# The Structure of Partially Disordered, Synthetic Strontium Feldspar

GIACOMO CHIARI, M. CALLERI, E. BRUNO,

Istituto di Mineralogia del'Universita, Via San Massimo 24, I-10123 Torino, Italy

## AND PAUL H. RIBBE

Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

#### **Abstract**

The crystal structure of  $SrAl_2Si_2O_8$  with a celsian-type framework structure has been refined to R=0.047 by full-matrix least-squares methods using 1058 'a'-type (h+k even, l even) and 258 much weaker 'b'-type reflections (h+k odd, l odd). The cell parameters are a=8.388 (3), b=12.974 (4), c=14.263 (6) Å,  $\beta=115.2$  (1)°; the space group is I2/c.

This compound was synthesized in a Verneuil furnace from a stoichiometric mixture of  $SrCO_3$ ,  $SiO_2$ , and  $Al_2O_3$  and shows a partially disordered Al/Si distribution. The mean T-O distances,  $T_1O = 1.626$ ,  $T_2Z = 1.630$ ,  $T_1Z = 1.732$ , and  $T_2O = 1.735$  Å, when compared with the grand mean Si-O bond length of 1.614 Å and Al-O bond length of 1.747 Å in ordered primitive anorthite, indicate approximately 10 percent Al in the Si-rich and 10 percent Si in the Al-rich sites of this compound.

The Sr atom can be considered to be 7-coordinated,  $\langle Sr-O \rangle = 2.691$  Å, or 9-coordinated,  $\langle Sr-O \rangle = 2.786$  Å. These values are both 0.03 Å shorter than those reported by Grundy and Ito (1974) for a highly disordered, synthetic  $(Sr_{0.84}Na_{0.03} \square_{0.13})Al_{1.7}Si_{2.3}O_8$  (space group C2/m).

Using the 7-coordinated model, there is a positive correlation of mean T-O distances to 2-, 3-, and 4-coordinated oxygen atoms and the parameter,  $\sum [1/(Sr-O)^2]$ , which is the sum of the inverse squares of the Sr-O distances to these oxygens:

| C.N.(0) | $\frac{\text{Mean}}{\sum [1/(\text{Sr-O})^2]}$ | Mean<br>Si-O | Mean<br>Al-O |
|---------|------------------------------------------------|--------------|--------------|
| 2       | 0                                              | 1.610 Å      | 1.724 Å      |
| 3       | 0.137                                          | 1.632 Å      | 1.734 Å      |
| 4       | 0.287                                          | 1.644 Å      | 1.755 Å      |

#### Introduction

Although refinements have been published of the rubidium analog of sanidine, RbAlSi<sub>3</sub>O<sub>8</sub> (Gasparin, 1971), and of the rubidium-iron analog of microcline, RbFeSi<sub>3</sub>O<sub>8</sub> (Brunton, Harris, and Kopp, 1972), the crystal structures of synthetic analogs of feldspars have been largely neglected until recently. Bruno, Calleri, and Chiari (1973) reported a preliminary refinement of a partially disordered SrAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>, the strontium analog of celsian, which is the subject of this paper. This material was crystallized in a Verneuil furnace from a stoichiometric mixture of SrCO<sub>3</sub>, SiO<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub> (Bruno and Gazzoni, 1970). Its space group is I2/c: only 'a'

(h + k even, l even) and 'b' (h + k odd, l odd) reflections were observed in X-ray photographs exposed for 72 hours.

Grundy and Ito (1974) have refined the structure of a highly disordered, synthetic feldspar,  $(Sr_{0.84}Na_{0.03} \square_{0.13})Al_{1.7}Si_{2.3}O_8$ , with C2/m symmetry; and Kroll and Phillips (personal communication) are presently engaged in an investigation of a synthetic  $SrAl_2Si_2O_8$  which they have found to show 'a', 'b', 'c' (h + k even, l odd), and 'd' (h + k odd, l even) reflections, indicating a primitive space group and quite possibly a more highly ordered Al/Si arrangement than that observed in our  $I2/c SrAl_2Si_2O_8$ .

Kroll and Phillips in Münster and Calleri and Gazzoni in Torino are studying independently the crystal structures of feldspar and paracelsian analogs in the systems (Ca,Sr,Ba)[Al<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>]-(Ca,Sr,Ba)  $[Ga_2Si_2O_8]$  and  $(Ca,Sr,Ba)[Al_2Ge_2O_8]-(Ca,Sr,Ba)$ [Ga<sub>2</sub>Ge<sub>2</sub>O<sub>8</sub>]. A clear picture of the crystal chemistry of  $M^{2+}T_2^{2+,3+}T_2^{4+,5+}O_8$  framework structures should emerge, when the results of these analyses are combined with those from recent and present investigations of anorthite (Wainwright and Starkey, 1971), paracelsian—BaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> (Craig, Louisnathan, and Gibbs, 1973), its Sr analog—slawsonite (Griffen, personal communication), danburite—CaB<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> (Phillips, Gibbs, and Ribbe, 1974), hurlbutite— CaBe<sub>2</sub>P<sub>2</sub>O<sub>8</sub> (Lindbloom, Gibbs, and Ribbe, 1974), celsian—BaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> (Griffen, personal communication), and C2/m and I2/c modifications of PbAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> (Chiari et al, in preparation). For an analysis of the feldspar structural data accumulated through 1972, see Ribbe, Phillips, and Gibbs (1974) and the more recent review by Bruno and Facchinelli (1974).

#### **Experimental Methods**

The single crystal of  $SrAl_2Si_2O_8$  used in this structural investigation was first studied by Bruno and Gazzoni (1970) who determined the lattice parameters by calibrated Weissenberg methods (Table 1). Bruno, Calleri, and Chiari (1973) reported the results of a preliminary crystal structure refinement using intensity data collected on a General Electric 3-circle diffractometer ( $CuK_{\alpha}$  radiation) at Torino. The 768 strong 'a' and 197 weak 'b' reflections were measured at different scan rates to take into account

TABLE 1. Comparison of Unit Cell Parameters and Chemical Composition of Two Synthetic Strontium Feldspars

|                         | Grundy                              | & Ito (1974)                                                         | This Paper                              |
|-------------------------|-------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| CELL PARAMETER          |                                     |                                                                      |                                         |
| a (Å)<br>b (Å)<br>c (Å) | :                                   | 8.328<br>12.980<br>7.136                                             | 8.388<br>12.974<br>2×7.132              |
| β                       |                                     | 115.6°                                                               | 115.2°                                  |
| Volume ( $Å^3$ )        |                                     | 695.7                                                                | 2×702.2                                 |
| Z                       |                                     | 4                                                                    | 8                                       |
| Space group             |                                     | C2/m                                                                 | 12/c                                    |
| COMPOSITION             |                                     |                                                                      |                                         |
| Formula                 | Sr <sub>84</sub> Na <sub>03</sub> [ | $^{]}.13^{\mathrm{A1}}$ 1.69 $^{\mathrm{Si}}$ 2.29 $^{\mathrm{O}}$ 8 | $\mathrm{SrAl}_{2}\mathrm{Si}_{2}^{0}8$ |
| Al/Si                   |                                     | 0.738                                                                | 1.000                                   |
| A1/(A1+Si)              |                                     | 0.425                                                                | 0.500                                   |
| Calc. densit            | У                                   | 2.98 g/cc                                                            | 3.08 g/cc                               |

the large difference in their average intensity, and for that reason separate scale factors had to be applied to these data. Although an isotropic refinement of the "average" structure in space group C2/m converged to R=0.10 and a partial anisotropic refinement in space group I2/c converged to R=0.058, yielding mean T-O distances of 1.626 Å for Si-rich and 1.739 Å for the Al-rich tetrahedra, the correlation matrix indicated strong interactions, especially between the scale factor of the 'b' reflections and the y coordinate of the Sr atom. As a result the thermal ellipsoids of several oxygens became non-positive definite.

For these reasons a new set of intensity data were collected at Pavia University from the same crystal on a Philips 4-circle diffractometer using graphite-monochromatized Mo radiation and a  $\theta$ -2 $\theta$  step-scan procedure. Both 'a' and 'b' reflections were kept on the same scale, but the weak 'b' reflections were scanned eight times and then averaged to give improved precision. There were 1058 'a' and 258 'b' reflections whose intensities exceeded  $3\sigma$ . These data were reduced in the conventional manner, although no absorption correction was applied. The crystal dimensions are  $0.2 \times 0.04 \times 0.1$  mm normal to  $\{100\}$ ,  $\{010\}$ , and  $\{001\}$  respectively;  $\mu = 86.3$  cm<sup>-1</sup>.

#### Structure Refinement

Assuming C2/m symmetry ( $c \simeq 7 \, \text{Å}$ ; Fig. 1a) and using the atomic coordinates of celsian (Newnham and Megaw, 1960, Table 5), we initially refined the 8-atom average structure of  $SrAl_2Si_2O_8$  to R=0.089 with only the 'a' reflections. We continued the refinement in the true I2/c space group ( $c \simeq 14 \, \text{Å}$ ; Fig. 1b) by including the 'b' reflections and introducing atomic coordinate shifts equivalent to those of I2/c celsian (Newnham and Megaw, 1960, Table 8). The Sr,  $O_A(1)$ , and  $O_A(2)$  atoms were thus moved from special to general positions, and the three other oxygens and two tetrahedral atoms were "split" to account for the doubling of the c axis and change in space group.

Routine refinements of isotropic and anisotropic models were carried out to R=0.058 using the full-matrix least-squares program ORFLS (Busing, Martin, and Levy, 1962). On the assumption that the more intense reflections were affected by secondary extinction, several additional cycles of anisotropic refinement were run, omitting those reflections with  $|F_{\rm obs}|>100$ . The significant im-



Fig. 1. (a) Symmetry elements of space group C2/m projected on (010). (b) Linkage of T atoms in a C2/m feldspar structure The approximate y coordinates are shown at the center of each four-fold tetrahedral ring whose T atoms are nearly co-planar Oxygen atoms have been omitted for clarity. The y coordinates of the Sr atoms (large open circles) are also indicated. (Modified after Megaw, 1974). (c) Symmetry elements of space group I2/c projected on (010). (d) Linkage of T atoms in an ordered I2/c feldspar, showing doubling of the c cell edge due to perfect alternation of Al and Si atoms in the framework. The T sites are labeled, and other conventions are as indicated in (b).

provement in R as well as in the standard errors led us to correct for extinction, using a program written by G. Chiari and the formula reported by Stout and Jensen (1968, p. 409). The correlation matrix indicated only modest parameter interactions, and giving the 'b' reflections three times the weight of the extinction-corrected 'a' reflections led to no further parameter shifts. The final residual is 0.047.

Observed and calculated structure factors are in Table 2.

The atomic coordinates of the final I2/c structure and the parameter shifts from the positions of the "average" atoms in the C2/m structure are listed in Table 3. Table 4 contains the isotropic and an-

was carried out, starting from the coordinates of the initial model. It converged to within one standard deviation of the expected atomic coordinates and thermal parameters. This result does not prove that our refinement is correct (our data may contain systematic errors), but it does indicate that the presence of 'b' reflections, together with small changes in the intensities of 'a' reflections, can give rise to significant positional differences from the average C2/m structure. (G.C.)

<sup>&</sup>lt;sup>1</sup> Even though the refinement had converged, it was uncertain whether the relatively few, weak 'b' reflections produced physically significant shifts of atomic coordinates from the average C2/m structure. To check this a program was written to introduce random errors ranging from  $\pm 0.1$  to  $\pm 10$  percent on the  $F_{\rm cal}$ 's from our final model. Using these as " $[F_{\rm obs}]$ ", a complete anisotropic refinement

TABLE 2. Observed and Calculated Structure Factors for SrAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>

| h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                          | Fobs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fcalc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ħ                                                                                                                                                   |                                                                                                         | Fobs                                                                                       | Fcalc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h                                                                                         | k                                                                     | Fobs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fcalc                                                                                      | ħ                                                                                               | A                                                                                | Fobs                                                                                                                | Fcalc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h                                                                                  | k                                                             | Fobs                                                                                                                                                   | Fcalc                                                                                                           | h                                                      | R                                                                               | Fobs                                                                                      | Fcalc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h k                                                | Fobs                                                                                   | Fcalc                                                                                  | h                                     | *                                      | Fobs                                                                                                      | Fcalc                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 2 6 8 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0                                      | 9 8 95 0 33 8 12 9 27 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39 1<br>89 5<br>33 3<br>11 5<br>25 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7<br>9<br>5<br>2<br>2<br>10<br>11<br>2<br>5                                                                                                         | 1<br>1<br>2<br>2<br>2<br>3<br>3<br>7<br>2                                                               | 62:1<br>34:0<br>28:8<br>37:4<br>17:3<br>13:3<br>13:3<br>48:7<br>41:0                       | 48,4<br>32,1<br>30,4<br>35,9<br>12,9<br>13.0<br>93.4<br>40.0<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                     |                                                                       | 62-8<br>30.0<br>10.9<br>16.5<br>21.6<br>7.1<br>27.8<br>51.8<br>21.1<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47-5<br>331-7<br>121-7<br>16-9<br>11-9<br>7-2<br>12-1<br>98-3<br>21-8                      | 3 7 U 2 4 6 U 1 L                                                                               | 9<br>9<br>10<br>10<br>10<br>10                                                   | 42 3<br>3 1<br>14 6<br>18 0<br>8 3<br>24 9<br>14 2<br>16 4                                                          | 41 7<br>3 0<br>14 .6<br>19 .1<br>8 .6<br>23 .9<br>14 .2<br>15 .9<br>39 .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7<br>-2<br>-4<br>-6<br>-1<br>-3                                                   | 15<br>16<br>16<br>16<br>17<br>17                              | 4 1<br>13 6<br>13 0<br>20 7<br>10 9<br>27 9                                                                                                            | 3 9<br>12 7<br>11 6<br>18 3<br>10 3<br>25 1<br>9 1                                                              | 中华女子中的 中中文                                             | 34444 555                                                                       | 9.5<br>13.8<br>2.7<br>21.9<br>17.7<br>7.0<br>12.6<br>58.7<br>51.1                         | 10.0<br>16.7<br>2.3<br>23.9<br>19.1<br>7.9<br>13.0<br>56.2<br>33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0<br>6 8<br>1 0<br>3 9<br>5 10<br>2 10<br>2 10   | 0.8<br>24.8<br>9.9<br>11.8<br>53.7<br>9.1<br>22.3<br>29.6<br>10.9                      | 0.6<br>23-5<br>9,8<br>10-9<br>33-4<br>9,5<br>22-7<br>28-8<br>20-7                      | 12777                                 | 15<br>15<br>15<br>16<br>16<br>17<br>17 | 7 9<br>10 8<br>9 2<br>29 5<br>10 6<br>2 7<br>3 0                                                          | 7 8<br>10 5<br>7 7<br>28 5<br>10 1<br>2 6<br>2 7                                                         |
| reador 357902 aguas olisaro dalamente lerres aceltas recentas recentas aguas de la composición del composición de la com | 00 U U D D I I I I I I I I I I I I I I I I | 39,88<br>39,89<br>31,99<br>31,99<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31,90<br>31 | 80151<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12152<br>12 | 6 3 HR 1937 7 M 1939 4 6 HR 1937 BOTKEL 357 MOR 4 HK 1957 BOTKER BEFORE 4 4 1958 BE WEST BOTKER 1980 1 7 1980 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 222277 124444 445522 546542 1777788 588898 9000001 11111111111 11111111 4441444 47770 5000011 1211111 | 37.4<br>13.5<br>13.5<br>39.7<br>48.7                                                       | 35.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 1.15.19 | 多了,他们还是在我们们们可以对,我们都将我们的,不知知的时候,我们都可以明显,我们们可以说,我们还有一个人的。" 医克里氏虫虫 医多子虫虫虫 医毒素蛋白 医白色素白色 医克里耳曼 | 55 SECOND 677777 REFERENCE MINUS 111111111111111111111111111111111111 | 16.5<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1 | 16:9<br>7:2<br>32:1<br>38:3                                                                | 17日日 《《日日日日》 日本土工工》 日本工工》 《日本工工》 《日本工工》 《日本工工》 《日本工工》 《日本工工》 《日本工工》 《日本工工》 《日本工工》 《日本工工》 · 18日本 | 10                                                                               | 14,6 8,3 8,3 8,3 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4                                                            | 14.6.  5.6.  14.2.  13.9.  14.2.  13.9.  14.2.  14.2.  15.9.  16.6.  16.6.  16.7.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16.8.  16. |                                                                                    | 18                                                            | 27_9                                                                                                                                                   | 25.1                                                                                                            | 计可称作序段 化性电影电话 医生物中毒 化铁铁镍矿矿 化电影性电影 经过的证券的 医皮肤性皮肤 医阴影性皮肤 | 40.4.4.5 555555 5886667 777778 8888890 88800 88800 111111111 111111111 11111111 | 217, 219, 27, 29, 219, 219, 219, 219, 219, 219, 219,                                      | 197.19 11.02 11.03 11.11.11 11.12 11.12 11.12 11.12 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11 |                                                    | 11.6<br>33.7<br>.8.1<br>22.3<br>29.6                                                   | 10.9<br>33.4<br>9.5<br>22.7<br>28.8                                                    |                                       | 17<br>17                               | 29.5<br>10.6<br>2.7<br>3.0                                                                                |                                                                                                          |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 11 11 11 11 11 11 11 11 11 11 11 11 1   | 23,3<br>25,4<br>15 3<br>2 = 2<br>2 20,0<br>14,8<br>5 26,6<br>6 23,7<br>7 10,0<br>7 10,0<br>8 3 3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 5<br>16 4<br>26 6<br>24 1<br>10 3<br>3 4<br>4 0<br>4 8 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 李明是在小人 人名西拉拉克 生物                                                                                                                                    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                   | 45.9<br>18.8<br>32.2<br>39.7<br>38.8<br>12.0<br>9.6<br>15.7<br>6.4<br>70.5<br>51.8<br>41.7 | 9 2<br>14 8<br>5 5<br>80 7<br>58 9<br>43 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EASIDS TORKER                                                                             | 0 8 6 7 7 7 7 8 8 9 9 9                                               | 23,7<br>29,3<br>34,1<br>39,2<br>23,3<br>27,8<br>8,6<br>10,9<br>73,9<br>10,9<br>46,9<br>2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23 6<br>28 9<br>33 0<br>39 3<br>22 9<br>27 2<br>8 0<br>11 4<br>73 0<br>19 2<br>45 9<br>2 6 | 1977 347797 P44877                                                                              | 11<br>11<br>12<br>12<br>13<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15 | 37.9<br>4.1<br>25.1<br>10.6<br>21.3<br>10.4<br>12.7<br>10.9<br>18.9<br>14.1<br>10.8<br>13.2<br>18.3<br>27.9<br>22.3 | 40 2<br>3 3 3<br>25 6<br>10 5<br>21 5 9 8<br>11 7<br>10 2<br>17 6<br>14 1<br>10 5<br>11 5<br>17 2<br>27 1<br>20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5<br>-7<br>-9<br>-11<br>-2<br>-4<br>-6<br>-8<br>-10<br>-1<br>-3<br>-5<br>-7<br>-9 | 1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3 | 18, 7<br>21, 5<br>19, 1<br>29, 4<br>37, 1<br>12, 2<br>20, 1<br>10, 7<br>5, 9<br>30, 0<br>39, 0<br>68, 4, 4<br>4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 | 18,2<br>21,7<br>21,8<br>28,7<br>36,2<br>11,9<br>20,2<br>13,5<br>5,7<br>31,1<br>38,7<br>6,8<br>1<br>38,3<br>27,0 | * 6135 TRANS 570                                       |                                                                                 | 20 1<br>45 6<br>21 2<br>8 8<br>9 3<br>18 1<br>18 0<br>44 5<br>10 1<br>30 0<br>25 4<br>8 6 | 19.8<br>A5.8<br>22.0<br>8,0<br>8,7<br>18.1<br>18.5<br>9.5<br>29.5<br>23.6<br>7.5<br>7.5<br>7.5<br>36.8<br>8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 11 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14 | 3.8<br>12.8<br>4.6<br>25.9<br>11.3<br>3.7<br>12.8<br>27.3<br>3.6<br>2.2<br>2.2<br>16.7 | 1.0<br>13.2<br>16.1<br>10.8<br>2.9<br>17.0<br>17.0<br>17.0<br>2.1<br>2.1<br>2.1<br>2.2 | # # # # # # # # # # # # # # # # # # # | 44 143856 606577                       | 34 3<br>28 0<br>35 4<br>46 2<br>18 7<br>21 2<br>10 0<br>43 5<br>11 1<br>49 0<br>9 9<br>24 7<br>3 0<br>8 5 | 33 2<br>26 4<br>35 1<br>45 3<br>18 6<br>21 1<br>11 6<br>43 1<br>9 9<br>48 8<br>8 9<br>25 3<br>2 9<br>8 1 |

isotropic temperature factors, and Table 5 the important interatomic distances and angles.

### Discussion

The structure of this synthetic strontium feldspar (symbol: Srf) is most nearly analogous to that of celsian whose structure was determined in 1960 by Newnham and Megaw using visually estimated intensities from Weissenberg photographs taken about five zone axes. Because celsian is currently being refined by modern methods (Griffen, personal

communication), we will not belabor a comparison of our results with theirs. However, a recently published refinement of the structure of a defect strontium feldspar, synthetic  $Sr_{0.84}Na_{0.03} _{0.13}Al_{1.69}Si_{2.29}O_8$  (symbol: dSrf) by Grundy and Ito (1974) is a useful reference point for discussion. The crystal data of both Srf and dSrf are listed in Table 1. Of fundamental difference is the symmetry (Fig. 1): dSrf has a highly disordered Al/Si distribution, shows no 'b' reflections, and thus has the unit cell of sanidine  $(C2/m, c \simeq 7 \text{ Å})$ ; whereas Srf, because

Table 2, Continued

|           | A                                       | R                    | Fobs                                     | Fcalc                               | h                                 |                                  | Fobs                                                 | Fcolc                                                |                                   | *                          | Fobs                                                 | Fcalc                                                | *                                                  | *              | Fobs                                | Feale                              | h              | 4                                       | Fobs                                       | Fcalc                                      | h                          | k                               | Fobs                                   | Fealc                                     | h                                       | *                                       | Fobs                                   | Fcalc                                  | ħ                          | k           | Fobs                                   | $F_{\rm calc}$                         |
|-----------|-----------------------------------------|----------------------|------------------------------------------|-------------------------------------|-----------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------|----------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------|-------------------------------------|------------------------------------|----------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------|---------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------|-------------|----------------------------------------|----------------------------------------|
|           | -5<br>-7<br>-9                          | 1.27                 | 3 1<br>9 9<br>4 2<br>7 2                 | 3 2<br>10 1<br>4 2                  | -2<br>-6<br>-6<br>-8<br>-10<br>-1 | 0 0 0                            | 24 4<br>27 7<br>18 7<br>33 3<br>20 6<br>40 7<br>59 2 | 24 9<br>27 3<br>16 3<br>31 8<br>19 5<br>41 5<br>59 0 | 0<br>0<br>1<br>0<br>1<br>0<br>2   | 4 4 5 6 4                  | 13.8<br>39.2<br>23.6<br>17.1<br>19.4<br>11.6<br>26.9 | 14.7<br>41.0<br>54.7<br>12.8<br>20.0<br>41.5<br>27.0 | 0 2                                                | 0 0            | 28.3<br>4.0<br>17.5                 | 30 5<br>6 0<br>19 2                | 266554         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6-5<br>0.7<br>32.8<br>28.3<br>13.2<br>13.2 | 8.8<br>9.4<br>24-0<br>38,7<br>(246<br>16.9 | 24444                      | 1<br>1<br>1<br>1<br>1<br>1<br>1 | 2:9<br>2:0<br>1:5<br>2:9<br>6:3<br>1:9 | A.1<br>A.9<br>1.8<br>2.7<br>6.8<br>2.0    | 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 1<br>1 0<br>1 2<br>4 4<br>4 6<br>1 3 | 1 8<br>0,7<br>1 0<br>4 2<br>5 2<br>1 0 | 577777 P                   | 1 6 7 7     | 4.4<br>5.8<br>2.7<br>9.7<br>3.4        | 4.3<br>1.0<br>6.3<br>1.8<br>0.5<br>5.6 |
| •         | -11<br>-2<br>-4                         | 8                    | 10 4                                     | 7 2<br>11 5<br>9 1                  | -5<br>-7<br>-9                    | 1                                | 43 5<br>22 4<br>8 9                                  | 42.0<br>21.5<br>7.2                                  | 9                                 |                            | 17.2                                                 | 19.1<br>3.1<br>19.0                                  | 2                                                  | No.            | 12_6<br>19_9<br>4_5                 | 12 5<br>22 1<br>3 9                | -4<br>-4<br>-1 | 44.44                                   | 13.3<br>18.2<br>28.7<br>29.2               | 16;7<br>30;9<br>20;8                       | -4<br>-1<br>-3<br>-2<br>-1 | 9<br>10<br>10<br>11<br>12       | 1.4<br>1.5<br>6.7<br>4.1<br>1.1        | 2.6                                       | 0 0 0                                   | 7 7 7                                   | 4.8<br>2.0<br>7.6<br>1.9               | 4.9<br>1.5<br>7.7<br>1.2               | 1254                       | **          | 7.A<br>2.Q<br>7.1                      | 0.3<br>0.3<br>4.2<br>0.6               |
|           | -6<br>-8<br>-10<br>-1                   |                      | 5 5<br>34 3<br>14 3<br>8 1               | 4 7<br>34 6<br>15 1<br>7 5          | -1<br>-6<br>-9<br>+10             | 2000                             | 8 .0<br>25 .8<br>8 .5<br>22 .6                       | 8 1<br>25 5<br>5 0<br>21 1                           | 0 19                              | 10<br>10                   | 28.0<br>9.6<br>11.9<br>9.0                           | 28.2<br>9.8<br>13.0<br>9.8                           | 9 **** 0                                           | 4 4 5 6        | 13.8<br>21.4<br>7.5<br>20.3         | 14.4<br>22.3<br>7.7<br>21.3        | 45.4           | -                                       | 19.7                                       | 30.9<br>17.3<br>19.8                       | -1                         |                                 | 福.                                     | 3.9                                       | i ii                                    | 8 9                                     | 2 6<br>7 0<br>9 0                      | 2 1<br>6 7<br>9 0                      | -3                         | 10          | 0.7                                    | 6.1                                    |
|           | -3<br>-5                                | 9                    | 18 3<br>16 3                             | 17.6<br>16.2                        | -1<br>-2<br>-3                    | 1                                | 11 8<br>15 5                                         | 11 7<br>15 4                                         | 7                                 | 0 0                        | 13.5                                                 | 15.9                                                 | 0                                                  | 4              | 9_5<br>11_6<br>12_6                 | 9_0<br>11_2<br>12_4                | 14.4           | 6667                                    | 24.1<br>3.4<br>27.6<br>7.2                 | 28.6<br>27.6<br>7.1                        | 2 4                        | 1                               | 6 6                                    | 5 . 5<br>4 . 8                            | 1111                                    | 1111                                    | 5.4<br>1.5<br>6.3<br>3.0               | 4,3<br>2,3<br>6,3<br>3,3               | 2                          | 12          | 5 <sub>1</sub> 3<br>4 <sub>4</sub> 6   | 5, 9<br>5, 2                           |
|           | -4<br>-6<br>-8                          | 10<br>10<br>10<br>10 | 12,4<br>6.9<br>17,4<br>13,6<br>15,9      | 12.1<br>5.9<br>17.4<br>14.3<br>17.0 | -7<br>-9<br>-11<br>-6<br>-8       | 7776                             | 16.4<br>23.6<br>15.8<br>7.6<br>2.8                   | 15 9<br>22 9<br>15 6<br>8 1<br>2 7                   | 7 7 7 7 10 7                      | 0<br>0<br>0<br>1           | 37.9<br>31.0<br>21.3<br>10.0                         | 30-1<br>3-1<br>19-9<br>31-8                          | +2<br>+4<br>+6<br>-10<br>-10                       | 0000           | 39 9<br>17 1<br>20 0<br>5 0<br>23 1 | 41_5<br>16_2<br>20_0<br>4_7        | +0<br>+6<br>-5 |                                         | 1957<br>155<br>250                         | 8.4<br>10.6                                | 3                          | 1 2 1                           | 3,3<br>2,2<br>1,4<br>4,9               | 3 3<br>2 0<br>1 7<br>4 1                  | 中ではなる                                   | 1                                       | 7.5<br>1.6<br>1.1<br>1.9               | 7,2<br>1,5<br>1,5<br>1,9               | 20                         | 3           | 2,1<br>2,1<br>1,7<br>8,6               | 1 4<br>2 4<br>1 9<br>8 6               |
|           | -1<br>-3<br>-5                          | 11<br>11             | 9 4<br>24 7<br>7 4                       | 8 6<br>24 6<br>7 4                  | -18<br>-1<br>-1<br>-1<br>-5<br>-7 |                                  | 9 0<br>14 2<br>5 3                                   | 8.6<br>13.1<br>3.6<br>10.8                           | -1<br>-5<br>-7<br>-8              | 1                          | 11.7<br>12.4<br>6.9<br>16.3                          | 14-3<br>11-6<br>6-4<br>13-3                          | -1 -5 -7 -0 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 | 1111           | 9 2<br>9 8<br>27 0                  | 24 3<br>9 3<br>10 9<br>27 7        |                |                                         |                                            |                                            | 9<br>2<br>3<br>1           | 3 1                             | 1 - 5<br>1 + 4<br>4 - 0<br>2 - 4       | 1.7<br>1.2<br>3.7<br>1.9                  | 44                                      | 2                                       | 10.2                                   | 9.6<br>3.8                             | #<br>#<br>#<br>-2          | 9 9 7 7     | 2.4<br>2.1<br>5.2<br>7.6               | 2 6<br>2 4<br>5 6<br>7 7               |
|           | -7<br>-9<br>-2                          | 11<br>11<br>12       | 9 2<br>9 4<br>31 0                       | 9 6<br>10 4<br>31 4                 | -5<br>-7<br>-9                    | ***                              | 11,5<br>11,5<br>26,5                                 | 25 8                                                 | -1                                | 12 .                       | 1312<br>4,6                                          | 11.4<br>3.8<br>23.3                                  | -0<br>-7<br>-4                                     | 1              | 23 7<br>24 6<br>20 2                | 22 8<br>26 0<br>20 0               | の本による          | 0<br>1<br>1                             | 1.2<br>4.1<br>17.7<br>12.4                 | L-3<br>308<br>18-8<br>34-2<br>30-1         | 5 8                        | 1 1                             | 2.6<br>3.5<br>2.5<br>5.7               | 2 - 5<br>3 - 6<br>2 - 8                   | 7477                                    | 77                                      | 6.9<br>4.2<br>2.8<br>1.4               | 5.8<br>3.8<br>3.8                      | -4                         | 1 1         | 10.5<br>9.6<br>2.9                     | 9 9<br>9 3<br>3 7                      |
|           | -6 1<br>-5 1                            | 12<br>12<br>12<br>13 | 21 .3<br>26 .3<br>8 .1<br>27 .2<br>16 .5 | 20,9<br>26,7<br>7,9<br>27,0         | -11<br>-2<br>-4<br>-6             |                                  | 16;3<br>12;9<br>15;9<br>12;8                         | 16 0<br>13 2<br>15 7<br>12 6                         | -0<br>-10<br>-1<br>-1<br>-2<br>-5 | 2 2 3                      | 16.8<br>12.5<br>3.6<br>12.2<br>15.7                  | 16.2<br>12.6<br>3.7<br>32.1<br>13.6                  | -6<br>-11<br>-11<br>-1<br>-3<br>-5                 | 1              | 24 0<br>10 9<br>12 4<br>14 9        | 24 .0<br>10 .1<br>12 .0<br>15 .1   | -8             | 1 2                                     | 7-3                                        | 11.2                                       | 5 0                        | 1000                            | 5.7<br>3.2<br>4.0<br>4.4<br>2.8        | 5.7<br>3.2<br>4.3<br>4.6<br>2.6           | -5                                      | 4 4 4                                   | 3-1<br>6-1<br>5-0                      | 4-1<br>3-6<br>6-2                      | 77777                      | 1           | 4 1<br>13 4<br>3 8<br>2.9<br>1 1       | 3 Z<br>12 9<br>3 1<br>3 2<br>1 4       |
|           | -5 1                                    | .3                   | 12.8                                     | 18 0<br>12 6                        | -10<br>-1                         | 7                                | 10 i6<br>31 i3<br>38 i4                              | 9 7<br>31 0<br>37 2                                  | -7                                | 3                          | 45.7                                                 | 44,2<br>29.3                                         |                                                    | 4              | 4 .9<br>3 .6<br>16 .7               | 4.8<br>3.8<br>16.7                 | 777            | A.                                      | 5.7<br>8.1                                 | 5.0                                        | 1                          | T                               | 1.4                                    | 1.3                                       | -7<br>-4<br>-2<br>-2<br>-2<br>-2<br>-2  | 6                                       | 5.0<br>6.0<br>7.6                      | 5 2<br>5 3<br>6 4<br>7 3               | -1<br>-1<br>-7             | A           | 4.1                                    | 4.4                                    |
| -         | 2 1<br>4 1<br>6 1<br>1 1                | 4                    | 8 6<br>24 8<br>11 7<br>12 2<br>7 8       | 7 5<br>25 2<br>11 5<br>12 1<br>7 4  | 1221111                           | 7 7 8                            | 30 8<br>16 7<br>8 2<br>8 6<br>4 1                    | 29 8<br>15 6<br>9 6<br>8 2<br>4 1                    | -11<br>-7<br>-8                   | 4                          | 19.9<br>30.5<br>32.3<br>16.9<br>13.3                 | 19.7<br>33.1<br>16.3<br>13.1                         | 14 0 H O                                           |                | 13.0<br>15.3<br>9.3<br>16.2<br>17.3 | 13 1<br>15 4<br>8 7<br>15 2        | 0              | 1                                       | 0.9                                        | 1 = 2<br>0 = 4                             | 1 3                        | 10<br>10                        | 2 9<br>3 9<br>2 5<br>3 6               | 3,5<br>3,6<br>2,2<br>3,8                  | 7477                                    | 7<br>1<br>8                             | 5=7<br>3=2<br>1=2<br>1=6               | 6 - 4<br>2 - 5<br>0 - 8<br>2 - 0       | -14                        | 5           | 8 0<br>1 4<br>8 6<br>5 4               | 7.7<br>1.0<br>8.4<br>5.5               |
| -         | 2 I<br>4 I                              | 6                    | 5_5<br>4_8                               | 4 9 3 8                             | -F                                |                                  | 32 7<br>9 2<br>24 5                                  | 32,5<br>9,5<br>23,9                                  | -10<br>-1<br>-1<br>-3<br>-7<br>-9 | 9<br>9<br>9                | 13.8<br>19.3<br>9,€<br>42.6                          | 14.9<br>19.2<br>9.1<br>W1.6                          | -3                                                 | 9.00           | 4 .9<br>4 .5<br>8 .8                | 19 4<br>4 5<br>4 9<br>8 7          | 6 1 0 2        | -                                       | 4 2<br>4 4<br>4 0<br>1 5                   | 4 1<br>4 8<br>5 0<br>1 5                   |                            | 11                              | 3 7<br>4 3<br>3 8<br>3 8               | 2 9<br>4 1<br>3 8<br>2 4                  | -5                                      |                                         | 2=1<br>1=9<br>3=6                      | 2 - 3<br>1 - 4<br>3 - 6                | -1<br>-3<br>-3<br>-4<br>-4 | 8<br>5<br>7 | 3 5<br>3 1<br>3 9<br>7 7               | 2 2<br>3 2<br>3 6<br>8 1               |
|           | 6                                       | 1 -                  | 2.0                                      | 2_9                                 | -10<br>-4<br>-3<br>-1             | *                                | 21 .7<br>52 .0<br>26 .2                              | 21 2<br>51 4<br>25 2                                 |                                   | 5                          | 28.5<br>34.6                                         | 27.3<br>13.8                                         | +2<br>+4<br>-4                                     | 4 4            | 8 5<br>19 7<br>10 8                 | 8 ,6<br>20 ,3<br>10 ,5             | 8              | 74                                      | 1 0 2 1                                    | 0 B<br>2 0                                 | 4                          | 1 2                             | 5_4<br>5_6                             | 5 = 4<br>7 = 0<br>1 = 7                   | 7777                                    | 10<br>10<br>11                          | 2.1<br>3.1<br>4.4                      | 2-1<br>3-3<br>3-9                      | -5                         | *           | 8_1<br>8_5<br>4_3                      | 7.7<br>8.3<br>4.6                      |
| Section 2 | 4                                       | 0                    | 32.3<br>9.6<br>21.5<br>9.6<br>3.2        | 33 3<br>9 7<br>22 2<br>10 0<br>3 1  | 7777977                           | 10<br>10<br>10<br>10             | 20 4<br>10 6<br>15 3<br>11 7<br>17 4<br>18 6         | 19,4<br>10,1<br>15,1<br>11,0<br>17,1<br>18,2         | -11<br>-2<br>-4<br>-5<br>-10      | ***                        | 7.4<br>39.1<br>2.4<br>73.1<br>15.0                   | 5.7<br>33.3<br>2.4<br>22.6<br>14.4                   | +ff<br>-10<br>+1<br>+1<br>+5<br>-7                 | 6777           | 12 6<br>11 5<br>16 9<br>2 7<br>4 8  | 12 4<br>10 9<br>17 9<br>2 4<br>4 6 | 2000           | ****                                    | 1 1<br>2 8<br>2 1<br>4 2                   | 1 1<br>2 7<br>2 5<br>4 0                   | 241244                     | 1                               | 2 0<br>2 7<br>5 5<br>3 1<br>3 1<br>1 6 | 2 4<br>5 5<br>2 7<br>3 4<br>2 6           | II 2                                    | 1                                       | 2 7                                    | 3-3<br>5-0                             | -1                         | 1.          | 6.3                                    | 6.6                                    |
|           |                                         |                      | 19 0<br>24 9<br>28 0                     | 19 9<br>26 4<br>28 0                |                                   | 31                               | 7_9<br>17_2                                          |                                                      | -7                                |                            | 3,8<br>20.3<br>16.7<br>12.7                          | 20.1<br>17.1                                         |                                                    | 7              | 20,5<br>15,2<br>20,0<br>20,9        | 20 6<br>13 6<br>20 7               | 1 0            | 1                                       | 5.7<br>2.0<br>0.4<br>5.4                   | 6 1<br>1 6<br>0 3<br>5 1                   | 五七日本                       | A .                             | 1.4<br>3.1<br>1.7                      | 1 2<br>2 9<br>1 5                         | 3 7 7 0                                 | 2 2 2                                   | 3 0<br>4 4<br>2 9<br>2 1               | 3,0<br>4,4<br>3,1<br>1,3               | 14000                      | 3 3 1       | 2.0<br>1.2<br>7.8<br>3.5<br>3.2        | 1.8<br>0.9<br>3.1<br>3.7<br>3.1        |
| 3         |                                         | 1                    | 27.9                                     | 29 3<br>27 4<br>8 2                 | コマテヤフィ                            | 11<br>11<br>11<br>12<br>12       | 6_4<br>14_8<br>5_2<br>7_8                            | 7.5<br>17.2<br>5.7<br>14.9<br>3.8<br>7.7             | -1<br>-5<br>-7<br>-4<br>-1        | 777.8                      | 12.7<br>11.9<br>14.0<br>16.6                         | 12.6<br>11.0<br>13.4<br>15.7                         | 中子子中中                                              | 3 3            | 20,9<br>19,9<br>11,0<br>17,1        | 20 7<br>19 9<br>10 1<br>16 9       | 1              | 8 8                                     | 8 4<br>2 3                                 | 8 5<br>2 4                                 | -11                        | 4                               | 1 0<br>3 6<br>3 7                      | 1 - 9<br>4 - 0<br>3 - 1                   | 1                                       | 2                                       | 2 6<br>3 4<br>4 1                      | 2 9<br>3 0<br>4 6<br>1 9               | -6                         | +           | 2.1                                    | ALS.                                   |
|           | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                      | 10 3<br>19 0<br>39 0<br>21 0             | 10 8<br>19 7<br>39 0<br>22 0        |                                   |                                  | 3.7<br>5.8<br>4.8<br>5.2<br>6.4                      | 3,6<br>5,3<br>3,9<br>5,5<br>6,4                      | 448444                            | #<br>#                     | 20.8<br>22.7<br>6.1                                  | 10.8<br>17.4<br>1.0                                  | -3<br>-3<br>-3                                     | 9 9            | 9.9<br>9.4<br>23.1                  | 10,2<br>9,8<br>22,9                | 3 4 3          | 9<br>9<br>9                             | 4 4<br>1 7<br>2 8<br>5 1                   | 4 9<br>2 4<br>3 4<br>5 9                   | 子子でする                      | 6 6 7 1                         | 2 0<br>3 6<br>4 4<br>6 0<br>3 6        | 2 · 8<br>3 · 5<br>5 · 4<br>6 · 6<br>3 · 7 | 1                                       | 5                                       | 2,1<br>2,2<br>3,8                      | 3 0                                    | 77475                      | 3 4         | 2 7<br>4 1<br>5 6<br>1 7               | 2 J<br>1 7<br>3 6<br>4 8<br>1 0        |
|           | 2 6                                     |                      | 12 1<br>13 9                             | 11 5<br>13 7                        |                                   | 17<br>13<br>13<br>11<br>14<br>14 | 5.2<br>6.4<br>5.6                                    | 5_5<br>6_4<br>4_5                                    |                                   |                            | 35.3<br>13.0                                         | 7.0<br>34.4<br>12.2                                  | -6                                                 | 10<br>10<br>10 | 13 5<br>24 3<br>14 5                | 13.4<br>23.9<br>13.7               | 0 1            | 11<br>11<br>12                          | 4.9<br>1.8<br>1.0                          | 4 6<br>1 7<br>0 7                          | $\rightarrow$ I            | R.                              | 3 0                                    | 2+9                                       | de.                                     |                                         | 2 2<br>4 3<br>5 3<br>5 2               | 1 6<br>3 6<br>4 9<br>4 6               | 77 4                       | 3           | 30                                     | 3 2<br>5 2<br>2 3<br>2 3               |
|           | 1 7 7 8 8 8                             |                      | 16 9<br>13 0<br>27 5<br>27 5             | 17.0<br>13.5<br>28.3<br>27.5        | -6 1                              | 14                               | 5+8<br>20-7                                          | 5_1<br>20_2                                          | 797477                            | 10                         | 16.4<br>2.4<br>7.7<br>17.0<br>1.3                    | 16.2<br>2.2<br>7.3<br>11.5<br>1.9                    |                                                    | 11<br>£ -      | 5 6<br>18<br>29 7                   | 5_4                                | +1<br>+6<br>+1 | 1 1 1                                   | 1 2<br>1 8<br>3 0                          | 1 0<br>1 2<br>3 9                          | 22222                      | 0<br>0<br>10                    | 7 8<br>7 7<br>8 0<br>4 3<br>4 7        | 8 0<br>7 6<br>8 4<br>3 0<br>5 3           | -4                                      | 1                                       | 7 . 7<br>3 . 7<br>5 . 7<br>1 . 9       | 7 5<br>3 3<br>5 6<br>1 3               | 4477774                    | 0.07        | 5 2<br>2 5<br>2 2<br>3 1<br>5 1<br>5 0 | 2 3<br>2 8<br>5 6<br>5 0               |
|           | 5 9 10                                  |                      | 24 .7<br>5 .9<br>5 .0                    | 24 .3<br>4 .7<br>4 .2               | 2 4                               | ii<br>n                          | 9.4<br>21.3<br>14.1                                  | 7.7<br>22.3<br>14.3                                  |                                   | 11                         | 19,3                                                 | 2.6                                                  | 40                                                 | 0 0            | 10 6<br>26 1<br>16 9                | 31.8<br>11.1<br>26.7<br>17.7       | -1             | 17779                                   | 3 0<br>3 6<br>3 5<br>2 0                   | 4 1<br>3 6<br>3 9<br>2 1                   |                            | 1 -                             | 4-7                                    | 5   2                                     | 世界でなけ                                   | 1                                       | 4 0<br>2 2<br>3 1<br>6 4               | 4 1<br>2 2<br>2 6<br>5 7               |                            | 1.          | 17                                     |                                        |
|           | 2 10<br>1 11<br>1 11<br>1 12            |                      | 15 3<br>7 6<br>24 1<br>8 8               | 15 9<br>7 1<br>23 9<br>8 0          | 1 6                               | 1 1 1                            | 15.1<br>15.8<br>30.9                                 | 15 6<br>16 6<br>32 4                                 | 784534                            | 11<br>11<br>11<br>11<br>11 | 24.1<br>7.0<br>27.2<br>10.6<br>11.1                  | 23.5<br>7.2<br>27.2<br>9.7<br>13.3                   | 1                                                  | 1              | 23 0<br>14 6<br>7.2                 | 23_1<br>15_6<br>6_9                | +0<br>+0       | -                                       | 2 9 3 2 2 8                                | 3=9<br>4=0<br>2=0                          | 0 7 4                      | 1                               | 4.0                                    | 316                                       | 7                                       | 3                                       | 4.6<br>2.7                             | 4.3                                    | 77                         | 1 1         | 11                                     | 7,1                                    |
| 70        | 1 12                                    |                      | 3 .7<br>11 .8                            | 4 6<br>11 1                         | 1                                 | 100                              | 11 2<br>21 5<br>7 7                                  | 11 7<br>23 0<br>7 2                                  |                                   | 13                         | 19,1                                                 | 18,5                                                 | マヤヤマナ                                              | 1              | 7.2<br>12.3<br>20.3<br>5.5          | 7_3<br>11.9<br>22.1<br>4.5         | 7776           | 5                                       | 1 8<br>5 4<br>3 7<br>2 1                   | 2 - 3<br>5 - B<br>4 - 1<br>2 - 3           | 1                          | 11111                           | A.6<br>6.5<br>1.2<br>1.1<br>A.8        | 9.1<br>1.0<br>0.6<br>4.8                  | *77777                                  | 4 5                                     | 1.6                                    | 2.9<br>1.3<br>2.3<br>5.7               | 777777                     | 2 2 2 2     | 9.8<br>3/5<br>6/7<br>3/6               | 9.3<br>3.2<br>6.5<br>3.8               |

of its highly ordered Al/Si arrangement, has a doubled cell ( $c \simeq 14 \,\text{Å}$ , similar to anorthite) and an unconventional monoclinic space group, I2/c. In dSrf, as in the 'average' structure of Srf (see Fig. 1a,b and "Structure Refinement"), Sr and O<sub>A</sub>1 atoms are on the mirror, OA2 is on a diad, whereas in Srf all atoms are shifted slightly into general positions. Atomic pairs  $O_BO-O_Bm$ ,  $O_CO-O_Cm$ ,  $O_DO - O_Dm$ ,  $T_1O - T_1z$ , and  $T_2O - T_2z$ , which were symmetrically equivalent in the disordered C2/m structure, are distinct in the ordered I2/c unit cell; oxygens are pseudo-mirror-related and tetrahedral atoms are related by pseudo-translation in the z direction (Fig. 1c,d). The topologies of the tetrahedral frameworks of the two structures are very similar. The Al/Si alteration in Srf is nearly perfect (Fig. 1d). However, the mean T-O distances  $(\langle T_1O-O\rangle = 1.627, \langle T_1z-O\rangle = 1.732, \langle T_2O-O\rangle =$ 

1.736,  $\langle T_2 z - O \rangle = 1.630$  Å), when compared with  $\langle \text{Si-O} \rangle = 1.613$  Å and  $\langle \text{Al-O} \rangle = 1.747$  Å in anorthite (Wainwright and Starkey, 1971) indicate about 10 percent Al in Si-rich sites and 10 percent Si in Al-rich sites.

The 1.69 Al atoms in dSrf are highly disordered  $(\langle T_1 - O \rangle = 1.670, \langle T_2 - O \rangle = 1.657 \text{ Å})$  with Al contents of  $T_1$  and  $T_2$  variously estimated from  $t_1 = 0.43$  to 0.49 and  $t_2 = 0.34$  to 0.39 (Grundy and Ito, 1974, Table 6). Linear equations relating mean T-O distances to Al content (Jones, 1968; Ribbe and Gibbs, 1969) yield the lower values for both sites, adding up to an estimated 1.54 Al atoms in this compound. The reason for this is evident in Figure 2 which shows that when compared to all other relevant feldspar structural data, the grand mean T-O distance in dSrf is discrepant with the value expected for an Al/(Al + Si) ratio of 0.435.

Table 3. Final Atomic Coordinates of I2/c SrAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> and a Listing of Parameter Shifts from the Positions of the Atoms in the "Average" C2/m Structure\*

| Atom                                                           | X          | $\boldsymbol{y}$ | z          |
|----------------------------------------------------------------|------------|------------------|------------|
|                                                                | At         | omic Coordin     | ates       |
| Sr                                                             | 0.2690(1)  | -0.0020(1)       | 0.0656(1)  |
| $T_1(0)$                                                       | .0066(2)   | .1746(1)         | .1083(1)   |
| $T_1(z)$                                                       | .0032(2)   | .1775(1)         | .6164(1)   |
| $T_{0}^{\perp}(0)$                                             | .6934(2)   | .1200(1)         | .1706(1)   |
| $T_2^2(z)$                                                     | .6845(2)   | .1137(1)         | .6716(1)   |
| O <sub>A</sub> (1)<br>O <sub>A</sub> (2)<br>O <sub>B</sub> (0) | .0045(4)   | .1289(4)         | .0003(2)   |
| $0^{11}_{\Lambda}(2)$                                          | .5911(7)   | .0002(3)         | .1427(4)   |
| $0_{\rm R}^{\rm G}(0)$                                         | .8267(6)   | .1266(4)         | .1054(3)   |
| $0_{B}^{B}(z)$                                                 | .8104(6)   | .1263(4)         | .6113(3)   |
| O <sub>C</sub> (0)<br>O <sub>C</sub> (z)<br>O <sub>D</sub> (0) | .0132(6)   | .2984(4)         | .1186(3)   |
| $O_{C}(z)$                                                     | .0188(6)   | .3090(4)         | .6304(3)   |
| $O_{C}^{D}(0)$                                                 | .1876(6)   | .1245(4)         | .1955(3)   |
| $O_{\rm D}^{\rm D}(z)$                                         | .1960(6)   | .1190(4)         | .7027(3)   |
|                                                                | Pa         | rameter Shi      | fts        |
| Sr                                                             |            | -0.0020(1)       |            |
| $T_{m1}$                                                       | +0.0017(2) | 0014(1)          | -0.0040(1) |
| $T_2^1$                                                        | +.0044(2)  | +.0031(1)        | 0005(1)    |
| 0.1                                                            | +.0045(4)  |                  | +.0003(2)  |
| 0 <sup>A</sup> 2                                               |            | +.0002(3)        |            |
| O <sub>R</sub>                                                 | +.0081(6)  | +.0003(4)        | 0029(3)    |
| 02                                                             | 0028(6)    | 0053(4)          | 0059(3)    |
| o <sub>D</sub> C                                               | 0042(6)    | +.0027(4)        | 0036(3     |

<sup>\*</sup>Estimated standard errors are in parentheses and refer to the last decimal place.

It is uncertain whether or not the partially vacant alkaline earth site in dSrf is the cause of this discrepancy. While it is true that the lower effective charge at this site causes Sr-O distances to increase by  $\sim 0.03$  Å over those in stoichiometric SrAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>, and the T-O distances are 0.005 Å shorter than expected, a cause-and-effect relationship is by no means established because the unit cell volumes and configurations of Srf and dSrf are not in any way constrained (see discussion below).

The other estimates by Grundy and Ito of the Al content of  $T_1$  and  $T_2$  are based on Brown and Shannon (1973) bond-strength calculations ( $t_1 = 0.47$ ;  $t_2 = 0.35$ ) and least-squares site-population refinement ( $t_1 = 0.48$ ;  $t_2 = 0.39$ ). Only the former is free of bias, because the latter was chemically constrained ( $t_2 = 1.69 - t_1$ , silicon contents being determined for  $T_1$  and  $T_2$  by difference from 1.0). But Brown and Shannon bond strengths are by no means precise enough for this sort of determinative use as evinced by calculations on K-feld-spars by Grundy and Ito (1974, Table 5).

Although the actual Al/Si distribution is somewhat uncertain, it is clear that the shorter a dimension in dSrf (and thus its smaller unit cell volume-Table 1) is due primarily to the fact that dSrf has a lower Al/Si ratio (0.74) than stoichiometric Srf (Al/Si = 1.00). The statement that "The shortening of the a dimension is further enhanced due to the presence of vacancies on the alkali cation site . . ." (Grundy and Ito, 1974, p. 1321) is incorrect because the mean Sr-O distance in dSrf is 0.03 Å longer than that in Srf, regardless of whether the Sr site is considered to be 7- or 9-coordinated. The longer Sr-O distances are expected because of the lower positive charge at the partially vacant Sr site, but the usual effect in feldspars of enlarging the alkali or alkaline earth site, if the Al/Si ratio remains constant, is an increase in a and in volume (Wright and Stewart, 1968). The smaller values of these parameters observed in dSrf can only be explained by the substitution of Si (~0.13 Å smaller than Al) for Al.

The steric details of the  $SrAl_2Si_2O_8$  structure, when analyzed in the manner of Megaw, Kempster, and Radoslovich (1962), are well within the range of known aluminosilicate feldspars. Although I2/c Srf ( $\langle Sr-O \rangle = 2.691 \,\text{Å}$ ) and celsian ( $\langle Ba,K-O \rangle = 2.863 \,\text{Å}$ ; Newnham and Megaw, 1960) are monoclinic, and  $P\bar{1}$  anorthite with its smaller M cation ( $\langle Ca^{VII}-O \rangle = 2.517 \,\text{Å}$ ; Wainwright and Starkey, 1971) is triclinic, the tetrahedra in Srf are more like those of anorthite and are significantly more distorted than in celsian. In fact, using a distortion parameter  $\sigma^2_{\text{tet}}$  defined by Robinson, Gibbs, and

Table 4. Isotropic and Anisotropic Thermal Parameters for SrAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>\*

|                                                                                      | .00.               | -     | otropic         |       | ture facto |       |       |
|--------------------------------------------------------------------------------------|--------------------|-------|-----------------|-------|------------|-------|-------|
| Atom                                                                                 | B(Å <sup>2</sup> ) | β11   | β <sub>22</sub> | B33   | B12        | B13   | B23   |
| Sr                                                                                   | 1.07(2)            | 21(1) | 27(1)           | 13(1) | 1(1)       | 2(1)  | -2(0) |
| $T_1(0)$                                                                             | 0.64(4)            | 23(3) | 15(1)           | 6(1)  | -5(1)      | 3(1)  | -1(1) |
| $T^{\perp}(z)$                                                                       | 0.69(5)            | 36(3) | 16(1)           | 4(1)  | -2(2)      | 6(1)  | 0(1)  |
| $T_{1}^{1}(z)$<br>$T_{2}^{1}(0)$                                                     | 0.64(5)            | 19(3) | 16(1)           | 4(1)  | -2(1)      | 1(1)  | -1(1) |
| $T_2^2(z)$                                                                           | 0.67(4)            | 35(3) | 12(1)           | 6(2)  | 1(1)       | 5(1)  | 1(1)  |
| 0.(1)                                                                                | 0.9(1)             | 39(7) | 23(3)           | 6(3)  | 9(3)       | 8(3)  | -2(2) |
| oA(2)                                                                                | 0.9(1)             | 30(8) | 17(3)           | 13(2) | 8(3)       | `3(4) | 4(2)  |
| $o_{n}^{A}(0)$                                                                       | 1.2(1)             | 57(8) | 28(3)           | 12(2) | -2(4)      | 17(4) | -2(2) |
| O <sub>A</sub> (1)<br>O <sub>A</sub> (2)<br>O <sub>B</sub> (0)<br>O <sub>B</sub> (z) | 1.2(1)             | 36(8) | 31(3)           | 17(3) | -13(4)     | 16(4) | 0(2)  |
|                                                                                      | 1.1(1)             | 43(7) | 26(3)           | 7(3)  | -11(4)     | 0(3)  | -4(2) |
| O <sub>C</sub> (0)<br>O <sub>C</sub> (z)<br>O <sub>D</sub> (0)<br>O <sub>D</sub> (z) | 1.2(1)             | 43(8) | 21(3)           | 18(3) | -5(4)      | 13(4) | -2(2) |
| 0 (0)                                                                                | 1.3(1)             | 58(8) | 29(3)           | 10(3) | 3(4)       | 6(4)  | 2(2)  |
| $O^{D}(z)$                                                                           | 1.2(1)             | 36(8) | 31(3)           | 6(2)  | 4(4)       | -3(4) | -1(2) |

<sup>\*</sup>Estimated standard errors are in brackets and refer to the last decimal place.

Table 5. Interatomic Distances (Å) and Angles (Degrees) for Partially Disordered I2/c SrAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>\*

|                                                                           | T-0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-0                 | 0-T-0   |
|---------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|
|                                                                           | distances |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | distance            | s angle |
| $T_1(0)$ tetrah                                                           | edron     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         |
| $r_1^{(0)} - o_A^{(1)} - o_B^{(0)} - o_C^{(0)} - o_D^{(0)}$               | 1.644     | O <sub>A</sub> (1)-O <sub>B</sub> (0)<br>-O <sub>C</sub> (0)<br>-O <sub>C</sub> (0)<br>O <sub>B</sub> (0)-O <sub>C</sub> (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.525               | 101.5   |
| $-0_n^{\mathbf{A}}(0)$                                                    | 1.617     | $A = -0^{B}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.754               | 115.5   |
| $-0^{B}(0)$                                                               | 1.612     | -0°(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.544               | 101.9   |
| -0°(0)                                                                    | 1.633     | 0 (0)-0 <sup>D</sup> (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.683               | 112.4   |
| D(0)                                                                      | 1.055     | BCCCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.739               | 114.9   |
|                                                                           |           | 0 (0) -0 <sup>D</sup> (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 110.0   |
|                                                                           | 1 (07     | o <sub>B</sub> (0)-o <sub>D</sub> (0)<br>-o <sub>C</sub> (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.658               | 109.4   |
| Mean                                                                      | 1.627     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.651               | 109.4   |
| $\frac{T_1(z)}{z}$ tetrah                                                 | nedron    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         |
| $T_1(z) - 0_A(1)$<br>$-0_B(z)$<br>$-0_C(z)$<br>$-0_D(z)$                  | 1.755     | $0_{A}(1) - 0_{B}(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.655               | 99.6    |
| $-0_{\rm p}^{\rm A}(z)$                                                   | 1.721     | $-0^{\mathrm{D}}(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.943               | 115.9   |
| $-0^{B}_{a}(z)$                                                           | 1.716     | -0-(z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.661               | 99.4    |
| $-0^{C}(z)$                                                               | 1.735     | 0(z) - 0(z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.888               | 114.3   |
| D (-)                                                                     |           | B -0 (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.929               | 115.9   |
|                                                                           |           | $ \begin{array}{ccc} A & -O_{C}^{B}(z) \\ & -O_{D}(z) \\ O_{B}(z) - O_{C}(z) \\ & -O_{D}(z) \\ O_{C}(z) - O_{D}(z) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.836               | 110.5   |
| Mean                                                                      | 1.732     | C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.819               | 109.3   |
| m (0) totrol                                                              | nodron    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         |
| $T_2(0)$ tetral                                                           |           | 0 (2) 0 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. 700              | 106.8   |
| <sup>1</sup> 2(0)-0 <sub>A</sub> (2)                                      | 1.738     | A(2)-0B(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.788               |         |
| -0 <sub>B</sub> (0)                                                       | 1.734     | -0 <sub>C</sub> (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.680               | 101.1   |
| -0 <sub>C</sub> (0)                                                       | 1.732     | -0 <sub>D</sub> (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.779               | 106.1   |
| $T_{2}^{(0)}$ $-0_{A}^{(2)}$ $-0_{B}^{(0)}$ $-0_{C}^{(0)}$ $-0_{D}^{(0)}$ | 1.739     | $0_{R}(0)-0_{C}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.884               | 112.6   |
| 2                                                                         |           | $-0_{n}^{0}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.893               | 112.8   |
|                                                                           | -         | $\begin{array}{c} o_{A}(2) - o_{B}(0) \\ - o_{C}(0) \\ - o_{D}(0) \\ o_{B}(0) - o_{C}(0) \\ - o_{C}(0) \\ o_{C}(0) - o_{D}^{D}(0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.944               | 116.0   |
| Mean                                                                      | 1.736     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.828               | 109.2   |
| $T_2(z)$ tetral                                                           | nedron    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         |
| $T_2(z) - O_A(2)$<br>$-O_B(z)$<br>$-O_C(z)$<br>$-O_D(z)$                  | 1.641     | 0.(2)-0_(z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.642               | 107.8   |
| -0 <sup>A</sup> (z)                                                       | 1.629     | A -0B(z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.542               | 102.9   |
| -0 <sup>B</sup> (z)                                                       | 1.609     | -0°(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.663               | 108.5   |
| -0 <sup>C</sup> (2)                                                       | 1.641     | 0 (2)-00(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.707               | 113.4   |
| -0 <sub>D</sub> (2)                                                       | 1.041     | B(2)-0C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.678               | 109.9   |
|                                                                           |           | $0_A(2)-0_B(z)$ $-0_C(z)$ $-0_C(z)$ $0_B(z)-0_C(z)$ $0_C(z)-0_C(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.723               | 113.8   |
| Mean                                                                      | 1.630     | $0_{\underline{C}}(z) - 0_{\underline{D}}^{\underline{D}}(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.659               | 109.4   |
| nean                                                                      | 1.030     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.037               | 107.4   |
|                                                                           | Sr-O      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | T-0-T   |
|                                                                           | distances |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | angles  |
| Sr-0 <sub>A</sub> (1)                                                     | 2.630     | $T_1(0) - 0_{\Delta}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -T <sub>1</sub> (z) | 137.8   |
| $-0_{\Lambda}^{*}(1)$                                                     | 2.650     | $T_2^+(0) - 0_A^{(1)}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-T_{2}(z)$         | 127.7   |
| $-0^{A}(2)$                                                               | 2.445     | $T_1^{L}(0) - 0_n^{R}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-T_{2}^{2}(0)$     | 144.4   |
| $Sr-O_A(1)$<br>$-O_A(1)$<br>$-O_A(2)$<br>$-O_B(0)$                        | 2.746     | $T_1(0) - 0_A(1) - T_2(0) - 0_A(2) - T_1(0) - 0_B(0) - T_1(z) - 0_B(z) - T_1(z) - T$ | $-T_2^2(z)$         | 145.6   |
| -0.(z)                                                                    | 2.855     | $T_{1}(0)-0_{C}(0)-T_{1}(z)-0_{C}(z)-T_{1}(0)-0_{D}(z)-T_{1}(z)-0_{D}(z)-T_{1}(z)-0_{D}(z)-T_{1}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T_{D}(z)-T$ | $-T_{2}(0)$         | 129.6   |
| $-0^{\rm B}_{\rm b}(0)$                                                   | 2.769     | $T_{1}^{1}(z) - 0_{2}^{0}(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-T_0^2(z)$         | 132.3   |
| $-0^{D}(z)$                                                               | 2.743     | $T_{+}^{\perp}(0) - 0_{-}^{C}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-T_{0}^{2}(0)$     | 139.7   |
| -0 <sup>D</sup> (0)                                                       | 3.229     | $T^{1}(z) - 0^{D}(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-T_{-}^{2}(z)$     | 138.1   |
| -0B(0)<br>-0D(z)<br>-0C(0)<br>-0C(z)                                      | 3.010     | -1'-' D'D'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |         |
| C'2/                                                                      | 3.010     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean                | 136.9   |

\*Estimated standard error for all T-0 and Sr-0 bond lengths is 0.005 Å, for 0-0 distances 0.007 Å, and for 0-T-0 and T-0-T angles 0.3°.

Ribbe (1971), and relating it to the total number of polyhedral elements (edges plus corners) shared between a tetrahedron and the M-polyhedron, it is obvious from Figure 3 that the O-T-O bond angle strains in anorthite and Srf are very similar indeed.



Fig. 2. Grand mean T–O distances versus Al/(Al + Si) for a variety of feldspars. In order of increasing  $\langle\langle T$ – $O\rangle\rangle$ , they are high and low albite, An<sub>10</sub>, An<sub>20</sub>, dSrf, An<sub>70</sub>, An<sub>30</sub>, celsian  $P\bar{1}$  anorthite, and Srf. See Ribbe et al (1974) for references.

Phillips, Kroll, Pentinghaus, and Ribbe (1975) have found that the parameter  $\langle M\text{-}O\rangle/\langle\langle T\text{-}O\rangle\rangle$  is linearly related to the mean T-O-T angle in paracelsian-type structures with the general formula  $M^{2*}T_2^{3*,2*}T_2^{4*,5*}O_8$ . The same relationship holds for feldspars of the type  $M^{2*}\text{Al}_2\text{Si}_2\text{O}_8$  (Fig. 4), except that the slope of the feldspar line is only one-fourth as great as that of the paracelsian line, and  $\langle T\text{-}O\text{-}T\rangle$  in feldspars is 10° greater than in paracelsians. It is thought that these may be indications of the greater flexibility of the feldspar tetrahedral framework whose T-O-T angles show substantial ranges within individual structures. The T-O-T angles within individual paracelsians are generally more



Fig. 3. Mean T-O-T angle versus the mean M-O distance (assuming 7-coordination) divided by the grand mean T-O distance for three feldspar structures: An (anorthite, Wainwright and Starkey, 1971), Srf (SrAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>, this paper), Cn (celsian, Newnham and Megaw, 1960).



Number of shared polyhedral elements

Fig. 4. Mean distortion index  $\sigma_{\rm tet}^2$ , as defined by Robinson *et al* (1970), plotted against the number of shared polyhedral elements (edges plus corners) for AlO<sub>4</sub> and SiO<sub>4</sub> tetrahedra in anorthite (open symbols) and Srf (dark symbols). *Cf* Fig. 8, p. 41, in Ribbe *et al* (1974).



Fig. 5. Individual T-O distances in Srf plotted against the parameter  $\Sigma[1/(Sr-O)^2]$  and grouped according to whether the oxygen atom involved in the T-O bond is 2-, 3-, or 4-coordinated (Roman numerals). Large X's indicate mean values for each coordination number.



Fig. 6. Differences in interatomic distances for the pseudo-symmetrically related pairs of M-O bonds plotted against mean M-O distances for the seven-coordinated polyhedra in anorthite (Ca; values represent the means for 4 M atoms), in Srf, and in celsian (Ba).

restricted, but the mean T-O-T values for this group are much more sensitive to changes in the size of the large cation relative to the mean size of the cation occupying tetrahedral sites in the framework.

Inasmuch as there are 2-, 3-, and 4-coordinated oxygen atoms in Srf (as in anorthite-Megaw et al, 1962), it is expected that in general, T-O bonds to oxygens with the higher coordination numbers will be the longer. This is borne out in Figure 5 which is a plot of T-O distance against the sum of the inverse squares of the Sr-O distances to the oxygen involved. The value of the latter parameter is, of course, 0.0 for the 2-coordinated  $Q_cO$  and  $O_c m$  atoms. It is ~0.28 for the 4-coordinated  $O_A 1$ atom and 0.12 to 0.16 for the 3-coordinated  $O_A 2$ ,  $O_B$ , and  $O_D$  atoms. Using this parameter, individual T-O distances in Srf cannot be as well predicted as in anorthite (Phillips, Ribbe, and Gibbs, 1973), but the principles influencing them are clearly comparable.

In the solid-solution series  $(Ca,Sr)Al_2Si_2O_8$ , synthesized by Bruno and Gazzoni (1968) and Nager, Hoffmann, and Nissen (1969), the triclinic- $(P\bar{1})$ -monoclinic (I2/c) transition occurs at approximately  $An_{10}Srf_{90}$ . Thus it is apparent that the radius of Sr is just large enough to prevent collapse of the tetrahedral framework in this partially disordered Srf. An examination of the M-O distances in anorthite, Srf, and celsian shows that as the cation radius increases, the M-coordination polyhedron becomes more regular in shape, *i.e.*, it approaches

C<sub>s</sub> symmetry. This is graphically illustrated in Figure 6 where the differences in interatomic distances for the pseudo-symmetrically related pairs of M-O bonds are plotted against the mean M-O distance for the seven-coordinated polyhedra. (Because there are four non-equivalent Ca atoms in anorthite, the values for the Ca polyhedron are average ones). Note that the pseudo-center-related pair (O<sub>4</sub>1) differ the least, even in anorthite, whereas the pseudo-mirror-related pairs  $(O_B, O_C, O_D)$  differ by 0.6-0.8 Å on the average in anorthite, by 0-0.2 Å in Srf, and less than 0.02 Å in celsian. Because of the ordered Al/Si distribution in these feldspars, the M-polyhedron is unlikely to attain  $C_s$  symmetry regardless of cation size, for even if the M atom were on a special position, it would be on a c-glide and not a mirror plane in these structures with  $c \simeq$ 14 Å. By contrast, the Sr polyhedron in dSrf does have C<sub>s</sub> symmetry, but dSrf is highly disordered with Al/Si < 1 and space group C2/m ( $c \simeq 7 \text{ Å}$ ). A refinement of the structure of celsian (Griffen, in preparation) will provide more precise reference points for further comparisons of feldspar-like compounds. Additional discussion of  $M^{2+}T_2^{3+}T_2^{4+}O_8$ structures may be found in Bruno and Facchinelli (1974).

#### Acknowledgments

We thank Professor Mazzi and his co-workers at the Istituto di Mineralogia in Pavia for permitting us to use their diffractometer. G.C. acknowledges the North Atlantic Treaty Organization for a Consiglio Nazionale delle Ricerche grant to work at Virginia Polytechnic Institute and State University. P.H.R. is grateful for support from the Earth Sciences Section, National Science Foundation, NSF Grant DES 71-00486 A 03.

#### References

- BROWN, I. D., AND R. D. SHANNON (1973) Empirical bondstrength-bond-length curves for oxides. Acta Crystallogr. A29, 266-282.
- Bruno, E., M. Calleri, and G. Chiari (1973) The structure of strontium feldspar (SrAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>) (abstr.). *Proc. AIC-JCK Italo-Yugoslav Meet.*, *Trieste*, p. 85.
- investigations on strontium feldspar. Z. Kristallogr. 132, 327–333.
- unit-cell dimensions, structural, and chemical parameters in plagioclases and alkaline-earth feldspars. Colloque International sur les Solutions in Mineralogie, CNRS, Orleans, Vol. 2, 393-415.
- Brunton, G. D., L. A. Harris, and O. C. Kopp (1972)
  Crystal structure of a rubidium iron feldspar. Am.
  Mineral. 57, 1720-1728.

- Busing, W. R., K. O. Martin, and H. A. Levy (1962) Orfles, a Fortran crystallographic least-squares refinement program. *U.S. Nat. Tech. Inform. Serv.* Ornl-TM-305.
- CRAIG, J. R., S. J. LOUISNATHAN, AND G. V. GIBBS (1973) Al/Si ordering in paracelsian (abstr.). Trans. Am. Geophys. Union, 54, 496.
- Gasperin, M. (1971) Structure cristalline de RbAlSi<sub>3</sub>O<sub>8</sub>. Acta Crystallogr. **B27**, 854–855.
- GRUNDY, H. D., AND J. ITO (1974) The refinement of the crystal structure of a synthetic non-stoichiometric Sr feldspar. *Am. Mineral.* **59**, 1319–1326.
- JONES, J. B. (1968) Al-O and Si-O tetrahedral distances in alumino-silicate framework structures. Acta Crystallogr. B24, 355-358.
- LINDBLOOM, J. T., G. V. GIBBS, AND P. H. RIBBE (1974) The crystal structure of hurlbutite: a comparison with danburite and anorthite. *Am. Mineral.* **59**, 1267–1271.
- Megaw, H. D. (1974) The architecture of the feldspars. In, *The Feldspars*, W. S. MacKenzie and J. Zussman, Eds. Manchester Univ. Press, Manchester, England, p. 2-24.
- ——, C. J. E. KEMPSTER, AND E. W. RADOSLOVICH (1962) The structure of anorthite, CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>. II. Description and discussion. *Acta Crystallogr*. **15**, 1017–1035.
- NAGER, H. E., W. HOFFMAN, AND H.-U. NISSEN (1969) Die Mischreihe (Ca, Sr)-[Al<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>]. Naturwissenshaften, 3, 136.
- Newnham, R. E., and H. D. Megaw (1960) The crystal structure of celsian (barium feldspar). *Acta Crystallogr.* 13, 303-312.
- PHILLIPS, M. W., P. H. RIBBE, AND G. V. GIBBS (1973) Tetrahedral bond length variations in anorthite. Am. Mineral. 58, 495–499.
- -----, G. V. Gibbs, AND P. H. Ribbe (1974) The crystal structure of danburite: a comparison with anorthite, albite, and reedmergnerite. *Am. Mineral.* **59**, 79–85.
- , H. Kroll, H. Pentinghaus, and P. H. Ribbe (1975) The structures of synthetic paracelsian analogs, SrGa<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> and SrGa<sub>2</sub>Ge<sub>2</sub>O<sub>8</sub>. Am. Mineral. 60 (in press).
- RIBBE, P. H., AND G. V. GIBBS (1969) Statistical analysis of mean Al/Si-O bond distances and the aluminum content of tetrahedra in feldspars. *Am. Mineral.* **54**, 85–94.
- ———, M. W. PHILLIPS, AND G. V. GIBBS (1974) Tetrahedral bond length variations in feldspars. In, *The Feldspars*, W. S. MacKenzie and J. Zussman, Eds. Manchester Univ. Press, Manchester, England, p. 25–48.
- ROBINSON, K., G. V. GIBBS, AND P. H. RIBBE (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. *Science*, **172**, 567–570.
- Stout, G. H., and L. H. Jensen (1968) X-ray Structure Determination. Macmillan, New York, 467 p.
- WAINWRIGHT, J., and J. STARKEY (1971) A refinement of the structure of anorthite. Z. Kristallogr. 133, 75–84.
- WRIGHT, T. L., AND D. B. STEWART (1968) X-ray and optical study of alkali feldspar. I. Determination of composition and structural state from refined unit-cell parameters and 2V. Am. Mineral. 53, 38-87.

Manuscript received, August 8, 1974; accepted for publication, October 10, 1974.