NEW MINERAL NAMES—
Doubtful species, varieties, etc.

FAMILY 4. OXIDES, ETC.

Chromohercynite.

Name: From the composition, chromite plus hercynite.

Physical Properties: Color black; luster vitreous; sp. gr. 4.415.

Chemical Properties: An isomorphous mixture of chromite and hercynite in equimolecular proportions, essentially FeCr$_2$O$_4$, FeAl$_2$O$_4$, with some replacement of the Fe by Mg. Analysis gave: Cr$_2$O$_3$ 38.64, Al$_2$O$_3$ 27.12, Fe$_2$O$_3$ 0.61, FeO 27.00, MnO 1.10, MgO 5.33, SiO$_2$ 0.28, H$_2$O 0.25, sum 100.33 per cent.

Discussion: [May be classed as a subspecies or variety of hercynite or iron-spinel.]

E. T. W.

FAMILY 5. CARBONATES, ETC.

Patagosite

Name: From the Greek *patagios*, which means, rhetorically, an explosion.

Properties: Shows rhombohedral cleavage, and on solution in acid leaves a dark colored residue of organic nature. Characterized by exploding violently on heating.

Discussion: [At least 50 other minerals are known to explode on heating, in occasional specimens. If some young mineralogist is looking for a job, he can work up a name for each of these instances. Whether this will lead to his becoming famous, or to violent explosions on the part of other mineralogists, we will not venture to predict.]

E. T. W.

FAMILY 7. PHOSPHATES, ETC.

Acid aluminium phosphate.

Physical Properties: Color white to slightly yellowish; amorphous, soft.

Chemical Properties: Insoluble in acids, but half the P$_2$O$_5$ is soluble in NH$_4$OH. Analysis of “selected samples” gave the ratio Al$_2$O$_3$: 2P$_2$O$_5$: 8H$_2$O.

Discussion: [This is obviously a colloidal adsorption product of indefinite composition, and should not be given a species name or classed as a definite mineral.]

E. T. W.

Duftitite

Name: In honor of Mining Councilor G. Dufl, Director of the Otavi Mine and Railroad Co.
Physical Properties: Color olive green to grayish green; in aggregates of small crystals with curved, rough faces. Sp. gr. = 6.19; H = 3.

Chemical Properties: Before the blowpipe decrepitates and gives tests for As and Pb. Readily soluble in acids. Analysis gave: PbO 50.10, CuO 19.32, ZnO 0.46, CaO 0.75, As₂O₃ 26.01, H₂O − 0.08, H₂O + 2.65, SiO₂ 0.44, sum 99.81 per cent. This is thought to correspond to 2Pb₃(AsO₄)₄ : Cu₉(AsO₄)₃ : 4Cu(OH)₃.

Occurrence. Occurs associated with azurite crystals and coated with bauxite-like material, on a specimen brought back from the Tsumeb region in 1911 by the late mining engineer Zeleny.

Discussion: [This may be a member of the olivenite group, but until better data are obtained, it is to be retained in the doubtful class. At any rate the formula corresponding to the analysis is evidently simply PbCu(OH)(AsO₄).]

ABSTRACTS—CRYSTALLOGRAPHY

Comprises crystallographic descriptions of a parallel-growth of calcite from Garta, Arendal, with one new form (19.120.0); a quartz hetero-twin after the Zinnwald law from Offerdalen, Jämtland; and colorless tetrahedrons of sphalerite from Slättberg, Dalarn, Sweden.

A detailed crystallographic description. Deviations from the theoretical twinning position are considered, and found to amount to up to 15°, there being proportionality between amount of deviation and number of observations.

Inesite is described from Langban in tabular crystals with a, b, and f the dominant forms. Apophyllite from the Dannemora mines is in tabular crystals with a number of modifying forms.

The system is monoclinic; crystallographic data are given.

Continuation of discussion; compare Am. Min., 4 (8), 103, and 5 (7), 139.

A mathematical discussion, in which the so-called law of Curie is questioned.