Compton-Scattered Tungsten X-Rays as a Measure of Mass Absorption Coefficients in Rocks

Stephen E. DeLong, AND Doug McCullough

Department of Geological Sciences, The University of Texas at Austin, 78712

Abstract

The intensity of Compton-scattered WLa X-rays may be used to estimate mass absorption coefficients (μ) analogous to Reynolds' (1963) method for MoKa radiation. This procedure depends on removal of two interfering sources of radiation: (1) Rayleigh-scattered WLa X-rays at 1.476 Å may be eliminated by use of a Ni filter (absorption edge = 1.488 Å). (2) Fluorescent NiKβ radiation generated in any Ni-bearing rock occurs at the same wavelength (1.500 Å) as the WLa peak. The constant relative intensity of NiKα and NiKβ permits determination of an empirical correction factor (independent of sample Ni content) for this interference. Application of these procedures with a linear calibration curve (μ vs WLa intensity) generally yields a μ within 5 percent of that calculated from chemical composition.

Introduction

Reynolds (1963) showed that the mass absorption coefficient (μ) of common rocks and minerals is an approximately linear function of the reciprocal intensity of Compton-scattered X-rays. This discovery provided a simple and rapid method of estimating μ for X-ray fluorescence analysis of geological materials of unknown chemical composition.

Reynolds' original measurements were made using a molybdenum target tube and the MoKa Compton-scattered peak (MoKα). Reynolds (1967) subsequently demonstrated several refinements of the method, including selective filtration of the interfering, Rayleigh-scattered MoKα peak (thus enhancing the intensity ratio of MoKα/MoKα). He also stated (Reynolds, 1967, p. 1494, note 1) that long-wavelength X-rays, specifically the L-series lines from a tungsten target, are not suitable for determining μ from geological materials by the Compton-scattered method. We report here an adaptation of Reynolds' procedures and show that WLa Compton-scattered radiation is, in fact, a reliable measure of μ. This method may be useful to workers who lack a Mo tube as used by Reynolds, but have a W tube available.

All of our analyses were made with a General Electric xrd-5 spectrometer equipped as follows: (1) W target tube operated at 50 kv and 45 ma; (2) LiF (200) analyzing crystal; (3) primary and secondary collimators with slit spacing of 1.59 and 0.25 mm, respectively; and (4) a G. E. No. 6 spc sealed proportional counter. Correction for a dead-time of 9.8 μsec, as determined by the method of Norrish and Chappell (1967), was applied to all intensity readings. Rock powders were pressed into aluminum dishes to yield samples at least 2 mm thick. This depth yields the equivalent of an infinitely thick sample for all X-ray wavelengths and values of μ of interest here.

The xrd-5 spectrometer sample chamber provides an angle of 90° between the incident and scattered beams. For this geometry, the wavelength increase of Compton-scattered radiation relative to its corresponding Rayleigh-scattered peak is 0.024 Å, independent of target material (Reynolds, 1963, p. 1136). Thus, the WLa peak at 1.476 Å will have a companion WLa peak at 1.500 Å. This proximity of the Rayleigh-scattered WLa radiation provides one of the two sources of interference to the accurate measurement of the WLa peak.

Following the example of selective filtration shown by Reynolds (1967), we eliminated the WLa interference by use of a Ni filter (absorption edge = 1.488 Å). A 0.025 mm thick Ni foil placed over the exit of the primary collimator eliminated the
WLγ radiation and decreased the WLγ peak to about 50 percent of its unfiltered intensity.

The second source of interference with the WLγ peak is NiKβ radiation of precisely the same wavelength (λ = 1.500 Å). This interference will arise in any Ni-bearing sample, including many mafic and most ultramafic igneous rocks, with the result that the apparent WLγ peak intensity will contain a component of fluorescent NiKβ X-rays. Obviously, the measured intensity of WLγ will be too large in proportion to the Ni content of the sample, all other factors being equal. It is possible to allow for the NiKβ component of the composite WLγ + NiKβ peak by determining a correction factor as follows.

Using the Ni filter described above to eliminate the Rayleigh-scattered WLγ peak, measure the intensity of WLγ radiation scattered from Ni-free synthetic quartz. (We have established by scanning and counting across the NiKα peak region that no detectable Ni X-rays are generated in the Ni filter, nor in the tube target itself.) Under identical operating conditions, measure the total intensity of the filtered composite WLγ + NiKβ peak (λ = 1.500 Å) and the net intensity of the filtered or unfiltered NiKα peak (λ = 1.659 Å) from a sample of the same quartz spiked with a known amount of Ni (∼500 ppm). The net intensity of NiKβ in the spiked sample is obtained simply by subtracting the total WLγ intensity (without background correction) for the pure quartz from the total intensity of the composite WLγ + NiKβ peak in the spiked sample. Because the intensity ratio of Kβ/Kα is constant for any element, correction factors may then be calculated as intensity ratios: NiKβ/NIKαifi = 0.0881 ± 0.0011, and NiKβ/NIKαunifi = 0.202 ± 0.003. The foregoing values represent the mean ± its standard error; subscripts “fil” and “unfil” indicate that the peak intensity was measured with and without the Ni filter, respectively.

To apply these factors to an unknown sample, the product of 0.0881 times the unfiltered net intensity of NiKα (measured from the unknown sample) is subtracted from the filtered composite peak:

\[\text{total } WL\gamma = \text{total } (WL\gamma + \text{NiKβ})_{\text{fil}} - 0.0881 \times \text{net } \text{NiKα}_{\text{unfil}}. \]

This procedure may thus be used to construct a calibration curve of μ vs WLγ intensity for standard samples and to determine the Compton-scattered intensity of unknown samples. If the Ni-spiked quartz sample is routinely analyzed, it may also be used as a standard for determination of the Ni contents of the unknown samples as a byproduct of this correction procedure.

We have followed the above methods to construct calibration curves based on the five U.S. Geological Survey silicate rock standards listed in Table 1. For each rock, μ was calculated at 1.5 Å from the chemical analyses cited and the tabulated data of Lieb-

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>μ_{1.5} Å</th>
<th>Ni (ppm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-2 (granite)</td>
<td>39.55**</td>
<td>10.0 ± 0.1</td>
</tr>
<tr>
<td>GSP-1 (granodiorite)</td>
<td>43.75**</td>
<td>10.8 ± 0.2</td>
</tr>
<tr>
<td>AGV-1 (andesite)</td>
<td>48.54**</td>
<td>15.3 ± 0.2</td>
</tr>
<tr>
<td>W-1 (diabase)</td>
<td>60.72***</td>
<td>70.3 ± 0.2</td>
</tr>
<tr>
<td>BCR-1 (basalt)</td>
<td>63.75**</td>
<td>10.1 ± 0.3</td>
</tr>
</tbody>
</table>

*Mean and standard error of the mean for 15 determinations.
**Chemical analyses from Flanagan (1969), Table 1, pp. 84-86, 88; average of analyses 1, 2, 3, 9, 23, 25, and 26.
***Chemical analysis from Fleischer (1969), Table 1, col. 3b, p. 65.

Fig. 1. Comparison of mass absorption coefficients calculated from chemical analyses (\(\mu_{\text{chem}}\)) with those derived from a calibration curve using the intensity of the WLγ peak (\(\mu_{\text{comp}}\)). The line labeled \(\mu_{\text{comp}} = \mu_{\text{chem}}\) corresponds to exact agreement by the two methods.
hafsky et al (1960, Appendix IV) for μ of individual elements. The correlation coefficient of the data for each determination of the calibration curve was always 0.985 or greater. Using these calibration curves, we have determined in duplicate the value of μ (at 1.5 A) of 103 igneous rocks of known chemical composition. The samples included a variety of rock types— ankaramites, tholeiitic and alkali basalts, andesites, dacites, trachytes, and Fe-rich melanorholytes—with μ values ranging from 34.8 to 68.2. Ni contents, using the Ni-spiked quartz as a standard, were in the range 3.7 to 309 ppm. In the most Ni-rich samples, the NiKβ peak contributed 15–20 percent of the composite WLaα + NiKβ peak.

Figure 1 compares the mean μ from the duplicate WLaα determinations (μ_{comp}) with the value calculated from the known chemical composition (μ_{chem}). For 85 of the 103 samples, the agreement is within ±5 percent or better.

Also listed in Table 1 are Ni concentrations in the five U. S. G. S. rock standards. These values were calculated from the simple relationship given by Reynolds (1963, eq. 2, p. 1134), using the values of μ at 1.5 A given and the measured intensities of the NiKα peaks. (The Ni content and μ value of the spiked quartz standard are 520 ppm and 29.90, respectively.)

Acknowledgments

We thank W. F. Bradley, L. S. Land, and L. E. Long for discussion and critical comments, and F. E. Ingerson for providing the synthetic quartz. One of us (D. M.) was supported by an NSF Summer Science Training Program.

References

Manuscript received, December 26, 1972; accepted for publication, July 17, 1973.