The Crystal Structure of Bikitaite, Li[AlSi₂O₆] H₂O VLADIMIR KOCMAN Department of Geology, University of Toronto ROBERT I. GAIT Royal Ontario Museum ### JOHN RUCKLIDGE Department of Geology, University of Toronto, Toronto, Canada M5S 1A1 #### Abstract The crystal structure of bikitaite, LiAlSi₂O₆·H₂O, has been determined from three-dimensional Mo $K\alpha$ counter data by direct methods and refined by full matrix least-squares calculations using anisotropic temperature factors to an unweighted R-value of 0.037 for 824 observed reflections on a crystal from Bikita, Rhodesia. The cell parameters are: a = 8.613(4), b = 4.962(2), c = 7.600(4) Å, $\beta = 114.45(1)$ °, space group $P2_1$, Z = 2. There are three basic tetrahedral sites in the asymmetric unit of bikitaite, designated T(1), T(2), and T(3). Refinement of the structure indicated (0.5 Al + 0.5 Si) in T(1) and T(3) and Si only in the T(2) site. The mean bond lengths of the $T(1)O_4$ and $T(3)O_4$ tetrahedra are both 1.681 Å and the mean bond length of the $T(2)O_4$ tetrahedron is 1.610 Å. These bond lengths are very similar to those in comparable tetrahedra in other tektosilicates. The lithium atom in bikitaite is tetrahedrally coordinated by three oxygen atoms and a water molecule, with the mean bond lengths of the LiO₄ tetrahedron being 1.972 Å. With the exception of the oxygen in the H_2O molecule, all oxygens in the structure are bridging, forming zig-zag chains of tetrahedra parallel to [010]. These chains are joined together to form a three-dimensional network with one large channel containing Li and H_2O and with several smaller, empty channels. #### Introduction Bikitaite, a lithium-aluminosilicate from the lithium-rich pegmatites in Bikita, Southern Rhodesia, was described by Hurlbut (1957). Preliminary analytical, optical, and X-ray investigations (Hurlbut, 1957, 1958) have shown that the chemical formula of bikitaite is close to Li_{0.95}Al_{1.10}Si_{1.95}O₆·1.15 H₂O and that the mineral crystallizes in the monoclinic system with two possible space groups $P2_1$ or $P2_1/m$. Leavens, Hurlbut, and Nelson (1968) reported bikitaite in the lithium-rich pegmatites at King's Mountain, North Carolina. Chemical analyses of samples from this locality have the nearly ideal composition of LiAlSi₂O₆·H₂O. The first X-ray crystal structure studies of bikitaite were carried out by Appleman (1960) who reported the basic outline of the bikitaite structure in the space group $P2_1$. Accurate determination of the structure was prevented by the poor quality of crystals available at that time (Appleman, personal communica- tion, 1972) and consequently structural details of Appleman's refinement were never published. The thermal and chemical properties of bikitaite were studied by Phinney and Stewart (1961), who described dehydration and ion exchange properties of the mineral. Bikitaite has been synthesized at pressures between 1 to 2.5 kbar and at temperatures ranging from 300–350°C by Drysdale (1971). ### **Experimental** Excellent crystals of bikitaite (specimen #M27924 kindly provided for this study by the Royal Ontario Museum) were selected from the specimen. Crystals were examined under polarized light and by X-ray diffraction, and a crystal with well developed faces, elongated along the b axis, was chosen for the study. The crystal was cut in two; one part was saved for electron microprobe analysis, and the other part was used for determination of cell dimensions and data collection. Several electron microprobe analyses of the single crystal were carried out using the ARL-EMX instrument at operating conditions of 15kV and 0.05μ A sample current. Diopside and anorthite were used as standards for Mg, Si, and Al. These data were processed by the EMPADR VII program written by Rucklidge and Gasparrini (1969). Li₂O was determined by atomic absorption. Small amounts of Na, K, and Mg were reported in bikitaite by Hurlbut (1958), but a careful check using the electron microprobe revealed no Na or K. The small amount of Mg detected, 0.01-0.02 percent, was neglected. A summary of analytical and crystal data of bikitaite is given in Table 1. Intensity data were collected up to $\sin \theta / \lambda = 0.70$ on a Picker Facs-1 four-circle diffractometer using Zr-filtered Mo $K\alpha$ radiation. The dimensions of the crystals were 0.40 \times 0.48 \times 0.30 mm, and a total of 947 symmetry independent reflections were collected by the moving crystal-moving counter technique $(2\theta \text{ scan})$, using a scanning rate of $1^{\circ}/\text{min}$. with two stationary background counts of 40 sec. on each side of the peak. The threshold level for "unobserved" reflections was set to $3\sigma F^2$, and a total of 123 reflections were equal or less than this value. Absorption was low ($\mu_{MoK\alpha} = 7.3 \text{cm}^{-1}$) and no corrections were considered necessary. Corrections were made for Lorentz-polarization factors, and the data were put on an absolute scale by the K-curve and E-gen program. The distribution of E's clearly indicated a noncentrosymmetric space group for bikitaite, thus confirming Appleman's (1960) choice TABLE 1. Crystal Data and Chemical Analysis | a = 8.613(4) Å | V = 296.8 Å ³ | |-----------------------------|-----------------------------------| | b = 4.962(2) R | $D_{\rm m} = 2.28 \rm g.cm^{-3}$ | | $c = 7.600(4) \hat{A}$ | $D_{c} = 2.28 \text{ g.cm}^{-3}$ | | $\beta = 114.45(1)^{\circ}$ | Z = 2 | Space group P2, from structure determination of $P2_1$: Av. $$|E^2|$$ = 1.019 Av. $|E^2 - 1|$ = 0.770 Av. $|E|$ = 0.887 $|E| > 1, \% = 37.41$ $|E| > 2, \% = 2.42$ $|E| > 3, \% = 0.0$ # Solution and Refinement of the Structure A set of 181 E's > 1.4 was chosen for the direct structural determination. The origin of the cell in space group $P2_1$ was specified according to Karle and Hauptman (1966) and Hauptman and Fisher (1971) by the means of 3 reflections with high E values. Three other reflections with high E's were picked as starting phases a, b, c for the Σ_2 relationship and tangent formula refinement (Karle and Karle, 1966). All calculations were carried out by Larson and Drew's (1968) 'Tanfor' program. The calculated *E*-map using starting phases listed below revealed the whole structure. | h | k | l | \boldsymbol{E} | phase | symbol | |----------------|---|----|------------------|---------|--------| | $\overline{5}$ | 0 | 5 | 2.56 | 0 | 1 | | 4 | 0 | 7 | 2.28 | 0 | - | | 7 | 1 | 5 | 2.05 | 0 | === | | 6 | 0 | 2 | 2.90 | π | a | | 3 | 3 | 1 | 2.45 | π | b | | $\overline{5}$ | 2 | 10 | 2.28 | $\pi/2$ | С | Six cycles of XFLs (Ellison, 1962) positional leastsquares refinement using 9 atoms in the asymmetric unit decreased the R-value from an initial value of 0.36 to 0.15. The difference Fourier map calculated at this stage confirmed the positions of Li and O(7) (water molecule) which originally showed up in the 'E-map', but had been left out of the refinement. The addition of these to the atom list, together with another 3 cycles of isotropic refinement wherein Al was arbitrarily assigned to the T(3) site, lowered the R value to 0.076. This run, however, produced significantly different temperature factors for the tetrahedral sites T(1), T(2), and T(3), but the calculated mean bond lengths of the tetrahedra indicated that sites T(1) and T(3) are occupied by 0.5 Al + 0.5 Si, while site T(2) is occupied only by Si (Jones, 1968). Therefore a new scattering curve for T(1) and T(3) was calculated from [f(Al) + f(Si)]/2 and a further 3 cycles of isotropic refinement lowered the R value to 0.052, and also reduced the spread of the isotropic temperature factors of the T sites. A summary of this refinement is shown in Table 2. Three additional cycles of full matrix least-squares refinement with anisotropic temperature factors converged to the R value of 0.037 for 824 'observed' reflections and the value of the standard deviation of an observation of unit weight was 1.003. This quantity is given by $[\Sigma w(F_o - F_c)^2/(NO - NV)]^{1/2}$ where w is the weight, F_o and F_c are the observed and calculated structure factors, NO is the number of observed structure factors and NV is the number of parameters varied in the last cycles of the refinement. The weighting scheme used in the refinement was of the form $w = 1/\sigma_{F_0}^2$, where: $$\sigma F_o = 0.0565 F_o - 0.9285 + 9.608/F_o$$. The R value for all 947 reflections was 0.044. An attempt was made to establish the absolute configuration of the structure at the isotropic level (Ibers and Hamilton, 1965), but the results were rather inconclusive. The R values were 0.0480 for the con- TABLE 2. A Summary of the Isotropic Refinement of the Bikitaite Structure | Init: | ial Refi | noment | R=0.076 | Final Refi | nement | R=0.052 | |-------------|----------|--------|-----------|-------------|---------------------|-----------| | Site | Element | B(82) | Av.T-0(8) | Element | в (Å ²) | Av.T-0(8) | | T(1) | Si | 0.66 | 1.676 | 0.5A1+0.5Si | 0.52 | 1.683 | | T(2) | Si | 0.62 | 1.610 | Si | 0.64 | 1.606 | | T(3) | Al | 0.36 | 1.682 | 0.5Al+0.5Si | 0.51 | 1.682 | figuration described in this paper (Table 3) and 0.0481 for the enantiomorph. The anomalous corrections for Si and Al ($\Delta f' = 0.1$, $i\Delta f'' = 0.1$) were taken from Templeton (1962). A final difference Fourier map showed a few spurious peaks of height of about $0.6 \ e/\text{Å}^3$ in an overall background of about $0.3 \ e/\text{Å}^3$. Two peaks, in suitable positions, and approximately 1 Å apart from O(7) were considered to be hydrogen atoms. They were added to the atom list, given isotropic temperature factors of O(7), and positionally refined by one cycle of least-squares. The suggested coordinates of the hydrogen atoms are as follows: H(1) 0.303, 0.334, 0.474 and H(2) = 0.455, 0.163, 0.467. Scattering factors of neutral Si, Al, Li, and O used in the refinement were those reported by Cromer and Mann (1968). All calculations were carried out on IBM 360/65 and 370/165 systems at University TABLE 3. Final Atomic Positional and Thermal Parameters of Bikitaite | | Atom | х | У | z | β _{1 1} | β _{2 2} | β _{3 3} | β _{1 2} | β _{1 3} | β _{2 3} | в (Å ²) | |------|---------------|-------------|--------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------| | T(1) | (0.5Al+0.5Si) | 0.10364(14) | 0.86463(40) | 0.09564(16) | 263(15) | 608 (49) | 410(20) | 14(26) | 188(14) | 13(30) | 0.52(4) | | T(2) | Si | 0.10577(16) | 0.79994 | 0.50849(18) | 254(16) | 715(48) | 358(21) | -36(23) | 91(14) | -26 (25) | 0.64(4) | | T(3) | (0.5A1+0.5Si) | 0.38093(14) | 0.87443(40) | 0.93740(16) | 175(15) | 661 (47) | 359 (20) | -2(26) | 86(14) | 9 (29) | 0.51(4) | | Li | | 0.30409(114 | 0.36460(235) | 0.13412(140) | 669 (124) | 956 (328) | 1345 (183) | -45(218) | 493 (128) | 13(263) | 1.2(2) | | 0(1) | | 0.26662(43) | 0.74342(76) | 0.05003(52) | 339 (45) | 786 (150) | 822 (67) | 13(62) | 217(47) | 45 (77) | 1.08(8) | | 0(2) | | 0.07630(46) | 0.69636(86) | -0.03344(56) | 462 (53) | 957 (142) | 990 (73) | 173(75) | 388 (52) | 109 (89) | 1.22(8) | | 0(3) | | 0.15760(46) | 0.82766(97) | 0.33043(47) | 656 (49) | 2274 (195) | 455 (56) | 27 (88) | 293 (45) | 157(89) | 1.34(8) | | 0(4) | | 0.05937(50) | 0.48682(90) | 0.52684(66) | 465 (52) | 709 (142) | 1551(92) | -46 (72) | 430 (60) | 125(100) | 1.09(8) | | 0(5) | | 0.26459(43) | 0.89502(96) | 0.69869(43) | 485 (47) | 1770 (162) | 329 (55) | -171(82) | -50 (40) | -20 (88) | 1.22(7) | | 0(6) | | 0.55519(44) | 0.68878(83) | 0.97699(50) | 341 (48) | 1027(143) | 726 (67) | -7(71) | 306 (46) | -12(82) | 1.14(8) | | 0(7) | water | 0.40402(57) | 0.32446(114) | 0.42167(70) | 883 (64) | 2326 (254) | 1777(99) | -22(106) | 385 (67) | 211(129) | 2.3(1) | The values of x,y, and z are given in fractional coordinates, the anisotropic temperature factor (x10⁵) is of the form: $\exp\left[-(h^2\beta_{11} + k^2\beta_{22} + k^2\beta_{33} + 2hk\beta_{12} + 2hk\beta_{13} + 2kk\beta_{23})\right]$ calculated standard deviations in parentheses. of Toronto Computer Center. The positional and thermal parameters of the structure with their standard deviations are shown in Table 3. All important bond lengths and angles and their standard deviations as calculated by ORFFE (1964) program are given in Table 4. A comparison of the observed and calculated structure factors (10 $F_{\rm o}$, 10 $F_{\rm c}$) and the phase angle α are listed in Table 5. ## **Description of the Structure** The structure, which is of a framework type, consists of infinite zig-zag chains of SiO₄ and (Si,Al)O₄ TABLE 4. Important Bond Lengths and Angles in Bikitaite | T(1)0, Tet | rahedron | T(3)0, Tet | rahedron | |--|--|--|---| | T(1)-0(1)
-0(2) | 1.690(4) A
1.674(4) | T(3)-0(1)
-0(5) | 1.680(4) Å
1.674(3) | | -0(2')
-0(3) | 1.702(4)
1.657(3) | -0(6)
-0(6') | 1.678(4) | | Mean | 1.681 Å | Mean | 1.681 Å | | T(2)0 ₄ Tet | rahedron | LiO3H2O Te | trahedron | | T(2)-0(3)
-0(4)
-0(4')
-0(5) | 1.597(4) Å
1.625(4)
1.624(4)
1.596(4) | Li-0(1)
-0(2')
-0(6')
-0(7)w | 1.968(12)A
1.973(10)
1.946(10)
2.000(11) | | Mean | 1.610 Å | Mean | 1.972 Å | | | 0(7)-0(7') water
0(7)-0(3')
0(7)-0(3) | -water 2.950(8) Å 3.137(6) 3.163(6) | | | Angles | at T(1) | Angles at | т(3) | | 0(1)-T(1)-0(
0(2)-T(1)-0(
0(3)-T(1)-0(| 3) 110.8(2) | 0(5)-T(3)-0(6)
0(5)-T(3)-0(1)
0(1)-T(3)-0(6) | 108.5(2)°
111.2(2)
111.4(2) | | 0(1)-T(1)-0(
0(2)-T(1)-0(
0(3)-T(1)-0(| 2') 109.4(2) | O(5)-T(3)-O(6') O(1)-T(3)-O(6') O(6)-T(3)-O(6') | 108.3(2)
109.2(2)
108.2(2) | | Mean | 109.5° | Mean | 109.5° | | Angle | s at T(2) | Angles at | Li | | O(3)-T(2)-O(
O(4)-T(2)-O(
O(5)-T(2)-O(| 5) 110.8(2) | 0(6')-Li-0(2')
0(2')-Li-0(7)w
0(7)w-Li-0(6') | 109.9(4)°
106.9(4)
111.5(4) | | 0(3)-T(2)-0(
0(4)-T(2)-0(
0(5)-T(2)-0(| 4') 109.3(2) | 0(6')-Li-0(1)
0(2')-Li-0(1)
0(7)w-Li-0(1) | 109.6(4)
106.0(4)
112.9(4) | | Mean | 109.5° | Mean | 109.5° | | T(1)-O(1)-T(
T(1)-O(3)-T(
T(2)-O(5)-T(| 2) 150.4(3) | T(1)-0(2)-T(1) T(2)-0(4)-T(2) T(3)-0(6)-T(3) | 129.3(3)° 139.6(3) 134.4(3) | ^{*} Calculated standard deviations, in parentheses, are given in terms of the last decimal place cited. tetrahedra extending along two-fold screw axes parallel to the y-axis. These chains of tetrahedra are joined together to form large and small channels parallel to the y-axis. All T sites are tetrahedrally coordinated by four oxygen atoms and the resulting tetrahedra are linked together by sharing corners with equivalent tetrahedra in the y direction and with non-equivalent tetrahedra in the other directions. Since the 2_1 axis at 1/2, y, 1/2 is not occupied by any chain, the whole network forms one large channel centered on 1/2, y, 1/2 in which the Li atoms and H2O molecules are located. Four smaller empty channels surround the large channel, so that for every large channel there are two small channels in the unit cell. The cross section of the large channel is about 5.5×6.5 Å and the diameter of the small channels is approximately 4 Å. Figure 1 is a three-dimensional view of the structure as plotted by the ORTEP (1965) program and Figure 2, which is a projection of the structure along the y axis, shows the distribution of the channels in bikitaite. Part of the structure projected along z is shown in Figure 3. Each lithium atom is tetrahedrally coordinated by three oxygen atoms and a water molecule in such a way that only oxygens from Al-rich T(1) and T(3) tetrahedra participate in this bonding. This configuration maintains the charge balance of the structure. The Li-O bond lengths vary from 1.946 to 2.000 Å with an average length of 1.972 Å, which is in agreement with the average value of 1.974 Å found for this bond in LiOH·H2O (Agron, Busing and Levy, 1972) and with the value of 1.98 Å given for tetrahedrally coordinated lithium compounds (Ondik and Smith, 1962). The water molecules in the structure are held in the large channel mainly by the longest coordination bonds in the LiO4 tetrahedra (2.000 Å), but weak hydrogen bonding also is expected between the water molecules themselves. The O(7)–O(7') distance (water–water) is 2.95 Å, the hydrogen atom H(2') being 0.91 Å from O(7')and forming an $O(7) \dots H(2') - O(7')$ angle of 173° . No contacts closer than 3.14 Å [O(3)-O(7)]exist between the water oxygen and the rest of the silicate structure. Such a situation is not unknown (Baur, 1964, 1972; Hamilton and Ibers, 1968) and the hydrogen bonding of H(1) can be explained by extremely weak or bifurcated hydrogen bonds. Valence sum calculations carried out on the structure (Donnay, personal communication, 1972) and assuming no hydrogen bond for H(1) indicated that The symbol w indicates oxygen of water molecule. | - | | 1 | ABLE 5. Obsi | erved and | Calcu | lated Structure | Fac | | kitai | | | | _ | |---|--|--|--|---|---|--|---|---|--|---|---|--|--| | L FO FC | ALPHA L FO
E 16
4 42
2 Hr -E, | FC ALPHA 9 127 41 861 K= 3 | FO FC 4 73 75 5 74 72 6 390 38 | ALPHA 1
151
738 1 31
435 2 1 | 298
178 17
10 101
158 36 | ALPHA L FO FC 10 162 183 1 467 He -1, K- 1 486 0 1 173 162 503 2 89 84 | AL PHA
3 | H= 1, K= 2
0 108 91
1 156 141 | 739
92
848
134 | L FO FC 5 168 168 6 128 130 7 140 140 H= 3, K= 4 | 269
504
305 | L F0 FC 0 131 130 1 217 224 2 176 174 3 75 72 4 300 31 5 110 110 6 76 59 | 600
95
592
6
547
54 | | 1 93 86
91 87
3 144 3
3 394 41
5 175 174
6 131 134
7 214 211 | 1 127
1 127
3 175
575 164
502 185
503 137
502 74
503 74 | 113 711
127 264
176 447
167 324
187 390
137 325
72 527 | 1 170 170
2 112 109
3 196 197
455 -1, As D
1 64 43
2 91 78 | 658
778 8 | 7 101
2 46
17 160
17 30 | 503 2 89 84
502 3 168 180
504 149 151
506 3 381 385
502 6 314 18
997 130 128
1 23 18
3 36 33 | 293
82
127
110
166
82
992
641 | 4 114 120
5 135 134
6 126 130
7 116 125
8 157 161
H= 1, K= 3 | 844
4
728
901
745 | 0 77 75
1 78 78
2 33* 20
3 39* 33
4 29* 17
5 92 94
6 87 82 | 693
164
571
60
429
252
557 | H= 6, K= 2
0 187 188
1 104 102
2 131 134 | 137
797
858
738
752
752 | | # 64 61
H= -11, K= 1
1 54 51
2 129 130 | 501 H - H 36
1 36
2 69
607 3 71
571 4 133
120 5 127
504 89
131 7 49 | 26 354
65 178
66 988
131 96
123 11
82 100
44 142 | 1 64 43
2 91 78
3 404 406
4 270 12
5 484 491
6 105 109
7 129 121
8 80 75
9 420 41
10 177 171 | 998
1 | 9 61 | 742 H= -1, K= 2
743
927 1 1.72 100
674 2 62 22
28 3 111 110
165 4 171 177
83 5 267 283
465 6 119 108
89 7 144 146
521 8 8 79
72 70 | 439
763
402
415
225
513
214
583 | 0 333 321
1 250 254
2 260 261
3 278 290
4 198 209
5 138 141
6 94 93
7 150 152
8 102 102 | 783
872
789
898
776
197
605
229 | N= 3, K= 5 0 157 160 1 86 86 2 89 87 3 89 88 4 174 170 5 106 105 | 458
608
305
91
153
37 | H= 6, K= 3 | 103 | | H= -11, K= 3 | 263
159 H= -8, 0 | 44 142
5 5 642
91 290
65 878
159 167
86 943 | H# =5. K= 1 | 730 H- 3, 731 679 1 21665 7 2 16676 7 3 16735 1 16893 5 11 | K+ 2 | 9 72 70 | 867 | H= 1, K= 4
0 135 132 | 135 | 0 69 66
1 50 47
2 64 57
3 86 81 | 341
626
427
547 | 1 73 75
2 150 147
3 52 46
4 92 91
5 444 43
H= 6, K= 4
0 33= 28
1 95 93
2 145 144 | 768
174
539
102
718 | | 1 43* 45
4 58 60
5 158 157
6 98 98 | 306 #= -7. | 20 510 | 1 125 117
2 55 39
3 326 332
4 143 145
5 197 204
6 71 69
7 69 71
8 444 43
9 133 132
10 23° 10 | 735 1 10
735 1 10
893 5 11
108 6 23
61 7 14
34 6 16 | 1 110 | 671 26 1 86 82 502 2 183 186 972 3 130 132 408 4 183 192 207 5 212 219 287 6 83 82 247 7 57 51 250 8 20* 15 351 8 66 | 716
22
808
910
844
975
733
88
326 | 0 135 132
1 122 126
2 141 146
3 51 45
4 54 42
6 108 109
7 102 105 | 644
133
714
243
592
317
557 | H= 4, K= 0
0 417 413
1 31° 10
2 509 513
3 63 51
4 72 71 | 502
967
501
1
503 | 3 128 125
4 132 127
H* 6, K* 5 | 237
531
384
485 | | 2 147 151
1 73 84
4 25 15
5 98 102
6 91 94
7 135 138
8 39* 33
1 105 105 | 2 177
4 1 6
6 4 28
500 5 68
21 6 110
501 7 256
499 8 55
503 7 117
1 10 200 | 173 501
5 995
30 1
66 6
112 3
260 2
58 5
116 3 | 1 37° 28
2 133 127
3 295 294
4 88 84
5 343 352
6 51 38
8 157 155 | 390 H= -2, | K+ 3 | Ha -1, Ka 4
404 1 55 62
335 2 107 115 | 452
32
703
62
846
56
825 | 0 75 68
1 160 158
2 109 109
3 171 167
4 53 53
5 41* 38
6 88 88 | 559
622
575
619
492
880
205 | 5 160 L61
6 47 8
7 227 231
H= 4, K= 1 | 17
3 | 1 55 52
2 112 109
He 7, K= 0
0 390 14 | 373
740 | | Hx -105 A= 1
1 96 98
2 79 77
2 98 99
4 37* 55
5 40* 60
6 82 80 | Ma -7, 1 | 1 145 78
307 76
62 655
206 42
259 630 | H= +5, K= 3 | 184 11 -3. | | 756
Ha -1, K* 5 | 127 | # 1. K 5
100 95
1 86 84
1 120 119
1 41* 31
4 67 63 | 860
365
813
474
735 | 0 148 143
1 73 72
2 155 149
3 70 71
4 61 61
5 97 101
6 82 91
7 67 61 | 546
987
142
848
84
82
95 | 4 51 54
5 15° 16
H= 7, K= 1 | 502
501
999
500
509 | | 8 140 132
H= -10, K= 2 | 631 8 394
626 9 108
10 88 | 307 76
62 655
206 42
259 630
75 5
145 626
36 918
103 587
82 91 | 1 84 76
2 193 200
3 220 231
4 237 251
5 170 175
6 124 129
7 70 60
8 44* 44
9 84 79 | 282
364 12
323 2
336 3
355 6
504 5
97 6 12
724 7 | 7 128
6* 35
5 77
6 66
9* 35
2 132
8 58
3 102 | 1 75 74 408 2 143 149 653 3 115 117 410 184 187 678 1 128 126 263 6 115 112 918 7 35* 30 917 946 H14 F* 6 | 359
654
504
624
567
687
412 | H= 2, K= 0 0 118 109 1 244 232 2 40* 5 3 269 283 4 293 306 5 17* 2 6 82 81 7 15* 8 | 2
501
914
502
502
747
502 | 0 384 383
1 219 214
2 391 399
3 70 64
68 66
1 132 129
6 102 94
7 193 189 | 193
406
209
468
13
678
874 | 1 116 110
2 161 170
3 110 103
4 47 30
5 189 195 | 633
563
65
301
97 | | 2 207 210
3 149 150
4 55 98
5 133 132
7 32* 26
7 119 117
6 69 68 | 710 1 69
973 1 25
720 1 335
7 4 55
355 60
78 6 117
628 7 214
83 | 69 162
128 763
30 122
54 843
58 794
119 789
213 722
81 871
94 644 | 1 74 77
2 148 154
3 118 122
4 155 157
5 136 142
5 132 132
7 76 74 | 115
611 1 21
356 1 13
654 1 3
655 1 13
657 3 5
98 5 1 7 | A- 5 | 1 68 71
59 57
74 7 73 73
8 4 131 134
96 5 91 91
781 | 227
805
339
786
468 | H= 2, K= 1 | 11 | 7 193 189
H= 5. K= 3 | 699 | 4 63 67
1 90 87
2 64 65
3 46 38
4 63 65 | 454
235
416
693
350 | | H= -10. K= 3
1 60 5A
2 62 79
3 81 75
4 440 43
5 260 27
5 75 77 | 864 H* -7. 1
822
832 1 128 | 94 644
126 892
104 700
103 145
127 529
180 294 | # 123 124
H= -5, K= 5 | H= −3, | K= 6 | 681
513 1 221 213
2 685 813
3 152 131
4 177 175 | 1
998
0
502
987
503
500
503 | 1 363 349
2 80 75
3 304 302
4 75 50
5 232 242
6 67 23
7 101 105 | 32
477
947
521
597
525
786
466
113 | 0 126 122
1 135 133
2 94 91
3 87 76
4 54 47
3 27 12
6 50 46
H= 4+ K+ 4 | 655
187
477
854
891 | 0 173 175
1 138 136
2 114 112
3 90 91
6 69 62 | 306
439
192
676
990 | | 7 110 10°
N= +9, K= 0
1 107 108 | 326 5 174
6 107
7 93
8 88 | 127 529
180 294
107 441
92 281
86 487
58 187 | 2 42 47
3 50 54
95 96
62 61
64 44 40
7 20 15 | 176
456 Hw -2 | 5 65
0* 37
1 58
2 52
K* D | 96 8 64 52
923 7 83 83
HF 0. K* 1
L 1 54 52
L 2 80 83 | | H= 2, K= 2
0 121 108
1 225 210
2 150 151
3 308 308 | 236 | 0 263 260
1 277 277
2 215 215
1 125 125
94 91
99 93 | 70
907
87
607
304 | 9 29° 26
1 98 95
2 27° 26
3 29° 23
He 7, K° 5 | 136
995
101
98 | | 3 243 248
4 46 45
5 125 128
5 59 49
7 12* 9
6 177 176
9 1 98 | 504 a 62
502 b 7, 503
504 i 84
2 2 56
996 3 3 4 11
3 5 146
7 162
2 2 2 56 | 85 945
55 953
14 961
81 565
63 511
144 512
161 465
121 570 | i 71 73
7 114 116
3 27* 23
4 155 155
H* -4, E* 0 | 728 5 2
291 6 6
86 5 7
259 6 10
6 2
7 10 | 4* 4
0 612
2 73
6 100
6 100
4* 4
5 131
3* 11 | 360 107 104
1 73 65
1 1 82 187
1 64 61
503 7 139 140
974 1 122 117
503 9 65 63
999 | 623
92
413
900
543
614
567
605
459 | 3 308 308
308 308
302 315
86 86
6 97 101
7 33° 39
8 90 86 | 250
231
271
236
337
273
375
697 | 0 31° 30
1 36° 35
2 23° 10
3 65 61
4 43° 31 | 520
978
803
856
861 | 0 91 83
1 168 165
H= 8, K= 0
0 147 153
1 91 84
2 168 170 | 73
165
4
4
4
5 | | 1 69 70
2 142 146
3 61 78
4 147 151
5 61 60
6 30* 17
7 139 130
8 63 61 | 279 163 M= -7, 126 263 174 176 298 34 239 169 570 105 116 108 | r- 5 | 1 41+ 44
22 4+ 3
3 237 229
4 176 172
5 232 236
6 142 140
7 171 134
8 14 6
10 70 67 | 1 1 41
1 2 11
3 3 4
500 4 13 | K= 1
9 401
9 169
9 103 | 0 767 785
73 1 185 161 | 655
427
557
386
377
234
361
181
335 | 0 325 327
1 771 269
2 225 224
3 155 154
4 86 83
5 152 154
6 103 99
7 119 132 | 695
115
697
171
697
163
653
73 | 0 111 105
1 205 201
2 89 82
H= 5. K= 0 | 570
751
616 | 379 35
69 71
H= 8, K= 1
0 86 86
1 104 99
2 73 69 | 646
931
672
22
725 | | # 63 61
9 104 105
M= -9, K= 2
1 130 129
2 95 96
3 246 258 | 116 1 188
592 ± 107
HE -4.1 | 196 501 | 10 70 67
10 70 67
1 156 147
2 130 127
3 260 247
4 101 93 | 7 7 8 19 14 728 10 17 412 32 H= -2, | 1 126
1 261
9 53
4 197
3 137
0 166 | 440 2 335 304
181 119 113
314 162 158
178 319 344
548 128 122
454 7 172 175
566 7 79 75
577 He 0, K= 3 | 361
181
335
117 | H= 2, K= 4
0 42* 24
1 91 88
2 125 121
3 176 177 | 866
773
928
974
944 | 1 107 89
2 275 284
1 49 36
4 118 119
5 56 53
4 176 188
7 41* 21 | 3
501
8
502
5 | 73 69
1 140 143
6 63 41
H= 8, K= 2
0 206 214
1 169 174
2 207 209 | 711
851
690 | | 135 136
5 164 145
6 79 74
7 41° 36
155 152
9 103 99 | 412 4 376
146 5 29
543 6 41
955 7 88
677 8 34
80P 9 126 | | 5 298 300
6 227 235
7 154 157
8 59 33
9 94 98
10 159 157 | 506
77 1 14
131 2 35
74 3 6
212 3 34
70 5 5
593 6 4 | 6 144
6 319
3 46
2 317
4 53
8 39
1 110
5 64
7 114 | 687 2 97 98
748 3 22* 29
680 174 183
701 5 103 104
776 6 70 68
414 7 86 86
284 68 69
313
220 0 K 4 | 733
156
620
313
561
373
454 | 4 200 200
5 56 #3
6 69 65
7 30° 31
H* 2, K* 5 | 998
945
33 | 0 194 191
1 125 120
2 298 309
3 218 218
4 138 145
68 63
6 54 64 | 574
541
614
582
590
608
526 | 9 113 115
H= 4, K= 3
0 120 117
1 123 121
2 114 114
1 72 69 | 256
482
280
596 | | H= -9, K= 3
1 110 114
2 161 167
1 158 158
4 153 154
5 130 127
6 42* 30
7 64 60
4 44* 40 | 911
941 1 164
890 2 163
862 3 311
913 4 63
729 1 156 | K+ 1 | He = 4, K= 2
1 244 239
2 94 92
3 209 205
4 116 105
5 237 250
6 148 144
7 134 138
8 61 56
9 34* 29
10 81 60 | 252 H= ~2, | K= 3 | 9 213 208
1 300 317 | 429
626
144
684
989
868
41
821 | 0 464 163
1 93 94
2 143 142
3 17* 14
4 80 54
5 45* 35 | 331
735
312
183
213
924 | H= 5, R= 2 | 89
772 | H= 8, K= 4 0 133 136 1 116 115 H= 9, k= 0 | 396
538 | | H= -9, K= 4 | 822
139 Ha -6, | | Hr4, 4+ 3 | 830 1 24
636 1 4
852 3 16
686 4 23
974 5 1
625 6 1
61 7 5
9 1 | | 244 H= 0, K= 5 | 255 | 0 94 89
1 25* 4
2 88 85
5 110 106
H= 3, K* 0
0 16* 12 | 994
799
795
759 | H= 5 · K= 3 | 742
950
750
134 | 0 22° 4
1 35° 1
2 96 95
1 67 63 | 442
805
3
503 | | # -8. K> 0 | 109 1 92
848 2 337
151 3 88
4 229
5 56
6 87 | 01 101
346 143
P3 261
234 108
98 736
89 890
129 661
103 866
129 66
129 66 | 1 113 117
2 176 177
3 179 178
4 122 121
5 194 198
1 154 158
7 116 118
7 56 50
78 77 | 176
694
189
2 1
764
1 2
897
4 1
734
5 1
958 | | 433
1 48 50
2 20° 16
3 41° 39
538 111 112
506 5 106 105
552 ft 100 96
443
601 H= 0, K= 6
973 | 221
59
230
80
114 | 1 61 45
2 76 75
3 65 18
4 65 70
5 127 130
6 26* 24
3 94 95
8 86 64 | 504
497
998
12
501
3
498 | 0 30° 18
1 126 123
1 164 165
3 168 166
61 56
5 60 58 | 536
412
412
345
343
463 | 0 65 65
1 100 99
2 110 104
3 137 141
Hs B. Ex 2 | 65
78
117
106 | | 2 103 94
3 10 86
4 160 165
5 224 229
6 116 117
7 82 79
8 68 64
9 36* 27 | 502 H= -6; | 129 642
A6 102 | H= -4, K= 4 | # -2 | K- 5 | 978 1 276 287
2 88 79
3 136 137
5 56 93 | 140
273
52
299
773 | 0 150 152 | 268
395
195
540 | 0 71 73
1 86 82
2 85 84
3 127 124
4 104 102
92 88 | 678
232
611
238
524
254 | 0 75 75
1 R4 81
2 92 93
H= N, K= 3
0 37° 18
1 56 53 | 466
2
610
150
852 | | 1 113 114
7 156 160
3 225 231 | 531 7 1+2
101 8 106
602 9 97 | 182 385
82 319
44 331
64 186
11 869
140 912
106 884 | H= -4, K= 5 | H= -2. | 0 121
14# 9
18 114 | A62 He 1, K= 0
A05
A05
A06
A07
A07
A07
A07
A07
A07
A07
A07 | 1
501
475
501
4
501
4
494
3 | 1 345 319
7 109 95
3 320 352
4 200 201
5 220 224
6 82 74
7 172 177
8 75 74 | 540
634
566
728
599
29 | 79 76
1 184 183
2 150 147
3 171 167 | 5
143
120
106 | 0 56 55
0 10, K= 0 | 245 | | 7 156 160
3 227 71
4 75 71
5 2C3 207
7 76
7 169 192
8 152 152
9 42 26
10 198 196 | 643 HT - A. 753 667 1 155 37 1 128 988 1 216 70 4 61 5 103 6 63 7 94 663 8 68 | 155 93
127 917
219 124
57 672
103 258
64 445
96 316
85 583 | 1 47 48
2 93 94
1 199 18
8 88 87
5 65 65
6 129 127
7 39° 35 | 874 2 11
307 3 11
802 4 11
578 5 11
658
491 He -1 | | 293 Mm 1, K= L | 100
146
95
154
92 | 0 135 124
1 83 77
2 113 110
3 72 67
4 50 41
3 127 143
6 99 99 | 957
530
795
786
889
699
875
697 | 0 44* 42
1 86 85
H* 6, K* 0 | 383
763
501 | 0 112 110
1 38° 39
H= 10. K= 1
0 63 62
1 67 70
H= 10, K= 2 | 502
627
599 | | 1 106 107
2 48 29
3 53 89
4 69 67
5 142 139
6 420 33
7 424 32 | 7 94
863 88
603
9 Hx -h.
318
165 1 52
220 2 163
24 3 45 | Ex 5 | 1 149 146
7 370 28
3 350 26
4 119 117
5 49 46
H= -3, K= 0 | 734 3
278 4 12
448 5 3
238 6 11
165 7 16 | 2 168
22 230
17 36
11 116
11 327
16 162
16 167
19 110
17 40 | 0 555 547 501 2 161 174 1 3 416 420 511 4 189 196 0 5 195 208 502 6 54 39 0 7 198 199 502 8 109 109 3 8 133 135 | 154
92
541
864
562
660
581 | H= 3, R= 3
0 420 424
1 258 262
2 239 243
3 160 162
4 156 155 | 803
985
769
237
484 | 0 379 403
1 54 60
2 330 31
3 222 226
4 84 77
5 177 182
6 85 80 | 497 | 0 152 150
1 76 73
H= 11. K= 0 | 691
983 | ^{** 10} F_{o} and 10 $F_{\text{c}}.$ Unobserved reflections marked by*, phase angle alpha in millicycles. Fig. 1. A three-dimensional view of the bikitaite structure. Plotted with the ORTEP program, ellipsoids are drawn at 60 percent probability. all valence sums fall within the expected limits except O(7) which has a residual charge of ≈ 0.24 v.u., a value which suggests that O(7) must participate in weak hydrogen bonding with either O(3) or O(4) or both. Clarification of the hydrogen bonding in bikitaite must await the results of a neutron diffraction study of the mineral. A thermogravimetric analysis of the mineral failed to reproduce the three-stage dehydration curve described by Phinney and Stewart (1961), who suggested that the water molecules were located at two different sites in the crystal structure. Figure 4 shows the DTA and TGA data which indicate a one-stage dehydration which is consistent with the crystal structure here described. The Si/Al contents of the tetrahedra as predicted from bond lengths according to the linear model of Jones (1968) are $Si_{1.0}$ for T(2), and $Si_{0.5}Al_{0.5}$ for both T(1) and T(3). This curious combination of perfect order and perfect disorder is completely consistent with the chemical formula, and leads to some interesting observations. The oxygens of the T(2) tetrahedron are all in 2-fold coordination, forming bridges to T(1) or T(3) tetrahedra. On the other hand, in the T(1) and T(3) tetrahedra three of the oxygens are in planar 3-fold coordination, having a link to Li as well as to the adjacent $Al_{0.5}Si_{0.5}$. The Li^+ thus provides the necessary charge balance, as mentioned above, and in this way the structure forces both T(1) and T(3) cations to have an equal Fig. 2. The bikitaite structure projected along the y axis. The shaded tetrahedra, at $b \ge 1/2$ share corners with the unshaded tetrahedra at $b \le 1/2$. The apparent tetrahedral edge-sharing is an illusion of the projection (see Fig. 3). H_2O is shown as large circles, Li as small circles occupying the large channels in the structure. The z-axis is parallel to the shaded tetrahedral "chains", the x-axis is horizontal. charge which must be less than 4+ and can only be attained by complete disorder of the remaining Si and Al. It is perhaps instructive to tabulate the mean bond lengths of the bridging oxygens between the various types of tetrahedra, and to compare with similar types in low albite (Ribbe et al, 1969) and maximum microcline (Brown and Bailey, 1964). Fig. 3. Part of the bikitaite structure projected on the z-axis from c=+1/3 to c=-1/3. Only the tetrahedra are shown. The y-axis is vertical and the x-axis is horizontal. FIG. 4. Differential thermal analysis and dehydration curve of bikitaite. Initial sample weight = 0.8344 g, heating rate 5°C/min. Both DTA and TG curves taken simultaneously on the "Derivatograph" (Orion, Budapest). | | Bikitaite | Low Albite | Max.
Microcline | |--|-----------|------------|--------------------| | Si-O(→Al) | _ | 1.596Å | 1.588Å | | $Si-O(\rightarrow Al_{0.5}Si_{0.5})$ | 1.597Å | - | _ | | Si-O(→Si) | 1.625Å | 1.621Å | 1.624Å | | $Al_{0.5}Si_{0.5}-O(\rightarrow Si)$ | 1.666Å | | | | $Al_{0,5}Si_{0,5}-O(\rightarrow Al_{0,5}Si_{0,5})$ | 1.686Å | _ | | The asymmetrical positioning of oxygen with respect to Si and $Al_{0.5}Si_{0.5}$ is to be expected, but a further asymmetry exists in the $Al_{0.5}Si_{0.5}$ —O— $Al_{0.5}Si_{0.5}$ linkage which is less easily explained. In this case the mean length of one arm of the arrangement is 1.678Å, the other 1.696Å. The influence of the Li on the O position is negligible. This is so because in the cases of the coordination triangle of both O(1) and O(2), the *T*-cation which is further from O is closer to Li; only in the case of O(6) is one *T*-cation closer to both Li and O together. Perhaps some asymmetry in the sp^2 hybridization of oxygen is responsible, but beyond this the authors feel unable to comment. ### Acknowledgments The authors would like to thank Professor Gabrielle Donnay for her interest in this study, as well as her comments and valence sum calculations. We are also indebted to Dr. Klaus Dichmann from Department of Chemistry, University of Toronto, for valuable discussions concerning the weighting analysis. The study was supported by a grant from National Research Council of Canada. #### References - AGRON, P. A., W. R. BUSING, AND H. A. LEVY (1972) A neutron diffraction study of LiOH·H₂O. A.C.A. Winter Meeting, University of New Mexico, Albuquerque, N.M., p. 52. - APPLEMAN, D. E. (1960) The crystal structure of bikitaite LiAlSi₂O₆H₂O (abstr.). Acta Crystallogr. 13, 1002. - BAUR, W. (1964) On the crystal chemistry of salt hydrates, a neutron diffraction study of magnesium sulfate tetrahydrate. *Acta Crystallogr.* 17, 863–869. - (1972) Prediction of hydrogen bonds and hydrogen atom positions in crystalline solids. Acta Crystallogr. B28, 1456-1465. - Brown, B. E., and S. W. Balley (1964) The structure of maximum microcline. *Acta Crystallogr.* 17, 1391-1400. - CROMER, D. T., AND J. B. MANN (1968) X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Crystallogr. A24, 321-324. - DRYSDALE, D. J. (1971) A synthesis of bikitaite. Amer. Mineral. 56, 1718-1723. - ELLISON, R. D. (1962) XFLS—an extensively modified version of ORFLS. U.S. Nat. Tech. Inform. Serv. ORNL-TM-305. - HAMILTON, W. C., AND J. A. IBERS (1968) Hydrogen Bonding in Solids. Benjamin, N.Y. - HAUPTMAN, H., AND J. FISHER (1971) Phase determination by least-squares analysis of structure invariants. *Acta Crystallogr.* **B27**, 1550–1561. - HURLBUT, C. S., JR. (1957) Bikitaite LiAlSi₂O₆·H₂O, a new mineral from Southern Rhodesia. Amer. Mineral. 42, 792-797. - (1958) Additional data on bikitaite. Amer. Mineral. 43, 768-770. - IBERS, J., AND C. HAMILTON (1964) Dispersion corrections and crystal structure refinements. Acta Crystallogr. 17, 781-782. - JONES, J. B. (1968) Al-O and Si-O tetrahedral distances in aluminosilicate framework structures. Acta Crystallogr. B24, 355-358. - KARLE, I. L., AND J. KARLE (1966) An application of the symbolic addition procedure to space group P2, and the structure of the alkaloid panamine C₂₉H₃₃N₃. Acta Crystallogr. 21, 860–868. - Karle, J., and H. Hauptman (1966) Structure invariants and semi-invariants for non-centrosymmetric space groups. *Acta Crystallogr.* **21**, 849–859. - LARSON, A. C., AND M. DREW (1968) Tanfor, a program for investigating phase relationships and tangent formula refinement in non-centrosymmetric crystals. Lawrence Radiation Laboratory, University of California, Berkeley, California, 94720. (Second version extensively modified by S. Motherwell.) - LEAVENS, P. B., C. S. HURLBUT, JR., AND J. A. NELSON 1956) Eucryptite and bikitaite from King's Mountain, North Carolina. *Amer. Mineral.* 53, 1202-1207. - Ondik, H., and D. Smith (1962) Interatomic distances in inorganic compounds. *International Tables for X-ray Crystallography*, Vol. III, Kynoch Press, pp. 213-215. - ORFFE (1962) A Fortran crystallographic function and error program. Oak Ridge Nat. Lab. Rep. TM-306. - ORTEP (1965) A Fortran thermal-ellipsoid plot program for crystal structure illustrations. Oak Ridge Nat. Lab. Rep. 3794. - PHINNEY, W. C., AND D. B. STEWART (1961) Some physical properties of bikitaite and its dehydration and decomposition products. U.S. Geol. Surv. Prof. Pap. 424, 353-357. - RIBBE, P. H., H. D. MEGAW, AND W. H. TAYLOR (1969) The albite structures. Acta Crystallogr. B25, 1503-1518. - RUCKLIDGE, J. C., AND E. L. GASPARRINI (1969) A computer program for processing electron microprobe analytical data. Department of Geology, University of Toronto. - Templeton, D. H. (1962) Dispersion corrections for atomic scattering factors. *International Tables for X-ray Crystallography*, Vol. III, Kynoch Press, pp. 213–215. Manuscript received, October 30, 1972; accepted for publication, August 13, 1973.