Gibbs Free Energies of Formation Calculated from Dissolution Data Using Specific Mineral Analyses. II. Plagioclase Feldspars

WEN H. HUANG, AND WEN C. KIANG

Department of Geology, University of South Florida, Tampa, Florida 33620

Abstract

Gibbs free energies of formation (ΔG°_{f}) for plagioclase feldspars, albite, oligoclase, labradorite, bytownite, and anorthite were calculated from the dissolution in aqueous solutions, using (a) the actual mineral formulas derived from the chemical analyses of the specific mineral samples, and (b) the ideal structural formulas of the minerals. Results with ΔG°_{f} in kcal/mole were: albite, $Ab_{95}An_{1}Or_{4}$, -897.1; albite, $Ab_{96}An_{1}$, -894.7; oligoclase, $Ab_{76}An_{18}Or_{7}$, -910.3; oligoclase, $Ab_{80}An_{20}$, -906.8; labradorite, $Ab_{50}An_{40}Or_{4}$, -930.9; labradorite, $Ab_{52}An_{48}$, -928.5; bytownite, $Ab_{30}An_{67}Or_{3}$, -948.5; bytownite, $Ab_{31}An_{60}$, -942.7; anorthite, $Ab_{12}An_{86}Or_{2}$, -959.4, and anorthite, $Ab_{12}An_{88}$, -957.7.

The Gibbs free energy of formation for a high K-plagioclase (Ab₁₄Or₅₆) was also calculated to be -896.4 kcal/mole.

Introduction

Supplementing the calculation of Gibbs free energies of formation (ΔG°_{t}) for primary rock-forming silicate minerals (Huang and Keller, 1972), this paper presents the calculation of ΔG°_{t} for a series of plagioclase minerals from aqueous dissolution data.

Laboratory Work

Three grams (3.00 gm) each of freshly fractured albite, oligoclase, labradorite, bytownite, anorthite, and a high-K variety of plagioclase in particle size between 44 µm and 150 µm were equilibrated at room temperature in deionized water for periods up to 24 days. The detailed experimental procedure and analytical results have been published in a paper by Huang and Kiang (1972). The results of the laboratory dissolution show that the dissolution of major cations (Si, Al, Ca, and Na) from the plagioclase minerals increased very rapidly within the first 24 hours, slowed down between the period of one day and six days, and then reached near saturation after 24 days. Although complete equilibrium cannot be established, the cation concentrations at 24 days dissolution may be taken as "apparently" equilibrated concentrations, and the solubilities (K_s) calculated from these concentrations then represent "apparent" solubilities.

Methods of Calculation

The detailed steps and assumptions for the calculation of ΔG°_{f} from the laboratory dissolution data were given in a paper by Huang and Keller (1972). These include the following:

- (1) Species in the Equilibrium Solution. It is possible to calculate, if chemical equilibrium is assumed, the proportion of each dissolved species of a specific element in the system, where certain species are assumed more likely to be present in the system. The equilibrium concentration (Huang and Keller, 1972) of each species in the systems was calculated (1) from the pH of the solution; (2) from the concentration of each cation in the solution in which Si, Al, Fe, Mg, Ca, K, and Na were determined and reported as moles/liter as in an earlier paper (Huang and Kiang, 1972); and (3) using the constants of hydrolysis and dissociation obtained from Sillén and Martell (1964). The validity of the calculation is based on the law of mass action (Butler, 1964). The results of the calculation of each Al, Fe, Mg, Ca species from the dissolution of plagioclase are shown in Table 2.
- (2) Activities. Using the Debye-Hückel method, ions in the solution were computed on an IBM 360/65 electronic computer.
 - (3) Mineral formulas. The actual mineral for-

Log act.

mulas, as determined for each plagioclase feldspar from bulk analyses published earlier (Table 1, Huang and Kiang, 1972), were used in calculation of ΔG°_{t} . For comparison, ideal structural formulas were also used in calculation of ΔG°_{t} .

(4) Solubility constants (K_s) and Gibbs free energies of formation (ΔG°_{f}) . Assuming "apparent" equilibrium in the systems, the solubility constants (K_s) from aqueous dissolution of plagioclase minerals could be calculated from the most probable chemical reactions of the minerals in water. Then, Gibbs free energies of formation for the minerals (ΔG°_{f}) can be calculated from the following two relationships: (1) ΔG°_{r} (Gibbs free energies of reaction) = $-1.364 \log K_s$ (Nernst equation), and (2) $\Delta G^{\circ}_{r} = \Sigma \Delta G^{\circ}_{f}$ (products) $-\Sigma \Delta G^{\circ}_{f}$ (reactants), using known Gibbs free energies of formation for other species in equation (2) (Table 1).

Results

(A) ΔG°_{f} based on aqueous solubility data

The analytical data and calculated activities for the dissolution of the plagioclase minerals are listed in Table 2. Table 3 summarizes the reactants and the assumed products of dissolution calculated for both specific and ideal mineral formulas. Points worthy of note are as follows:

Table 1. Gibbs Free Energies of Formation Used in Calculation of ΔG°_{t}

Species	G [°] kcal/mole	Source
H ₄ SiO ₄	-312.8	Reesman and Keller (1965)
Λ ₁ 3+ ⁴	-115.0	Rossini et al (1952)
A1(OH) ²⁺	-164.9	Raupach (1963)
A1(OH)2	-216.1	Reesman et al (1969)
$\Lambda 1 (OH) \frac{2}{4}$	-311.3	Reesman et al (1952)
Fe ²⁺	-20.30	Rossini et al (1952)
Fe(OH)	-52.58	Huang and Keller (1972)
Fe(OH)2+	-55.91	Rossini et al (1952)
Fe(OH) +	-106.2	Rossini et al (1952)
Mg ²⁺	-108.76	Langmuir (1968)
Mg(OH) ⁺	-149.76	Berner (1971)
Ca ²⁺	-132.35	Langmuir (1968)
Na ⁺	-62.59	Rossini et al (1952)
K ⁺	-67.47	Rossini et al (1952)
OH-	-37.63	Reesman and Keller (1965)
11,0	-56.72	Wicks and Block (1963)

Table 2. Analytical Data and Activities of Dissolved Species in the Dissolution of Plagioclase Minerals

Activity

Moles/liter

	Moles/liter	Activity	Log act
	(1)	ALBITE	
	pH = 5.81; ionic st	rength = 1.25 x 10 ⁻⁴	
Na ⁺	0.231×10^{-4}	0.228×10^{-4}	-4.64
K ⁺	0.332 x 10 ⁻⁶	0.328 x 10 ⁻⁶	-6.48
Ca ²⁺	0.548 x 10 ⁻⁴	0.521×10^{-4}	-4.28
A1 (0H) +	0.518×10^{-5}	0.511×10^{-5}	-5.29
A1 (OH) 7	0.121×10^{-6}	0.119×10^{-6}	-6.92
H4S104	0.166×10^{-4}	0.166×10^{-4}	-4.78
OH-		10-8.19	-8.19
	(II) OL	IGOCLASE	
	pH = 5.83; ionic st	rength = 1.73×10^{-4}	
Na ⁺	0.199×10^{-4}	0.196×10^{-4}	-4.71
κ ⁺	0.703×10^{-5}	0.693 x 10 ⁻⁵	-5.16
Ca ²⁺	0.758×10^{-4}	0.714×10^{-4}	-4.15
A1(OH)+	0.385×10^{-5}	0.379×10^{-5}	-5.42
A1 (OH) 4	0.126×10^{-6}	0.124×10^{-6}	-6.91
H ₄ SiO ₄	0.436×10^{-4}	0.436×10^{-4}	-4.36
OH-		10-8.17	-8.17
	(III) LA	BRADORITE	
		rength = 2.86×10^{-5}	
Na ⁺	0.892×10^{-5}	0.886×10^{-5}	-5.05
v ⁺	0.271×10^{-5}	0.269×10^{-5}	-5.57
Ca ²⁺	0.103×10^{-4}	0.101×10^{-4}	-4.99
A1 (OH) +	0.116×10^{-5}	0.115×10^{-5}	-5.94
A1 (OH) 4	0.208×10^{-6}	0.207×10^{-6}	-6.68
H ₄ SiO ₄	0.229×10^{-4}	0.229×10^{-4}	-4.64
OH-		10-7.95	-7.95
	(IV) E	YTOWNITE	
		rength = 5.74×10^{-5}	
	pH = 5.95; ionic st		
Na +			-4.79
Na ⁺	0.163×10^{-4}	0.161×10^{-4}	-4.79 -6.48
K+	0.163×10^{-4} 0.332×10^{-6}	0.161×10^{-4} 0.330×10^{-6}	-6.48
K ⁺ Ca ²⁺	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4}	0.161×10^{-4} 0.330×10^{-6} 0.163×10^{-4}	-6.48 -4.79
K ⁺ Ca ²⁺ Al (OH) +	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5}	0.161×10^{-4} 0.330×10^{-6} 0.163×10^{-4} 0.167×10^{-5}	-6.48 -4.79 -5.78
K ⁺ Ca ²⁺ Al (OH) ⁺ Al (OH) ⁻	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6}	0.161×10^{-4} 0.330×10^{-6} 0.163×10^{-4} 0.167×10^{-5} 0.162×10^{-6}	-6.48 -4.79 -5.78 -6.79
K ⁺ Ca ²⁺ A1 (0H) ½ A1 (0H) ¼ H ₄ Si0 ₄	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5}	0.161×10^{-4} 0.330×10^{-6} 0.163×10^{-4} 0.167×10^{-5}	-6.48 -4.79 -5.78
K^{+} Ca^{2+} $Al(OH)^{+}_{2}$ $Al(OH)^{-}_{4}$	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4}	0.161×10^{-4} 0.330×10^{-6} 0.163×10^{-4} 0.167×10^{-5} 0.162×10^{-6} 0.393×10^{-4} $10^{-8.05}$	-6.48 -4.79 -5.78 -6.79
K^{+} Ca^{2+} $A1(0H)^{+}_{2}$ $A1(0H)^{-}_{4}$ $H_{4}S10_{4}$	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4}	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05	-6.48 -4.79 -5.78 -6.79
K ⁺ Ca ²⁺ Al (OH) ⁺ Al (OH) ⁻ Al (OH) ⁻ OH ⁻	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4} Q(V) AN	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05 ORTHITE rength = 3.71 x 10 ⁻⁵	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05
K ⁺ Ca ²⁺ Al (OH) ⁺ Al (OH) ⁻ H ₄ SiO ₄ OH ⁻ Na ⁺	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4}	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05 ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵	-6.48 -4.79 -5.78 -6.79
K ⁺ Ca ²⁺ Al (OH) ⁺ Al (OH) ⁻ H ₄ SiO ₄ OH ⁻ Na ⁺ K ⁺	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4} PH = 5.91; ionic st 0.196×10^{-5} 0.102×10^{-6}	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ^{-8.05} ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵ 0.102 x 10 ⁻⁶	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05
K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² H ₄ SiO ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4} PH = 5.91; ionic st 0.196×10^{-5} 0.102×10^{-6} 0.116×10^{-4}	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ^{-8.05} ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05
K^{+} Ca^{2+} $A1 (OH)^{\frac{1}{2}}$ $A1 (OH)^{\frac{1}{4}}$ $H_{4} SiO_{4}$ OH^{-} Na^{+} K^{+} Ca^{2+} $A1 (OH)^{\frac{1}{2}}$	0.163 x 10 ⁻⁴ 0.332 x 10 ⁻⁶ 0.169 x 10 ⁻⁴ 0.168 x 10 ⁻⁵ 0.163 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ (V) AN pH = 5.91; ionic st 0.196 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.116 x 10 ⁻⁴ 0.885 x 10 ⁻⁶	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05 ORTHITE rength = 3.71 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79
K ⁺ Ca ²⁺ A1 (OH) ½ A1 (OH) ¼ H ₄ S10 ₄ OH Na ⁺ K ⁺ Ca ²⁺ A1 (OH) ½ A1 (OH) ½ A1 (OH) ½	0.163 x 10 ⁻⁴ 0.332 x 10 ⁻⁶ 0.169 x 10 ⁻⁴ 0.168 x 10 ⁻⁵ 0.163 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ (V) AN pH = 5.91; ionic st 0.196 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.116 x 10 ⁻⁴ 0.885 x 10 ⁻⁶ 0.149 x 10 ⁻⁶	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ^{-8.05} ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83
K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² H ₄ SiO ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ⁴ H ₄ SiO ₄	0.163 x 10 ⁻⁴ 0.332 x 10 ⁻⁶ 0.169 x 10 ⁻⁴ 0.168 x 10 ⁻⁵ 0.163 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ (V) AN pH = 5.91; ionic st 0.196 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.116 x 10 ⁻⁴ 0.885 x 10 ⁻⁶	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ^{-8.05} ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83 -4.55
K ⁺ Ca ²⁺ A1 (OH) ½ A1 (OH) ¼ H ₄ S10 ₄ OH Na + K ⁺ Ca ²⁺ A1 (OH) ½ A1 (OH) ½ A1 (OH) ½	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4} $\frac{(V) AN}{PH} = 5.91; ionic st$ 0.196×10^{-5} 0.102×10^{-6} 0.116×10^{-4} 0.885×10^{-6} 0.149×10^{-6} 0.280×10^{-4}	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05 ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ 10 ⁻⁸ .09	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83
K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² H ₄ SiO ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ⁴ H ₄ SiO ₄	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4} $\frac{(V) AN}{PH} = 5.91; \text{ ionic st}$ 0.196×10^{-5} 0.102×10^{-6} 0.116×10^{-4} 0.885×10^{-6} 0.149×10^{-6} 0.280×10^{-4}	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ^{-8.05} ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ 10 ^{-8.09} PLAGIOCLASE	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83 -4.55
K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² H ₄ SiO ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² Al (OH) ⁴ H ₄ SiO ₄ OH ⁻	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4} $\frac{(V) AN}{PH} = 5.91; ionic st$ 0.196×10^{-5} 0.102×10^{-6} 0.116×10^{-4} 0.885×10^{-6} 0.149×10^{-6} 0.280×10^{-4} (VI) HIGH-K $PH = 5.97; ionic st$	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ^{-8.05} ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ 10 ^{-8.09} PLAGIOCLASE rength = 3.05 x 10 ⁻⁵	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83 -4.55 -8.09
K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ⁷ H ₄ S10 ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ⁴ H ₄ S10 ₄ OH ⁻ Na ⁺	0.163×10^{-4} 0.332×10^{-6} 0.169×10^{-4} 0.168×10^{-5} 0.163×10^{-6} 0.393×10^{-4} $\frac{(V) AN}{PH} = 5.91; \text{ ionic st}$ 0.196×10^{-5} 0.102×10^{-6} 0.116×10^{-4} 0.885×10^{-6} 0.149×10^{-6} 0.280×10^{-4} $(VI) HIGH-RPH = 5.97; \text{ ionic st}$ 0.124×10^{-4}	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ^{-8.05} ORTHITE rength = 3.71 x 10 ⁻⁵ 0.194 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ 10 ^{-8.09} PLAGIOCLASE rength = 3.05 x 10 ⁻⁵ 0.123 x 10 ⁻⁴	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83 -4.55 -8.09
K ⁺ Ca ²⁺ A1 (OH) ½ A1 (OH) ¼ H ₄ S10 ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺ A1 (OH) ½ A1 (OH) ½ A1 (OH) ½ A1 (OH) ½ A2 (OH) ¼ H ₄ S10 ₄ OH ⁻	0.163 x 10 ⁻⁴ 0.332 x 10 ⁻⁶ 0.169 x 10 ⁻⁴ 0.168 x 10 ⁻⁵ 0.163 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ (V) AN pH = 5.91; ionic st 0.196 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.116 x 10 ⁻⁴ 0.885 x 10 ⁻⁶ 0.149 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ (VI) HIGH-R pH = 5.97; ionic st 0.124 x 10 ⁻⁴ 0.187 x 10 ⁻⁴	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05 ORTHITE rength = 3.71 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ 10 ⁻⁸ .09 PLAGIOCLASE rength = 3.05 x 10 ⁻⁵ 0.123 x 10 ⁻⁴ 0.186 x 10 ⁻⁴	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83 -4.55 -8.09
K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² H ₄ 5i0 ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² Al (OH) ² H ₄ 5i0 ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺	0.163 x 10 ⁻⁴ 0.332 x 10 ⁻⁶ 0.169 x 10 ⁻⁴ 0.168 x 10 ⁻⁵ 0.163 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ (V) AN pH = 5.91; ionic st 0.196 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.116 x 10 ⁻⁴ 0.885 x 10 ⁻⁶ 0.149 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ (VI) HIGH-R pH = 5.97; ionic st 0.124 x 10 ⁻⁴ 0.187 x 10 ⁻⁴ 0.474 x 10 ⁻⁵	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05 ORTHITE rength = 3.71 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ 10 ⁻⁸ .09 PLAGIOCLASE rength = 3.05 x 10 ⁻⁵ 0.123 x 10 ⁻⁴ 0.186 x 10 ⁻⁴ 0.462 x 10 ⁻⁵	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83 -4.55 -8.09
K^{+} Ca^{2+} $A1 (OH)^{\frac{1}{2}}$ $A1 (OH)^{\frac{1}{4}}$ $H_{4} S10_{4}$ OH^{-} Na^{+} K^{+} Ca^{2+} $A1 (OH)^{\frac{1}{4}}$ $H_{4} S10_{4}$ OH^{-} Na^{+} K^{+} Ca^{2+} $A1 (OH)^{\frac{1}{4}}$ $A1 (OH)^{\frac{1}{4}}$ $A1 (OH)^{\frac{1}{4}}$ $A1 (OH)^{\frac{1}{4}}$ $A1 (OH)^{\frac{1}{4}}$	0.163 x 10 ⁻⁴ 0.332 x 10 ⁻⁶ 0.169 x 10 ⁻⁴ 0.168 x 10 ⁻⁵ 0.163 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ (V) AN pH = 5.91; ionic st 0.196 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.116 x 10 ⁻⁴ 0.885 x 10 ⁻⁶ 0.149 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ (VI) HIGH-R pH = 5.97; ionic st 0.124 x 10 ⁻⁴ 0.187 x 10 ⁻⁴ 0.474 x 10 ⁻⁵ 0.229 x 10 ⁻⁵	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05 ORTHITE rength = 3.71 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ 10 ⁻⁸ .09 PLAGIOCLASE rength = 3.05 x 10 ⁻⁵ 0.123 x 10 ⁻⁴ 0.186 x 10 ⁻⁴ 0.462 x 10 ⁻⁵ 0.214 x 10 ⁻⁵	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83 -4.55 -8.09
K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² H ₄ 510 ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺ Al (OH) ² Al (OH) ² H ₄ 510 ₄ OH ⁻ Na ⁺ K ⁺ Ca ²⁺	0.163 x 10 ⁻⁴ 0.332 x 10 ⁻⁶ 0.169 x 10 ⁻⁴ 0.168 x 10 ⁻⁵ 0.163 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ (V) AN pH = 5.91; ionic st 0.196 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.116 x 10 ⁻⁴ 0.885 x 10 ⁻⁶ 0.149 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ (VI) HIGH-R pH = 5.97; ionic st 0.124 x 10 ⁻⁴ 0.187 x 10 ⁻⁴ 0.474 x 10 ⁻⁵	0.161 x 10 ⁻⁴ 0.330 x 10 ⁻⁶ 0.163 x 10 ⁻⁴ 0.167 x 10 ⁻⁵ 0.162 x 10 ⁻⁶ 0.393 x 10 ⁻⁴ 10 ⁻⁸ .05 ORTHITE rength = 3.71 x 10 ⁻⁵ 0.102 x 10 ⁻⁶ 0.162 x 10 ⁻⁴ 0.887 x 10 ⁻⁶ 0.148 x 10 ⁻⁶ 0.280 x 10 ⁻⁴ 10 ⁻⁸ .09 PLAGIOCLASE rength = 3.05 x 10 ⁻⁵ 0.123 x 10 ⁻⁴ 0.186 x 10 ⁻⁴ 0.462 x 10 ⁻⁵	-6.48 -4.79 -5.78 -6.79 -4.41 -8.05 -5.71 -6.99 -4.79 -6.06 -6.83 -4.55 -8.09

Table 3. The Subscripts*	' (and/or Coefficients) and	d Calculated ΔG°_{f} and log K_{s}	Values for Laboratory Dissolutions of Several
		Plagioclase Minerals	

	Reactants Mineral Formula							Products Assumed for Dissolution						ΔG°	log K **		
	(Na	Ca	К)	(A1	S1)	0	+ н ₂ 0	<i>→</i>	Na ⁺ +	- Ca ²⁺	+ K ⁺	+ A1(OH) ⁺ ₂	+ Al(OH)4	+ H ₄ SiO ₄	+ OH	(kcal/mole	e) s
Albite																	
Specific, Abg5An,Or4	0.91	0.01	0.04	1.16	2.88	8	7.98	#	0.91	0.01	0.04	1.13	0.03	2.88	2.07	-897.1	-41.43
Ideal, Ab ₉₉ An ₁	0.99	0.01		1.01	2.99	8	8	*	0.99	0.01		0.98	0.03	2.99	1.96	-894.7	-40.36
Oligoclase																	
Specific, Ab ₇₅ An ₁₈ Or ₇	0.70	0.17	0.06	1.44	2.64	8	7.99	+	0.70	0.17	0.06	1.39	0.05	2.64	2.44	-910.3	-43.64
Ideal, Ab ₈₀ An ₂₀	0.80	0.20		1.20	2.80	8	8	2	0.80	0.20		1.15	0.05	2.80	2.30	-906.8	-42.18
Labradorite																	
Specific, Ab ₅₀ An ₄₆ Or ₄	0.47	0.43	0.04	1.74	2.34	8	7.97	Ż	0.47	0.43	0.04	1.48	0.26	2.34	2.59	-930.9	-46.72
Ideal, Ab ₅₂ An ₄₈		0.48		1.48	2.52	8	8	*	0.52	0.48		1.26	0.22	2.52	2.52		-45.70
Bytownite																	
Specific, Ab30An67Or3	0.31	0.70	0.03	1.87	2.15	8	7.97	*	0.31	0.70	0.03	1.70	0.17	2.15	3.27	-948.5	-51.80
Ideal, Ab31An69	0.31	0.69			2.31			4	0.31			1.54	0.15	2.31	3.08	-942.7	-49.69
Anorthite																	
Specific, Ab ₁₂ An ₈₆ Or ₂	0.12	0.85	0.02	2.07	1.97	8	7.96	7	0.12	0.85	0.02	1.76	0.31	1.97	3.29	-959.4	-53,27
Ideal, Ab ₁₂ An ₈₈	0.12	0.88			2.12		8	+	0.12			1.60	0.28	2.12	3.20	-957.7	-52.06
High-K plagioclase***																	
Specific, Ab ₄₄ Or ₅₆	0.42		0.53	1.11	2.92	8	7.98	+0	0.42		0.53	1.03	0.08	2.92	1.90	-896.4	-40.05
Ideal, Ab ₄₄ 0r ₅₆	0.44		0.56	1	3	8	8	*+	0.44		0.56	0.93	0.07	3	1.86	-896.9	-39.71

- (1) The difference in ΔG°_{f} for albite by the two calculations (Table 3) is 2.4 kcal/mole. The ΔG°_{f} (-894.7 kcal/mole) for albite (Ab₉₉An₁) in terms of the ideal structural formula, however, is smaller than the value obtained by Waldbaum (1966) for low albite (Ab₁₀₀) ($\Delta G^{\circ}_{f} = -884.0$ kcal/mole). The presence of one mole percent of CaAl₂Si₂O₈ in our albite sample could significantly affect the ΔG°_{f} .
- (2) Our data on $\Delta G^{\circ}_{\rm f}$ for labradorite in terms of the specific mineral formula or the ideal structural formula (Table 3) lie just between the values for oligoclase and the labradorite (Ab₄₀An₅₉Or₁ = -932.4 kcal/mole, or Ab₄₀An₆₀ = -932.1 kcal/mole) reported by Huang and Keller (1972). This adds confidence to the validity of the dissolution method used for the calculation of $\Delta G^{\circ}_{\rm f}$.
- (3) The difference in $\Delta G_{\mathbf{f}}^{\circ}$ for the two bytownite calculations is 5.8 kcal/mole, which might become

- significant in determining stabilities of minerals in some geologic systems.
- (4) Our data on ΔG°_{t} for anorthite is lower than the reported data of -955.6 kcal/mole for anorthite (An₁₀₀) by Barany (1962).
- (5) The value for high-K plagioclase (-896.4 or -896.9 kcal/mole) lies just between the value for albite ($Ab_{95}An_1Or_4$, or -887.3 kcal/mole, this study) and that for microcline ($Ab_{25}Or_{68}An_7$, -887.3 kcal/mole, or Or_{100} , ideal, -892.6 kcal/mole, Huang and Keller, 1972). Our ΔG°_{f} for this "high-K plagioglase" specimen indicates that the mineral is not andesine; if the sample were andesine, its ΔG°_{f} should lie between -910.3 for oligoclase and -930.9 kcal/mole for labradorite.
- (B) ΔG°_{f} based on equilibrium with secondary phase

The results of analyses in Table 2 show that the concentration of Al in the solution is less than that

^{**} Example of calculation: for albite $(Ab_{95}An_{1}Or_{4})$ $K_{s} = [Na^{+}]$ $^{0.91}[Ca^{2+}]$ $^{0.01}[K^{+}]$ $^{0.04}[A1(OH)_{2}^{+}]$ $^{1.13}[A1(OH)_{4}^{-}]$ $^{0.03}[H_{4}SiO_{4}]$ $^{2.88}[OH^{-}]$ $^{2.07}$ Then, $log K_{s} = -41.43$ ΔG_{f}° (products) $-\Sigma \Delta G_{f}^{\circ}$ (reactants) $= -840.63 - \Delta G_{f}^{\circ}$ (albite) $\Delta G_{f}^{\circ} = -1.364 log K_{s}$ ΔG_{f}° (albite, $Ab_{95}An_{1}Or_{4}$) $= -840.63 + 1.364 log K_{s} = -897.1 kcal/mole$

^{***} A specimen purchased as and labelled "andesine" proved to be a high-K variety of plagioclase by bulk chemical analyses. Laboratory dissolution data (Huang and Keller, 1972) are in accord with this composition.

Table 4. Summary of ΔG°_{f} Calculated on the Basis of Equilibrium with Secondary Phase

	Reactants Mineral Formula							Products Assumed for Dissolution									
	(Na	Ca	к)	(Al	Si)	0	+ H ₂ 0	→	Na ⁺ +	Ca ²⁺	+ K,+	+ Al(OH) + +	- A1 (OH) 4	+ H ₄ SiO ₄	+ OH	+ AI(OH)3	AG°** (kcal/mole)
Albite																	
Specific, Abos An, Or	0.91	0.01	0.04	1.16	2.88	8	7.98	+	0.91	0.01	0.04	0.89	0.02	2.88	1.84	0.25	-897.0*
Ideal, Ab ₉₉ An ₁	0.99	0.01		1.01	2.99	8	8	+	0.99	0.01		0.91	0.03	2.99	1.89	0.07	-894.7
Oligoclase																	
Specific, Ab ₇₅ An ₁₈ Or ₇	0.70	0.17	0.06	1.44	2.64	8	7.99	+	0_70	0.17	0.06	0.23	0.01	2.64	1.32	1.20	-909.1
Ideal, Ab ₈₀ An ₂₀	0.80	0.20		1.20	2.80	8	8	+	0.80	0.20		0.24	0.01	2.80	1.43	0.95	-905.9
Labradorite																	
Specific, Ab ₅₀ An ₄₆ Or ₄	0.47	0.43	0.04	1.74	2,34	8	7.97	**	0.47	0.43	0.04	0.12	0.02	2.34	1.47	1.60	-928.9
Ideal, Ab ₅₂ An ₄₈	0.52	0.48		1.48	2.52	8	8	→	0.52	0.48		0.13	0.02	2.52	1.59	1.33	-926.8
Bytownite																	
Specific, Ab30An67Or3	0.31	0.70	0.03	1.87	2.15	8	7.97	+	0.31	0.70	0.03	0.09	0.01	2.15	1.82	1.77	-946.4
Ideal, Ab ₃₁ An ₆₉		0.69		1.69	2.31	8	8	$\overset{\rightarrow}{\leftarrow}$	0.31	0.69		0.10	0.01	2.31	1.78	1.58	-940.8
Anorthite																	
Specific, Ab ₁₂ An ₈₆ Or ₂	0.12	0.85	0.02	2.07	1.97	8	7.96	$\overset{\rightarrow}{\leftarrow}$	0.12	0.85	0.02	0.06	0.01	1.97	1.89	2.00	-956.2
Ideal, Ab ₁₂ An ₈₈	0.12	0.88	Par	1.88	2.12	8	8	*	0.12	0.88	~-	0.07	0.01	2.12	1.94	1.80	-956.6
High-K plagioclase																	
Specific, Ab ₄₄ Or ₅₆	0.42		0.53	1.11	2:92	8	7,98	+	0.42		0.53	0.34	0.03	2.92	1.26	0.74	-895.6
Ideal, Ab ₄₄ Or ₅₆	0.44		0.56	1	3	8	8	→	0.44		0.56	0.35	0.03	3	1.32	0.62	-896.2

^{*}Example of calculation: for albite $(Ab_{95}An_{1}Or_{4})$ K_{8} = $[Na^{+}]^{0.91}$ $[Ca^{2+}]^{0.01}$ $[K^{+}]^{0.04}$ $[A1(OH)^{+}_{2}]^{0.89}$ $[A1(OH)^{-}_{4}]^{0.02}$ $[H_{4}Sio_{4}]^{2.88}$ $[OH^{-}]^{1.84}$ Then, $log K_{8}$ = -38.21 ΔG_{f}^{o} (products) - $\Sigma \Delta G_{f}^{c}$ (reactants) = -844.84 - ΔG_{f}^{o} (albite) ΔG_{f}^{o} (albite, $Ab_{95}An_{1}Or_{4})$ = -844.84 + 1.364 $log K_{8}$ = -897.0 kcal/mole.

TABLE 5. Comparison of ΔG°_{f} Obtained from Different Calculations

	∆G _f based on aqueous		hased o		
1	solubility data	A	В	C	D
Albite					
Specific, Ab ₉₅ An ₁ Or ₄	-897.1	-897.0	-897.2	-897.6	-897.9
Ideal, Ab ₉₉ An ₁	-894.7	-894.7	-894.7	-894.8	-894.9
Oligoclase					
Specific, Ab75An18Or	-910.3	-909.1	-910.3	-912.2	-913.9
Ideal, Ab ₈₀ An ₂₀	-906.8	-905.9	-906.8	-908.3	-909.7
Labradorite					
Specific, Ab50An46Or	-930.9	-928.9	-930.5	-933.0	-935.3
Ideal, Ab ₅₂ An ₄₈	-928.5	-926.8	-928.2	-930.3	-932.1
Bytownite					
Specific, Ab30An670r	-948.5	-946.4	-948.1	-951.0	-953.4
Ideal, Ab ₃₁ An ₆₉	-942.7	-940.8	-942.3	-944.9	-947.1
Anorthite					
Specific, Ab12Ang6Or	-959.4	-956.2	-958.2	-961.4	-964.2
Ideal, Ab ₁₂ An ₈₈	-957.7	-956.6	-958.4	-961.3	-963.8
High-K plagioclase					
Specific, Ab440r56	-896.4	-895.6	-896.4	-897.5	-898.6
Ideal, Ab ₄₄ Or ₅₆	-896.9	-896.2	-896.8	-897.8	-898.7

Fig. 1. Triangular diagram showing the ΔG°_{f} (kcal/mole) for the plagioclases and K-feldspars. The value, -887.3 kcal/mole, for microcline (g) is obtained from Huang and Keller (1972).

 $^{^{*\}circ}\Delta G_{\mathbf{f}}^{\circ}$ calculated on the basis of equilibrium with secondary amorphous aluminum hydroxide ($\Delta G_{\mathbf{f}}^{\circ}$ = -271.3 kcal/mole).

A: equilibrium with amorphous Al(OH) $_3$ B: equilibrium with microcrystalline gibbsite C: equilibrium with gibbsite ($\Delta G_{\xi}^2=-273.9~kcal/mole)$ D: equilibrium with gibbsite ($\Delta G_{\xi}^2=-275.25~kcal/mole)$

Fig. 2a. The best linear curve for five experimentally determined $\Delta G^{\circ}_{\rm f}$ as a function of mole fraction $(N_{\rm An})$ of CaAl₂Si₂O₈. The linear equation is $\Delta G^{\circ}_{\rm f} = -893.24 - 0.726~N_{\rm An}$.

of Si with respect to its mineral formula, suggesting that secondary Al-phase could be formed during the dissolution of plagioclase feldspar. Thus, secondary phase, such as amorphous aluminum hydroxide ($\Delta G^{\circ}_{\mathbf{f}} = -271.3$ kcal/mole, Feitknecht and Schindler, 1963), microcrystalline gibbsite ($\Delta G^{\circ}_{\mathbf{f}} = -272.3$ kcal/mole, Hem and Roberson, 1967), or gibbsite ($\Delta G^{\circ}_{\mathbf{f}} = -273.9$ kcal/mole, Latimer, 1952; $\Delta G^{\circ}_{\mathbf{f}} = -275.9$ kcal/mole, Parks, 1972), may be assumed in the equilibrium equation from which $\Delta G^{\circ}_{\mathbf{f}}$ for plagioclase is calculated. The results of $\Delta G^{\circ}_{\mathbf{f}}$ from such calculations are shown in Table 4.

As shown in Table 5, ΔG°_{f} calculated on the basis of equilibrium with secondary phase (amorphous Al(OH)₃, microcrystalline gibbsite, or gibbsite) are somewhat different from ΔG°_{f} calculated from aqueous solubility data.

Discussion and Conclusions

- 1) In Figure 1 are plotted the Gibbs free energies of formation for plagioclase minerals of specific mineral formulas (data taken from Table 3) in terms of Ab (albite), An (anorthite), and Or (microcline). There is a consistent decrease of ΔG°_{f} from Na-rich (albite) to Ca-rich (anorthite) plagioclase minerals. Specific values in the trend are subject to solid-solution and other compositional effects.
- 2) The Gibbs free energies of formation (ΔG°_{f}) of ideal mineral formulas (data taken from Table 3) are also plotted against mole fraction of $CaAl_2Si_2O_8$ (N_{An}) in linear, quadratic, and cubic equations in Figures 2 (a), (b), and (c) respectively. Statistical analyses of polynomial regression of ΔG°_{f} , Table 6, shows that at the 1 percent level, the linear or quadratic relationship between ΔG°_{f} and N_{An} is highly significant. The cubic relationship, however, is not significant at the 1 percent level, but is significant at the 5 percent level.
 - 3) The Gibbs free energy of formation for a

Fig. 2b. The best quadratic curve for five experimentally determined $\Delta G^{\circ}_{\rm f}$ as a function of mole fraction $(N_{\rm An})$ of CaAl₂Si₂O₈. The quadratic equation is $\Delta G^{\circ}_{\rm f} = -893.70 - 0.683 N_{\rm An} - 0.00048 (N_{\rm An})^2$.

Fig. 2c. The best cubic curve for five experimentally determined $\Delta G^{\circ}_{\rm f}$ as a function of mole fraction $(N_{\rm An})$ of CaAl₂Si₂O₈. The cubic equation is $\Delta G^{\circ}_{\rm f} = -893.88 - 0.640~N_{\rm An} - 0.00179~(N_{\rm An})^2 + 0.00001~(N_{\rm An})^3$.

plagicalse mineral of specific mineral formula is always a smaller negative quantity of ΔG°_{f} than for that of an ideal structural formula, as shown in Table 7.

4) The values of $\Delta G^{\circ}_{\mathbf{f}}$ calculated from dissolution data of specific mineral samples are subject to uncertainties and possible sources of error in (a) bulk chemical analysis of the mineral sample from which the specific mineral formula is calculated; (b) the solution analysis; (c) the $\Delta G^{\circ}_{\mathbf{f}}$ of ions used in the calculation; (d) the computed specific mineral formula used in calculation of ΔG°_{f} ; and (e) the establishment of complete equilibrium in the laboratory dissolution of minerals (Huang and Keller, 1972). The facts that our ΔG°_{f} calculated from dissolution data lie between the two end-membered values of albite and anorthite, and that there is a consistent decrease in ΔG°_{f} from Na-rich to Ca-rich plagioclase, suggest that the possible errors tend to compensate one another, and add confidence to the validity of our calculation.

Table 6. Polynomial Regression Analysis of Gibbs Free Energies of Formation (ΔG°_{t}) for Plagioclase Feldspars

	Analy	sis of Variance	
	Degree of freedom	Sum of squares	Mean square
	The best line	ar equation	
	$\Delta G_{f}^{\circ} = -893.24$	- 0.726 N _{An}	
Regression	1	2632.27	2632.27
Residual	3	6.04	2.01
F = 130)5.67 (1,3)		
F	(1,3) = 34.12		
1.	(1,3) = 10.13		
	The best quadr	atic equation	
Δ	$g_{\rm f}^{\circ} = -893.70 - 0.683$	N _{An} - 0.00048 (N	An) ²
Regression	2	2636.64	1318.32
Residual	2	1.67	0.83
F = 157	70.85 (2,2)		
F ₁₅	(2,2) = 99.00		
F ₅₅	(2,2) = 19.00		
3,	The best cub	ic equation	
$\Delta G_{f}^{\circ} = -893.8$	38 - 0.640 N _{An} - 0.0	$0179 (N_{An})^2 + 0.0$	0001 (N _{An}) ³
Regression	3	2636.79	878.93
Residual	1	1.53	1.53
F = 572	2.04 (3.1)		
F ₁₅	χ (3,1) = 5403		
	(3,1) = 216		

Table 7. Comparison of Gibbs Free Energies of Formation for Plagioclase Feldspars (kcal/mole)

Mineral*	Experimental ΔG° f	Others
Albite		
a (Ab ₉₅ An ₁ 0r ₄)	-897.1	-884.0 (Ab ₁₀₀)
b (An ₉₉ An ₁)	-894.7	(Waldbaum, 1966)
Oligoclase		
a (Ab ₇₅ An ₁₈ 0r ₇)	-910.3	
ь (Ab ₈₀ An ₂₀)	-906.8	
Labradorite		
a (ab ₅₀ An ₄₆ 0r ₄)	-930.9	-932.4 (Ab ₄₀ An ₅₉ 0r ₁)**
b (Ab ₅₂ An ₄₈)	-928.5	-931.1 (Ab ₄₀ An ₆₀)**
Bytownite		
a (Ab ₃₀ An ₆₇ Or ₃)	-948.5	
b (Ab ₃₁ An ₆₉)	-942.7	
Anorthite		
a (Ab ₁₂ An ₈₆ 0r ₂)	-959.4	-955.6 (An ₁₀₀)
b (Ab ₁₂ An ₈₈)	-957.7	(Barany, 1962)
High-K plagioclase		
a (Ab ₄₄ 0r ₅₆)	-896.4	
b (Ab ₄₄ 0r ₅₆)	-896.9	

^{*} a: Specific mineral formula, b: Ideal structural formula** Huang and Keller (1972)

Acknowledgments

This work was supported in part by the Faculty Research Council Award, University of South Florida, and also by the Earth Science Section, National Science Foundation, NSF Grant GA-33558 to W. H. Huang. We benefited in preparation of this paper from conversations with Professors W. D. Keller and D. R. Waldbaum. The authors, however, take complete responsibility for the content of the paper.

References

- BARANY, R. (1962) Heats and free energies of formation of some hydrated and anhydrous sodium- and calcium-aluminum silicates. U. S. Bur. Mines Rep. Invest. 5900, 17 pp.
- Berner, R. A. (1971) Principles of Chemical Sedimentology. McGraw Hill Book Company, N.Y., 240 pp.
- BUTLER, J. N. (1964) Ionic Equilibrium—A Mathematical Approach. Reading, Massachusetts, Addison-Wesley, 547 pp.
- FEITKNECHT, W., AND P. SCHINDLER (1963) Solubility Constants of Metal Oxides, Metal Hydroxides, and Metal Hydroxide Salts. Butterworths Scientific Press. London.
- HEM, J. D., AND C. E. ROBERSON (1967) Form and stability of aluminum hydroxide complexes in dilute solution. U. S. Geol. Surv. Water-Supply Pap. 1827-A. 55 pp.
- HUANG, W. H., AND W. D. KELLER (1972) Standard free energies of formation calculated from dissolution data using specific mineral analyses. *Amer. Mineral.* 57, 1152– 1162.
- plagioclase feldspars in water and organic acids at room temperature. *Amer. Mineral.* **57**, 1849–1859.

- Langmuir, D. (1968) Stability of calcite based on aqueous solubility measurements. *Geochim. Cosmochim. Acta*, 32, 835-851.
- LATIMER, W. M. (1952) Oxidation Potentials. 2nd ed. New York, Prentice-Hall, 392 pp.
- PARKS, G. A. (1972) Free energies of formation and aqueous solubilities of aluminum hydroxides and oxide hydroxides at 25°C. *Amer. Mineral.* 57, 1165–1189.
- REESMAN, A. L., AND W. D. KELLER (1965) Calculation of apparent standard free energies of formation of sixrock forming silicate minerals from solubility data. *Amer. Mineral.* 50, 1729–1739.
- ———, E. E. PICKETT, AND W. D. KELLER (1969) Aluminum ions in aqueous solution. Amer. J. Sci., 267, 99–113.
- RAUPACH, M. (1963) Solubility of simple aluminum compounds expected in soils: I. Hydroxides and oxyhydroxides. *Austr. J. Soil Res.* 1, 28-35.
- ROSSINI, F. D., D. D. WAGMAN, W. H. EVANS, S. LEVINE, AND I. JAFFE (1952) Selected values of chemical thermodynamic properties. U. S. Nat. Bur. Stand. Cir. 500.
- SILLÉN, L. G., AND H. E. MARTELL (1964) Stability constants of metal-ion complexes. *Chem. Soc. London*, Spec. Pub. 17, 754 pp.
- WALDBAUM, D. R. (1966) Calorimetric investigation of the alkali feldspars. Ph.D. Thesis, Harvard University, 247 pp.
- WICKS, C. E., AND T. E. BLOCK (1963) Thermodynamic properties of 65 elements—their oxides, halides, carbines, and nitrides. U. S. Bur. Mines Bull. 605, 146.

Manuscript received, January 29, 1973; accepted for publication, July 3, 1973.