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Abstract

The crystal structure of SrALSi.Os with a celsian
to R = 0.047 by full-matrix least-squares methods using 1058 ‘@’

-type framework structure has been refined
-type (h + k even, I even)

and 258 much weaker ‘b-type reflections (k& -+ k odd, I odd). The cell parameters are a =
8.388 (3), b = 12.974 (4), c = 14.263 (6) A, 8 = 115.2 (1)°; the space group is I2/c.

This compound was synthesized in a Verneuil furnace
SrCO;, Si0;, and AlO; and shows a partially disordered
distances, 7.0 = 1.626, T.z = 1.630, Th.z = 1.732, and T:0

from a stoichiometric mixture of
Al/Si distribution. The mean -0
— 1.735 A, when compared with

the grand mean Si-O bond length of 1.614 A and Al-O bond length of 1.747 A in ordered
primitive anorthite, indicate approximately 10 percent Al in the Si-rich and 10 percent Si in the

Al-rich sites of this compound.

The Sr atom can be considered to be 7-coordinated, (Sr-O)
se values are both 0.03 A shorter than those reported by Grundy and

(Sr—0) = 2.786 A. The

Ito (1974) for a highly disordered, synthetic (StosNao os[To 1) Alx 751z 5Os

— 2.691 A, or 9-coordinated,

(space group C2/m).

Using the 7-coordinated model, there is a positive correlation of mean T-O distances to 2-, 3-,
and 4-coordinated oxygen atoms and the parameter, >~ [1/(Sr-0)3, which is the sum of the inverse

squares of the Sr-O distances to these oxygens:

Mean
C.N.(0) 2 [1/(8r-0)1
2 0
3 0.137
4 0.287
Introduction

Although refinements have been published of the
rubidium analog of sanidine, RbAlSizOs (Gasparin,
1971), and of the rubidium-iron analog of micro-
cline, RbFeSi;Os (Brunton, Harris, and Kopp,
1972), the crystal structures of synthetic analogs
of feldspars have been largely neglected until re-
cently. Bruno, Calleri, and Chiari (1973) reported
a preliminary refinement of a partially disordered
SrAl,Si-Os, the strontium analog of celsian, which
is the subject of this paper. This material was crys-
tallized in a Verneuil furnace from a stoichiometric
mixture of SrCOs;, SiOs, and AlLO; (Bruno and
Gazzoni, 1970). Its space group is I2/c: only ‘@

111

Mean Mean
Si-O Al-O
1.610 A 1.724 ;}
1.632A 1.734A
1.644 A 1.755 A

(h + k even, I even) and ‘> (h + k odd, I odd)
reflections were observed in X-ray photographs
exposed for 72 hours.

Grundy and Ito (1974) have refined the struc-
ture of a highly disordered, synthetic feldspar,

(h + k odd, I even) reflections, indicating a prim-
itive space group and quite possibly a more highly
ordered Al/Si arrangement than that observed in
our 12/c SrAl;SixOs.
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Kroll and Phillips in Miinster and Calleri and
Gazzoni in Torino are studying independently the
crystal structures of feldspar and paracelsian analogs
in the systems (Ca,Sr,Ba)[Al,Si,O5]—(Ca,Sr,Ba)
[GasSisOz] and (Ca,Sr,Ba)[Al,Ge.Og]-(Ca,Sr,Ba)
[GayGesOg). A clear picture of the crystal chemistry
of M*'Ty* 3 Ty5Qg framework structures should
emerge, when the results of these analyses are com-
bined with those from recent and present investiga-
tions of anorthite (Wainwright and Starkey, 1971),
paracelsian—BaAl,Si,Oy (Craig, Louisnathan, and
Gibbs, 1973), its Sr analog—slawsonite (Griffen,
personal communication), danburite—CaB,Si,Oq
(Phillips, Gibbs, and Ribbe, 1974), hurlbutite—
CaBe;P,05 (Lindbloom, Gibbs, and Ribbe, 1974),
celsian—BaAl:SisOy (Griffen, personal communica-
tion), and C2/m and I2/c¢c modifications of
PbAl,Si,Og (Chiari et al, in preparation). For an
analysis of the feldspar structural data accumulated
through 1972, see Ribbe, Phillips, and Gibbs
(1974) and the more recent review by Bruno and
Facchinelli (1974).

Experimental Methods

The single crystal of SrAl,Si,Og used in this struc-
tural investigation was first studied by Bruno and
Gazzoni (1970) who determined the lattice param-
eters by calibrated Weissenberg methods (Table 1).
Bruno, Calleri, and Chiari (1973) reported the
results of a preliminary crystal structure refinement
using intensity data collected on a General Electric
3-circle diffractometer (CuK« radiation) at Torino.
The 768 strong ‘@’ and 197 weak ‘b’ reflections were
measured at different scan rates to take into account

TaBLE 1. Comparison of Unit Cell Parameters and Chemical
Composition of Two Synthetic Strontium Feldspars

Grundy & Ito (1974) This Paper

CELL PARAMETER

a (&) 8.328 8.388

b (R) 12.980 12.974

e (R) 7.136 2x7.132

8 115.6° 115.2°

Volume (33) 695.7 2x702.2

z 4 8

Space group Cc2/m I2/c
COMPOSITION

Formula StgNagl 1 1381y goS%, 9905 STAL,SinOq

Al/si 0.738 1.000

Al/(Al+Si) 0.425 0.500

Calc. density 2.98 g/cc 3.08 g/cc

the large difference in their average intensity, and
for that reason separate scale factors had to be
applied to these data. Although an isotropic refine-
ment of the “average” structure in space group
C2/m converged to R = 0.10 and a partial aniso-
tropic refinement in space group I2/c converged
to R = 0.058, yielding mean T-O distances of
1.626 A for Si-rich and 1.739 A for the Al-rich
tetrahedra, the correlation matrix indicated strong
interactions, especially between the scale factor of
the ‘b’ reflections and the y coordinate of the Sr
atom. As a result the thermal ellipsoids of several
oxygens became non-positive definite.

For these reasons a new set of intensity data were
collected at Pavia University from the same crystal
on a Philips 4-circle diffractometer using graphite-
monochromatized Mo radiation and a #-26 step-scan
procedure. Both ‘@’ and ‘b’ reflections were kept
on the same scale, but the weak ‘b’ reflections were
scanned eight times and then averaged to give im-
proved precision. There were 1058 ‘@’ and 258 ‘b’
reflections whose intensities exceeded 3¢. These
data were reduced in the conventional manner, al-
though no absorption correction was applied. The
crystal dimensions are 0.2 X 0.04 X 0.1 mm normal
to {100}, {010}, and {001} respectively; » = 86.3
cm™,

Structure Refinement

Assuming C2/m symmetry (¢ ~ 7 A; Fig. la)
and using the atomic coordinates of celsian (Newn-
ham and Megaw, 1960, Table 5), we initially re-
fined the 8-atom average structure of SrAl,Si;Og
to R = 0.089 with only the ‘@’ reflections. We con-
tinued the refinement in the true I2/c¢ space group
(c ~ 14 A; Fig. 1b) by including the ‘b’ reflections
and introducing atomic coordinate shifts equivalent
to those of I2/c¢ celsian (Newnham and Megaw,
1960, Table 8). The Sr, O4(1), and O4(2) atoms
were thus moved from special to general positions,
and the three other oxygens and two tetrahedral
atoms were ‘“‘split” to account for the doubling of
the ¢ axis and change in space group.

Routine refinements of isotropic and anisotropic
models were carried out to R = 0.058 using the
full-matrix least-squares program ORFLS (Busing,
Martin, and Levy, 1962). On the assumption that
the more intense reflections were affected by sec-
ondary extinction, several additional cycles of
anisotropic refinement were run, omitting those
reflections with |F,ns| > 100. The significant im-
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FIG. 1. (a) Symmetry elements of space group C2/m projected on (010). (b) Linkage of T atoms in a C2/m feldspar structure
The approximate y coordinates are shown at the center of each four-fold tetrahedral ring whose T atoms are nearly co-planar
Oxygen atoms have been omitted for clarity. The y coordinates of the Sr atoms (large open circles) are also indicated. (Modified
after Megaw, 1974). (c) Symmetry elements of space group I2/c projected on (010). (d) Linkage of T atoms in an ordered /2/c
feldspar, showing doubling of the ¢ cell edge due to perfect alternation of Al and Si atoms in the framework. The T sites are labeled,

and other conventions are as indicated in (b).

provement in R as well as in the standard errors
led us to correct for extinction, using a program
written by G. Chiari and the formula reported by
Stout and Jensen (1968, p. 409). The correlation
matrix indicated only modest parameter interactions,
and giving the ‘b’ reflections three times the weight
of the extinction-corrected ‘@’ reflections led to no
further parameter shifts.* The final residual is 0.047.

*Even though the refinement had converged, it was
uncertain whether the relatively few, weak ‘b’ reflections
produced physically significant shifts of atomic coordinates
from the average C2/m structure. To check this a program
was written to introduce random errors ranging from
+0.1 to =10 percent on the F...’s from our final model.
Using these as “|F.us]”, a complete anisotropic refinement

Observed and calculated structure factors are in
Table 2.

The atomic coordinates of the final 12/c structure
and the parameter shifts from the positions of the
“average” atoms in the C2/m structure are listed
in Table 3. Table 4 contains the isotropic and an-

was carried out, starting from the coordinates of the initial
model. It converged to within one standard deviation of
the expected atomic coordinates and thermal parameters.
This result does not prove that our refinement is correct
(our data may contain systematic errors), but it does
indicate that the presence of ‘b’ reflections, together with
small changes in the intensities of ‘a’ reflections, can give
rise to significant positional differences from the average
C2/m structure. (G.C.)
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TaBLE 2. Observed and Calculated Structure Factors for SrAl,Si,Os
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isotropic temperature factors, and Table 5 the im-
portant interatomic distances and angles.

Discussion

The structure of this synthetic strontium feldspar
(symbol: Srf) is most nearly analogous to that
of celsian whose structure was determined in 1960
by Newnham and Megaw using visually estimated
intensities from Weissenberg photographs taken
about five zone axes. Because celsian is currently
being refined by modern methods (Griffen, personal
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communication), we will not belabor a comparison
of our results with theirs. However, a recently pub-
lished refinement of the structure of a defect stron-
tium feldspar, synthetic Sty gaNag.03[ Jo 13Al1 695102005
(symbol: dSrf) by Grundy and Ito (1974) is a
useful reference point for discussion. The crystal
data of both Srf and dSrf are listed in Table 1. Of
fundamental difference is the symmetry (Fig. 1):
dSrf has a highly disordered Al/Si distribution,
shows no ‘b’ reflections, and thus has the unit cell
of sanidine (C2/m, ¢ ~ 7 A); whereas Srf, because
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TaBLE 2, Continued
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of its highly ordered Al/Si arrangement, has a
doubled cell (¢ ~ 14 A, similar to anorthite) and
an unconventional monoclinic space group, I2/c.
In dSrf, as in the ‘average’ structure of Srf (see
Fig. 1a,b and “Structure Refinement”), Sr and O,1
atoms are on the mirror, 0,2 is on a diad, whereas
in Srf all atoms are shifted slightly into general
positions. Atomic pairs 0z0-Opm, O,0-Ogm,
0,0-Opm, T,0-T,z, and T,0-T,z, which were
symmetrically equivalent in the disordered C2/m
structure, are distinct in the ordered I2/c¢ unit cell;
oxygens are pseudo-mirror-related and tetrahedral
atoms are related by pseudo-translation in the z
direction (Fig. 1lc,d). The topologies of the tetra-
hedral frameworks of the two structures are very
similar. The Al/Si alteration in Srf is nearly perfect
(Fig. 1d). However, the mean T-O distances
(T,0-0y = 1.627, (T1z-0) = 1.732, (T.0-0) =

]
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1.736, (T»z—0) = 1.630 A), when compared with
(Si-0) 1.613 A and (AI-O) 1.747 A in
anorthite (Wainwright and Starkey, 1971) indicate
about 10 percent Al in Si-rich sites and 10 percent
Si in Al-rich sites.

The 1.69 Al atoms in dSrf are highly disordered
(T-0) = 1.670, (T,-0) = 1.657A) with Al
contents of 7, and T, variously estimated from ¢, =
0.43 to 0.49 and #, = 0.34 to 0.39 (Grundy and
Ito, 1974, Table 6). Linear equations relating mean
T-O distances to Al content (Jones, 1968; Ribbe
and Gibbs, 1969) yield the lower values for both
sites, adding up to an estimated 1.54 Al atoms in
this compound. The reason for this is evident in
Figure 2 which shows that when compared to all
other relevant feldspar structural data, the grand
mean 7-O distance in dSrf is discrepant with the
value expected for an Al/(Al + Si) ratio of 0.435.
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TaBLE 3. Final Atomic Coordinates of 12/c
SrAlSi:Os and a Listing of Parameter Shifts
from the Positions of the Atoms in the
“Average” C2/m Structure*

Atom x y z

Atomic Coordinates

St 0.2690(1) -0.0020(1) 0.0656(1)
Tl(O) .0066(2) W1746(1) .1083(1)
Tl(z) .0032(2) W1775(1) .6164(1)
T2(0) .6934(2) .1200(1) .1706(1)
T2(z) .6845(2) .1137(1) .6716(1)
OA(l) .0045(4) .1289(4) .0003(2)
OA(Z) .5911(7) .0002(3) L1427 (4)
OB(O) .8267(6) .1266(4) .1054(3)
OB(z) L8104 (6) .1263(4) .6113(3)
OC(O) .0132(6) .2984(4) .1186(3)
OC(z) .0188(6) .3090(4) .6304(3)
OD(O) .1876(6) «1245(4) .1955(3)
OD(z) .1960(6) .1190(4) .7027(3)

Parameter Shifts

Sr — -0.0020(1) -—
7, +0.0017(2)  -.0014(1) -0.0040(1)
T, +.0044(2)  +.0031(1) =-.0005(1)
0l +.0045(4) - +.0003(2)
0A2 - +.0002(3)

05 +.0081(6)  +.0003(4) =-.0029(3)
og -.0028(6) -.0053(4) =.0059(3)
op -.0042(6) +.0027(4) =-.0036(3)

*pstimated standard errors are in
parentheses and refer to the last
decimal place.

It is uncertain whether or not the partially vacant
alkaline earth site in dSrf is the cause of this dis-
crepancy. While it is true that the lower effective
charge at this site causes Sr—O distances to increase
by ~0.03 A over those in stoichiometric SrAl,Si,Oy,
and the T-O distances are 0.005 A shorter than
expected, a cause-and-effect relationship is by no
means established because the unit cell volumes and
configurations of Srf and dSif are not in any way
constrained (see discussion below).

The other estimates by Grundy and Ito of the
Al content of T, and T, are based on Brown and
Shannon (1973) bond-strength calculations (#; =
0.47; ¢, = 0.35) and least-squares site-population
refinement (¢, = 0.48; t, = 0.39). Only the former
is free of bias, because the latter was chemically
constrained (7, = 1.69 — 1, silicon contents being
determined for T; and T, by difference from 1.0).
But Brown and Shannon bond strengths are by
no means precise enough for this sort of deter-
minative use as evinced by calculations on K-feld-
spars by Grundy and Ito (1974, Table 5).

Although the actual Al/Si distribution is some-
what uncertain, it is clear that the shorter a dimen-
sion in dSrf (and thus its smaller unit cell volume—
Table 1) is due primarily to the fact that dSrf has
a lower Al/Si ratio (0.74) than stoichiometric Srf
(Al/Si = 1.00). The statement that “The shortening
of the a dimension is further enhanced due to the
presence of vacancies on the alkali cation site . . .”
(Grundy and Ito, 1974, p. 1321) is incorrect be-
cause the mean Sr—O distance in dSrf is 0.03 A
longer than that in Srf, regardless of whether the
Sr site is considered to be 7- or 9-coordinated. The
longer Sr—O distances are expected because of the
lower positive charge at the partially vacant Sr site,
but the usual effect in feldspars of enlarging the
alkali or alkaline earth site, if the Al/Si ratio re-
mains constant, is an increase in a and in volume
(Wright and Stewart, 1968). The smaller values of
these parameters observed in dSrf can only be ex-
plained by the substitution of Si (~0.13 A smaller
than Al) for AL

The steric details of the SrAlLSi,Ojy structure,
when analyzed in the manner of Megaw, Kempster,
and Radoslovich (1962), are well within the range
of known aluminosilicate feldspars. Although I2/c
Srf ((Sr-0) = 2.691 A) and celsian ((Ba,K-O) =
2.863 A; Newnham and Megaw, 1960) are mono-
clinic, and PI anorthite with its smaller M cation
((Ca"™-0) = 2.517 A; Wainwright and Starkey,
1971) is triclinic, the tetrahedra in Srf are more
like those of anorthite and are significantly more
distorted than in celsian. In fact, using a distortion
parameter o%.; defined by Robinson, Gibbs, and

TABLE 4. Isotropic and Anisotropic Thermal Parameters for

SrALSI:Os*

Atom B(R2)

St 1.07(2)  21(1) 27(1) 13(1) 1(1) 2(1)  -2(0)
,(0) 0.64(4)  23(3) 15(1) 6(1) -5(1) 3(1) -1
T, (2) 0.69(5)  36(3) 16(1) 4(1) -2(2) 6(1) 0(1)
7,(0) 0.64(5) 19(3) 16(1) 4(1) -2(1) (1) ~1(1)
75 (2) 0.67(4) 35(3) 12(1) 6(2) 1(1) 5(1) 1(1)
0,(1) 0.9(1) 39(7)  23(3) 6(3) 9(3) 8(3)y -2(2)
0,(2) 0.9(1) 30(8)  17(3)  13(2) 8(3)  3(4) 4(2)
0,(0) 1.2(1) 57(8)  28(3) 12(2) -2(4)  17¢4)  =2(D)
05(2) 1.2(1) 36(8) 31(3) 17(3) -13(4) 16(4) 0(2)
0,(0) 1.1(1) 43(7)  26(3) 7(3)  -11(4) 0(3)  -4(2)
05(2) 1.2(1) 43(8)  21(3) 18(3) -5(4)  13(4)  -2(2)
0;(0) 1.3(1) 58(8)  29(3) 10(3) 3(4) 6(4) 2(2)
o,(2) 1.2(1) 36(8) 31(3) 6(2) 4(4)  =3(4)  -1(2)

*Estimated standard errors are in brackets and refer
to the last decimal place.
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TABLE 5. Interatomic Distances (A) and Angles (Degrees)
for Partially Disordered I2/c SrAlSi;Os*

-0 0-0 0-7-0
distances distances angles
21(02 tetrahedron
Tl(O)-OA(l) 1.644
-0 (0) 1.617
-0.(0) 1.612
-0-(0) 1.633
D
Mean 1.627 2.651 109.4
zl{z) tetrahedron
Tl(z)-OA(l) 1.755 99.6
—OB(z) 1.721 115.9
—Oc(z) 1.716 99.4
-OD(z) 1.735 114.3
115.9
) 110.5
Mean 1.732 2.819 109.3

22(0) tetrahedron

TZ(O)-OA(Z) 1.738
-OB(O) 1.734
-0_(0) 1.732
-OD(O) 1.739
Mean 1.736 2.828 109.2

Zz(z) tetrahedron

Tz(z)-OA(Z) 1.641
—OB(z) 1.629
-0.(z) 1.609
—OD(z) 1.641
Mean 1.630 2.659 109.4
Sr-0 T-0-T
distances angles
Sr—OA(l) 2.630 Tl(o)—OA(l)-Tl(z) 137.8
-OA(l) 2.650 T2(0)—0 (2)-T2(z) 127.7
~-07(2) 2.445 Tl(O)-O (0)-7_(0) 144.4
—OB(O) 2.746 Tl(z)—OB(z)—Tz(z) 145.6
-OB(z) 2.855 Tl(O)—O (0)-7.,(0) 129.6
—OD(O) 2.769 Tl(z)—O (z)-1,(2z) 132.3
-OD(z) 2.743 Tl(O)—O (0)-7,(0) 139.7
-0.(0) 3.229 T-(2)-0_(z)-T (z) 138.1
-o(z)  3.010 12
C Mean 136.9

*Estimated standard error for all T-0 and Sr-0
bond lengths is 0.005 &, for 0-0 distances
0.007 &, and for 0-T-0 and T-O-T angles. 0.3°.

Ribbe (1971), and relating it to the total number
of polyhedral elements (edges plus corners) shared
between a tetrahedron and the M-polyhedron, it
is obvious from Figure 3 that the O-7-O bond
angle strains in anorthite and Srf are very similar
indeed.
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Fi6. 2. Grand mean T-O distances versus
Al/(Al 4 Si) for a variety of feldspars. In
order of increasing ((T-0)), they are high and
low albite, Anis, Ans, dSrf, Ans,, Ans, celsian
P1 anorthite, and Srf. See Ribbe er al (1974)
for references.

Phillips, Kroll, Pentinghaus, and Ribbe (1975)
have found that the parameter (M-Q)/(T—0)) is
linearly related to the mean T-O-T angle in
paracelsian-type structures with the general formula
M*T,32Ty+5*Qg. The same relationship holds for
feldspars of the type M*'AlSi,Oy (Fig. 4), except
that the slope of the feldspar line is only one-fourth
as great as that of the paracelsian line, and (T—O-T)
in feldspars is 10° greater than in paracelsians. It
is thought that these may be indications of the
greater flexibility of the feldspar tetrahedral frame-
work whose T-O-T angles show substantial ranges
within individual structures. The T-O-T angles
within individual paracelsians are generally more

® Cn /O
cs» -
; .
FL e () Srf
5
7~

§ ! OAn

1.5 1.6 1.7

(M-0)/(T-0%»

FiG. 3. Mean T-O-T angle versus the mean
M-O distance (assuming 7-coordination) di-
vided by the grand mean T-O distance for
three feldspar structures: An (anorthite, Wain-
wright and Starkey, 1971), Srf (SrALSi:Os, this
paper), Cn (celsian, Newnham and Megaw,
1960).
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son et al (1970), plotted against the number of shared
polyhedral elements (edges plus corners) for AlO. and
SiO. tetrahedra in anorthite (open symbols) and Srf (dark
symbols). Cf Fig. 8, p. 41, in Ribbe et al (1974).
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Fic. 6. Differences in interatomic distances for the
pseudo-symmetrically related pairs of M-O bonds plotted
against mean M-O distances for the seven-coordinated
polyhedra in anorthite (Ca; values represent the means for
4 M atoms), in Srf, and in celsian (Ba).

restricted, but the mean 7-O-T values for this
group are much more sensitive to changes in the
size of the large cation relative to the mean size
of the cation occupying tetrahedral sites in the
framework.

Inasmuch as there are 2-, 3-, and 4-coordinated
oxygen atoms in Srf (as in anorthite—Megaw et al,
1962), it is expected that in general, 7-O bonds
to oxygens with the higher coordination numbers
will be the longer. This is borne out in Figure 5
which is a plot of T-O distance against the sum
of the inverse squares of the Sr—-O distances to the
oxygen involved. The value of the latter parameter
is, of course, 0.0 for the 2-coordinated O,O and
O¢m atoms. It is ~0.28 for the 4-coordinated Oy41
atom and 0.12 to 0.16 for the 3-coordinated O,2,
O3, and Oy atoms. Using this parameter, individual
T-O distances in Srf cannot be as well predicted
as in anorthite (Phillips, Ribbe, and Gibbs, 1973),
but the principles influencing them are clearly com-
parable.

In the solid-solution series (Ca,Sr)Al,Si»Oy, syn-
thesized by Bruno and Gazzoni (1968) and Nager,
Hoffmann, and Nissen (1969), the triclinic-(P1)-
monoclinic (I2/c) transition occurs at approxi-
mately An;oSrfe. Thus it is apparent that the radius
of Sr is just large enough to prevent collapse of
the tetrahedral framework in this partially dis-
ordered Srf. An examination of the M-O distances
in anorthite, Srf, and celsian shows that as the cation
radius increases, the M-coordination polyhedron
becomes more regular in shape, i.e., it approaches
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C, symmetry. This is graphically illustrated in Fig-
ure 6 where the differences in interatomic distances
for the pseudo-symmetrically related pairs of M-O
bonds are plotted against the mean M-Q distance
for the seven-coordinated polyhedra. (Because there
are four non-equivalent Ca atoms in anorthite, the
values for the Ca polyhedron are average ones).
Note that the pseudo-center-related pair (O41)
differ the least, even in anorthite, whereas the
pseudo-mirror-related pairs (Op, O¢, Op) differ by
0.6-0.8 A on the average in anorthite, by 0-0.2 A
in Srf, and less than 0.02 A in celsian. Because of
the ordered Al/Si distribution in these feldspars, the
M-polyhedron is unlikely to attain C; symmetry
regardless of cation size, for even if the M atom
were on a special position, it would be on a c-glide
and not a mirror plane in these structures with ¢ ~
14 A. By contrast, the Sr polyhedron in dSrf does
have C, symmetry, but dSrf is highly disordered
with Al/Si < 1 and space group C2/m (¢ =~ 7A).
A refinement of the structure of celsian (Griffen,
in preparation) will provide more precise reference
points for further comparisons of feldspar-like com-
pounds. Additional discussion of M2 T3 T+ Q4
structures may be found in Bruno and Facchinelli
(1974).
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