spinel model of y-MggSiOy, and in the three hypo-
thetical models I to III (Table 5). For these cases we have no observed
structure with which we could compare the results and, except for
normal y-MgsSiO,;, we have no experimental cell parameters which
could be kept constant. The comparison of the results of the cell
parameter data (Table 1) however is reassuring. The DLS-refined
individual cell constants and the unit cell volumes do not deviate by
more than 2 percent from the observed values, and the important
mean distances show the same trends. We can therefore conclude that
among the structures studied here only forsterite and the inverse
spinel type can provide for the energetically advantageous shorten-
ing of the shared edges. At this point it should be stressed that the
DILS-refinement of forsterite and B-MgsSiOs does provide a partial-
implicit recognition of ionic interactions as long as the geometric
refinement is constrained to the observed unit cell constants (see 1.C
in Table 5) because the overall dimensions of the observed structure
are forced upon the D-structure. The refinement with variable cell
constants (LV in Table 5) is free of this constraint and is therefore
a model which actually does not “know” anything about electrostatics,
except for the shortening by 0.15 A of the input values of the shared
polyhedral edges.

CrysTAL CHEMICAL SIGNIFICANCE

The use of the weighted distance least squares method, as proposed
here, with high weights for the cation-anion distances and relatively
small weights for the anion-anion distances, is similar to the applica-
tion of a simple force model in which the lengths of the bonds cor-
respond to the lengths of elastic springs and the weights are pro-
portional to the strengths of the springs (to the restoring forces). Since
the only distances used as input are within the coordination polyhedra
(central cation-oxygen distances and oxygen-oxygen edges), one could
also say that the model deals with elastically flexible coordination
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polyhedra. The lengths of the edges define the angles subtended by
the cation-cation distances at the central cation, the flexibility of the
polyhedra is defined by the assigned weights. The mutual adjustment
of the different polyhedra results in deformations of these polyhedra
with consequent changes of the cation-anion and anion-anion distances
and anion-cation-anion angles, that is the distances and angles are
strained in response to the adjustment stresses. The advantage of the
least squares method is that all the different distances can be con-
sidered simultaneously even in a complicated structure. The surpris-
ingly good agreement found for the case of forsterite between the ob-
served and the D-structure proves that this approach can be a useful
tool for the prediction of the details of crystal structures.

The refinement of the forsterite and spinel phases of Mg,SiO, fully
supports Kamb’s (1968) reasoning regarding the relative stabilities of
these two structures: “While the contraction of the SiQ, tetrahedron
[in forsterite] leads naturally and perhaps inevitably to the shortening
of shared polyhedral edges, just the opposite is true in the spinel
structure”. As we can see from a comparison of the lengths of shared
and unshared edges in the Mg,SiO, structures (Table 5) the forsterite
structure is unique in this respect (except for those spinel structures
which have relatively large tetrahedral cations). An inspection of the
total numbers of shared edges and corners (Table 5) shows however
that forsterite is not unique with regard to the number of shared poly-
hedral elements. According to Pauling’s third rule concerning the
destabilizing influence of shared polyhedral edges and faces at least
model II is energetically just as favorable as forsterite. The difference
between model II and olivine is that in the latter the shared edges
contract simultaneously and naturally because of the adjustment of
the polyhedra to each other, while in model IT the shared edges remain
long, thus bringing the cations into close contact. The shortening of
shared polyhedral edges in polyhedral network structures should not
be viewed solely as a consequence of the electrostatic repulsion of
cations. Instead one can say that:

Tonic structures with shared polyhedral edges and faces can only be stable
if their geometry allows the shortening of the shared polyhedral edges. When
adjustment stresses force a shared edge to be long, this is a particularly de-
stabilizing feature of the crystal structure.

This extension and amendment of Pauling’s third rule is proposed on
the basis of few data (Table 5). Before it can be fully accepted we
need further studies of the kind performed here on the Mg,SiO, poly-
morphs.

Crystal structures with shared polyhedral edges and faces in which
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all shared edges can simultaneously contract cannot be easily in-
vented. Models, I, II, and III fail in this regard because the oxygen
atoms are in such positions that the shortening of one shared edge
results in the lengthening of another shared edge. The geometric fea-
ture of the olivine structure which facilitates simultaneous shortening
of all shared edges is the L-tetrahedron (L for “leer”) the importance
of which was pointed out by Hanke (1965) and Kamb (1968). The
six edges of the L-tetrahedron contain all the edges shared in the
olivine structure between different coordination polyhedra. The central
site of the L-tetrahedron is not occupied. A movement of oxygen
atoms toward the center of the L-tetrahedron contracts all shared
edges simultaneously. Models I, II, and IIT have also L tetrahedra, but
in the case of I and III, there are additional shared edges outside of
the L-tetrahedra, so that a concerted adjustment of all shared edges
is not possible. In model IT all shared edges are concentrated in an L-
tetrahedron, but simultaneous contraction of all shared edges never-
theless cannot be achieved, presumably because the arrangement of
the L-tetrahedra relative to each other is not favorable.

Since the 0-Si-0 and O-Mg-O angles are partly functions of the
0-0 distances, these angles will be distorted from their ideal values
in response to the adjustment stresses as the O-O distances change.
Therefore it would seem that bond angle theories of the kind proposed
by Gillespie (1963) could not be extended to such polyhedral frame-
work structures as we are treating here, but instead should be tested
on isolated coordination polyhedra only. However the question arises
whether or not a coordination polyhedron observed in a crystalline
substance can be considered to be sufficiently isolated from any of its
neighbors to be really unperturbed by them. Possibly the only state
in which we could observe the unperturbed influence of the electronic
structure on polyhedral geometry is the gaseous state.

PrETROLOGIC IMPLICATIONS

Phases of a bulk composition close to (Mgo.oFeo 1)2Si04 are thought
to be a major component of the mantle (Ringwood, 1970). Therefore
it is of considerable geochemical interest to discuss the meaning of the
caleulated densities and formula volumes for the different hypothetical
Mg,Si0, polymorphs (Table 1). It must be emphasized again that all
volumes discussed here pertain to zero pressure, even when a hypo-
thetical high pressure phase is discussed. Some of the arguments made
could be invalidated in case that similar interatomic distances respond
in a different manner in different structure types to the same kind of
external pressure.

All polymorphs considered here have smaller formula volumes than
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the forsterite-type. Model IT, which appears to be energetically favor-
able both in regard to the number of shared edges and the fact that at
least the shared tetrahedral edges are shorter than the unshared edges
(Table 5), has a volume which is only 4 percent smaller than the
volume of the low pressure olivine phase. It is therefore no surprise
that 8-MgsSiO, which has a volume 8 percent smaller than olivine is
the preferred high density phase. Model I has a higher density than
model II, but is energetically even more unfavorable because it has
more shared edges (Table 5). Model ITT has the smallest formula
volume of all structures considered here (except for the SroPbO4 and
K:MgF,-type) but is also energetically most unfavorable in terms
of the number and length of its shared edges. Since no attempt was
made to try the impossible and enumerate all possible Mg,SiO4 poly-
morphs the comparison of these three models with the observed struc-
tures does not prove anything beyond the fact that a reasonable
interpretation can be offered why these three types have not been
observed yet. It is conceivable, though not likely, that a hypothetical
model IV can be constructed which obeys Pauling’s rules and the
“shared edge length” criterion better than the models discussed here.
Such a model would be of interest especially if its formula volume
should calculate to be less than 66 A% because this would be a
potential post-spinel phase. Incidentally: should any of the three
models be subsequently observed in an actual crystal structure I would
expect it to be model II.

Cubic close packed and hexagonal close packed arrangements of
oxygen atoms have different properties in regard to shared polyhedral
elements when their voids are filled with cations, a point which has
been discussed by Moore and Smith (1970). For the case of the
Mg2SiOy stoichiometry c.c.p. allows arrangements in which no edges
are shared between the Si-tetrahedra and the Mg-octahedra. In h.c.p.
however the tetrahedra must share edges with the octahedra. Once we
get into high pressure phases, which are more dense than olivine, but
also have unfavorably long shared edges, c.c.p. structures (8 and
y-Mg2Si0,) appear to be more stable than the h.c.p. structures because
the long shared edges involve only the magnesium coordination octa-
hedra and not both octahedra and tetrahedra as in models I, IT, and
III (Table 5). The inverse spinel structure (MgSi) 1M gl410y4, which
would have the advantage of shorter shared edges, has however so far
not been reported to oceur for Mg,SiO, at high pressures. The reason
for this may be that its formula volume is larger than 8-Mg,SiO, or
normal y-Mg,SiO; (Table 1) and that Si and Mg would be sharing
octahedral edges. The B8-Mg»SiO, and the y-Mg,SiO, types occur both
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at high pressures in stable phases despite the fact that the shared
polyhedral edges in these structures are long. Apparently the free
energy change resulting from the decreased volume of these phases is
greater than the destabilizing influence of the long shared edges (as
already pointed out for spinel by Kamb, 1968).

Reid and Ringwood (1970) and Ringwood (1970) have suggested
that Mg,SiO, may crystallize at high pressures over 200 kbar with
the strontium plumbate structure type or (less likely) the K MgF,
type. The D-structure of Mg,SiO4 in the strontium plumbate type
indeed is very reasonable both in terms of the formula volume which
is 17 percent below the volume of forsterite, as predicted by Reid and
Ringwood (1970), and in regard to the calculated interatomic distances
(Table 6). Even the rather short distance O(1)-O(1) of 2.30 A oc-
curring in the edge shared by two Si coordination octahedra fits well
into our knowledge of six coordinated silicon. The corresponding
shared edge in stishovite (rutile-type SiO:) has a length of 2.29 A
(Baur and Khan, 1971). The edge shared SiOs octahedra forming
chains of composition SiO4 are a common feature of both stishovite
and strontium plumbate type MgzSiOs. In both structures the chains
extend parallel to the crystallographic c-direction. In stishovite each
Si0, chain is connected via common corners to four neighboring chains,
while in strontium plumbate type MgzSiO, the SiO, chains are isolated
from each other by intervening edge shared chains of Mg coordination

Table 6. Mg;Si04 in SroPb0,- and K,MgF,- types. DLS-input
and DLS-results.

Srsz04-type

Input Result Input Result
4x5i-0(1) 1.780R 1.79R Mg-0(1) 2.600R 2.64R
2x51-0(2) 1.780  1.78 2xMg-0(2) 2,110  2.08
2x0(1)-0(1) 2.592  2.75 2xMg-0(2) 2,110 2.09
2x0(1)-0(1)[Si] 2.447 2.30 0(1)-0(1)[M] 2.809 2.93
4x0{1)-0(2)[M] 2.447 2.49 2x0(1)-0(2) 2.959 2.85
4x0{1}-0(2) 2.592  2.56 2x0(2)-0(2)[M] 2.809 2.75
2x5i-51 2.75 2x0(2)-0(2)[M] 2.809 2.70
4xSi-Ng 2.90 2xMg-Mg 2.75

Mg-0(1) 2.110  2.12 2xMg-Mg 2.89
Mg-0(1) 2,110 2.13 Mg-Mg 3,07

KoMgF,-type Input Result Inout Result
4x5i-0(1) 1.7608 1.76R  4xMg-0(1) 2.180R 2.20R
2xSi-0(2) 1.720  1.72 . Mg-0(2) 2.180 2.19
4x0(1)-0(1) 2.475 2.48 4xMg-0(2) 2.490 2.52
8x0(1)-0(2) 2,475  2.46 Mg-Mg 2.64
8xSi-Mg 2.81
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polyhedra. Six Mg polyhedral chains surround every SiO4 chain and
share with it polyhedral corners. The arrangement of the chains (not
of the oxygen atoms) is close packed when viewed along ¢, and there
are twice as many Mg chains as SiO, chains. The geometric analogy
between stishovite and this hypothetical MgsSiO4 phase is encourag-
ing, not so much because it would supply direct evidence for the
existence of the strontium plumbate type at higher pressures, but
because it is aesthetically pleasing and may be a hint towards a
completely new high pressure silicate crystal chemistry based on the
condensations of silicon coordination octahedra through corners and
edges. Another hint is provided by the high pressure transformation
of KAlSi;Ojg into the hollandite type structure (Ringwood, 1970).

The D-structure of Mg,SiO, in the K,MgF, type has a volume only
12 percent smaller than the volume of forsterite. Reid and Ringwood
(1970), who compared relative volumes of many substances in the
K.MgF, type with the volumes of the constituent oxides, suggested
that the volume should be 25 percent smaller. The reason for this
discrepancy has to be sought in the relatively small size of the mag-
nesium atom in nine coordination and in the particular geometry of
the K;MgF, type. Since the a cell constants are determined by the

a shared square face of the Mg coordination polyhedra. The c-cell
constant could be only shortened, and the volume decreased, by making
this Mg-Mg distance even shorter. Therefore the K,MgF, structure
type appears to occur only for chemical compounds in which the 9-
coordinated cation is large enough to have nine contacts to oxygen
atoms of approximately the same length. It does not seem to be a
likely structure for Mg,SiO, under any conditions.

The difficulty in finding a structure type (or types) for Mg,SiO,,
which has a volume smaller than the volumes of the constituent oxides
(periclase and stishovite) may be indicative of a deeper seated problem
(no pun intended). While a substantial decrease in volume can be
attained easily by going from four to six coordination the same is not
true for going from six to eight coordination. A hypothetical MgO in
the sphalerite-type structure would have a formula volume of 23.0 A%,
the halite type periclase has a volume of 18.8 A® (which is a reduction
of 18 percent). A change to the CsCl type, based on an Mg-O distance
of 2.31 & in eight coordination, would leave the formula volume es-
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sentially unchanged at 19.0 A. The reason for the constant volume is
the increase in bond length with higher coordination and, more im-
portantly, the fact that the oxygen atoms in periclase are cubic closed
packed (12 neighbors at 2.98 A) while in the CsCl-type, a less efficient
simple cubic packing occurs (6 neighbors at 2.67 A). A contraction
could be achieved however in going from stishovite to CaF-type 8i0,.
Assummg the distance Si~O to be 1.83 A the volume for SiO, would
be 18.9 A® (as compared to 23.3 A for st1shov1te) This is a small change
if eompared with the formula volume of 34.3 A® in coesite type SiO.,.
Therefore an Mg,SiO, composition consisting of NaCl type MgO and
CaF, type SiO, would have a formula volume of 56.5 A® or 7 percent
below the volume of periclase plus stishovite (60.8 Aa). A change to
the coordination numbers 9, 10, or 11 does not give promise of close
packed arrangements either, as the experience with the K,MgF, type
shows us. A coordination number of 12 could not be attained for a
stoichiometry Mg,SiO, because it is too cation-rich and would involve
‘cation-cation contact (unless of course the bonding character would
change under high pressures so drastically as to allow cation-cation
contacts). Of most promise would be 8-coordinated structures but it
is a curious fact that no M, X0, or M,®'X"®'Q, structures seem
to be known at present. This may be related to the meﬂic1ency of
packing of 8-coordinated polyhedra. The volume of 56.5 A%is 23 percent
below the volume of forsterite. Since it is difficult to envision much
closer packed atomic arrangements it has to be assumed that further
compressions must be achieved by a reduction in the lengths of the
distances between the atoms. A volume 23 percent lower than the
volume of olivine seems therefore to be near the limiting volume which
can be achieved by a rearrangement of coordination numbers. It appears
possible that Mg,SiO, phases at pressures higher than the assumed
stability limit of the hypothetical strontium plumbate type return
to arrangements based on oxygen close packing but with appreciably
shortened oxygen-oxygen and cation—oxygen distances. This should
imply that density increases with increasing pressure will be smaller
for the post strontium plumbate phases than for smaller pressures
and is consistent with the smaller seismic velocity-depth gradients
assumed in the lower mantle (see discussion by Ringwood, 1970).

CONCLUSION

The work reported above shows that it is possible to predict certain
details of complete crystal structures by starting with chemically rea-
sonable interatomic distances and adjusting these distances to each
other by distance least squares refinement. This method makes use of
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a computer for the modeling of erystal structures and allows theréfore
a rapid application of the type of geometric analysis which was per-
formed by Kamb (1968) for olivine and y-Mg,SiOs. The crystal strue-
tures investigated here are all of the same type: they represent rather
dense polyhedral linkages with extensive sharing of polyhedral edges
and corners. Meier and Villiger (1969) had investigated (under a very
different viewpoint) the open tetrahedral frameworks, mostly of feld-
spars and zeolites, where only corner-sharing is occurring. Shoemaker
and Shoemaker (1967) applied the method to an intermetallic com-
pound. The approach should be extended to further classes of com-
pounds. It could also be refined by allowing explicitly for electrostatic
interactions. This could be done either by straight electrostatic calcula-
tions, or by introducing pseudo-electrostatic terms into the DLS-refine-
ment: for instance the Mg-Mg repulsion could be approximated by an
input distance d(Mg-Mg) which is deliberately chosen at a larger
value than actually observed in known crystal structures.

The fact that the DLS-refinement method allows us to investigate
crystal structures geometrically without recourse to any bonding
models is its strength rather than a weakness. This is so because
different investigators may disagree (and do disagree very often)
about the bonding theory applicable to a given erystal structure. There
can be however very little disagreement about the lengths of observed
interatomic distances even when the interpretations in terms of bond-
ing models do differ. Therefore the use of the geometric refinement
method may be termed crystal chemieal positivism. In this application
the positivism has proved to be fruitful. In our present state of knowl-
edge, neither the ionic theory (electrostatic potential calculation) nor
the covalent approach would have allowed the caleulation of unit cell
constants and positional coordinates of the MgySiO4 polymorphs.

The simulation of erystal structures by computer opens the way for
the investigation of crystal structures at simulated conditions under
which their study is experimentally difficult or impossible. It may
aid in deciding between different models for a particular structure
when the experimental evidence is inconclusive. Structure simulation
will also allow the testing of hypothetical structures or of hypotheses
about the behavior of crystal structures under varying conditions. It
may help in predicting which isomorphic substitutions in a particular
structure should be possible and even more, at which point a struc-
ture should become unstable and show a transition. In short: crystal
structure simulation appears to have many potentially interesting
and/or useful applications.
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