Effects of Preferred Orientation on X-Ray Diffraction Patterns of Gypsum

P. E. GRATTAN-BELLEW

National Research Council of Canada, Division of Building Research Ottawa, Canada K1A OR6

Abstract

Intensities of the stronger reflections 020, 021, and 041 obtained from X-ray powder photographs of gypsum from pyritic shale and other sources differ from those listed in the Joint Committee on Powder Diffraction Standards files. The differences are shown to be due to the effect of preferred orientation on (010) planes.

Two X-ray diffraction patterns for gypsum are listed in the Joint Committee on Powder Diffraction Standards (JCPDS) files, both shown as highly reliable. Intensities of the stronger reflections, notably 020, 021, and 041, measured with a Debye-Scherrer camera from a sample of gypsum taken from black pyritic shale (Penner, Eden, and Grattan-Bellew, 1973) differed significantly from those on JCPDS cards 6-46 and 21-816 (Table 1).

Samples of gypsum from other sources produced diffractograms similar to those of the gypsum taken from the shale (Table 2). Diffractograms obtained by means of a powder diffractometer showed intensities that matched those on JCPDs card 6-46. All samples for the diffractometer were prepared by sedimenting gypsum on a glass slide. Gypsum, when ground, forms either flat, plate-like crystals or acicular crystals, both having well developed (010) faces (Fig. 1). The crystals tend to lie on the (010) faces, giving rise to marked, preferred orientation that results in greatly enhanced intensity of the 020 reflection observed in diffractometer traces.

The intensities shown on JCPDs card 6-46 were also obtained from a diffractometer trace. The usual methods of sample preparation (Klug and Alexander, 1974) were used without success to try to eliminate preferred orientation from the diffractometer mounts. A dilute suspension of gypsum sedimented on a flat piece of polyurethane foam made into a sample holder produced a pattern of intensities essentially free from the effect of preferred orientation, but the intensities were so weak that only the strongest could be observed. When the intensities were increased by the addition of more gypsum, preferred orientation was reintroduced.

Debye-Scherrer photographs were obtained from

TABLE 1. Interplanar Spacings, Intensities, and Indices of Gynsum

			of Gy	psum			
	- A -		- B -			-C-	
D	I/I	HKL	D	1/10	D	I/I _o	HKL
7.61	45	020	7.6454	80	7.56	100	020
4_74	4	111	4.7606	3	-	-	
4.28	90	021	4.2820	100	4.27	50	121
3.80	8	130]	3.8018	18	3.79	20	031
		040}		15	3.163	4	040∫ 112̄
3.17	4	111	3,1690			55	141
3.07	30	041 221)	3.0623	92	3,059		
2.871	100	200	2,8699	59	2.867	25	002
2.788	20	112	2.7955	12	2,786	6	211
2.684	50	150	2.6812	37	2.679	28	051
		220]					022J 150)
2.595	2	151	2.58	6	2.591	4	202
		0025	43		2.530	<1	060
- 406	20	203		11		6	200
2.486	20	202	2.4998	11	2.495		
2.475	2	132		-	2.450	-	222
2,454	6	022	2.4538	9	2.450	4	222
2.406	2	241	2.4028	4	2.400	4	141
2,220	6	151	2,2125	19	2.216	6	152
2.142	2	042	-	-	2,139	2	242
2.087	14	242	2.0785	30	2.080	10	123
2.073	20	311)	-	_	2.073	8	112\ 251
2.048	4	152∫ 112	2.0473		160		231)
		171		7	1.990	4	170
1.993	2	1/1	1.9918	3		2	
1-954	6	312	1_9491	2	1.953	2	211 080
1.900	4	310 260	1.9009	19	1.898	16	062
1.8	6	241	1.8787	18	1.879	10	143
1.865	4	113	-	-	1.864	4	312
					1.812	10	262
1.812	4	062	1.8104	19	1.796		321
1.798	6	223	-	-		4	
1.778	-4	262	1.7758	14	1.778	10	260
	-	+	-	-	1 = 711	2	253
1.685	2	023	-	-	1 - 684	2	323
1.664	4	243	1.6622	8	1.664	4	341
1.646	2	261	-	~	1,645	2	163
1.622	4	202 281	1-6172	12	1.621	6	204,ETC.
4		201)	9	74	1.599	<1	352,190
1.587	2	311	1.5797	5	1.584	2	224,ETC.
1,552	2	222∫ 402			1.532	2	282
		402 422,ETC	_	_	1.522	2	222,134
1,521	2		-	-	1 - 322	4	222,134
1,440	4	441	-	-			-
1.434	4	133					
	2	400)					
1.418	2	204					
1.402	2	423					

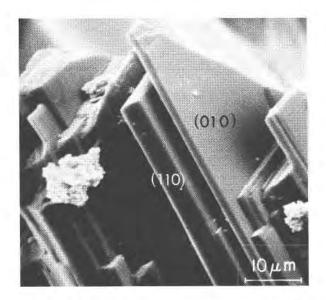
JCPDS card 21-816 (with indices listed on card)

Brackets join indices of reflections not resolved on diffractograms,

Authors No. 1073 JCPDS card 6-0046 (with indices listed on card)

TABLE 2. Interplanar Spacings and Intensities of Gypsum

HKL		-B-		-C-		-D-		-E-		
	D	I/I _o	D	I/I _o	D	I/I _o	D	I/I _o	D	I/I
020	7.5879	84	7.6454	80	7.5806	81	7.5891	100	7,576	100
11 I	4.7450	1	4.7606	3	4.7354	2	-	7 to 1		_
021	4.2741	100	4.2820	100	4.2822	100	4.2716	54	4.276	6
040	3.7943	14	3.8018	18	3.8181	18	3.7968	23	3.798	22
111	3.1611	3	3.1690	15	3.1640	18	-	-	-	-
041	3.0597	73	3.0623	92	3.0676	73	3.0601	52	3.061	7
221	2.8690	44	2.8699	59	2.8744	53	2.8669	22	2.866	1
200					NOT OBSER		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2.000	•
$11\bar{2}$	2.7841	7	2.7955	12	2.7955	7	2.7876	3		
150)	2 (700	3.6								
220 \\ 151 \\	2.6799	36	2.6812	37	2.6852	31	2.6880	16	2.68	2
002	2.5890	3	2.58	6	2.5945	5	2.5971	3	-	-
$20\overline{2}^{1}$ $13\overline{2}$	2.49	11	2.4998	11	2.4931 NOT OBSER	11 VED	2.4977	3	2	-
022	2.4507	9	2.4538	9	2.4535	8	2,4546	2		
241	2.4082	3	2.4028	4	2.4333	5			-	-
151	2.2130	12	2.2125	19			2.4062	1	2 21	-
042		12	2.2123		2.2151	13	2.2220	8	2.21	1
242	2.0792	30	2.0785	7.0	2.1348	6		-	-	
221 311)	2.0732	30	2.0765	30	2.0809 NOT OBSER	27 VED	2.0837	10	-	-
15Ž					NOT OBSER	VED				
112	2.0434	3	2.0473	-	2.0407	10	-	-	-	2
171	1.9878	1	1.9918	3	1.9938	7	1.9956	2	-	_
312	1.9512	1	1.9491	2	1.9193	7	1.9572	1	4	-
310 \ 260 \	1.8953	19	1.9009	19	1.9010	15	1.9044	9	1.899	2
080					NOT OBSER	VED				
241 113	1.8733	16	1.8787	18	1.8788 NOT OBSER	14	1.8851	5	-	-
$\frac{082}{223}$	1.8069	17	1.8104	19	1.8104 NOT OBSER	12	1.8159	6	-	-
262 023	1.7775	14	1.7758	14	1.7759 NOT OBSER	11	1.7841	6	-	-
243	1.6614	7	1.6622	8	1.6636	17	1.6676	2		
261	0014	2	1.0022	-	1.0030		1.00/0		1 6403	1
202			100		-	-	~	-	1.6481	1
281+ 311	1.6200	10	1.6117	12	1.6204	10	1.6234	5	-	+
222+		-	1.5797	5	1.6060	11	1.5859	1	-	-
133		-	1.4361	6	1.4381	11		_		


Brackets join reflections which were not resolved.

PWD photo 1079 (hydrated pottery plaster) PWD photo 1073 (gypsum from pyritic shale) - B-

⁻C-PWD photo selenite

⁻D-Diffractometer trace of selenite on urethane foam sample holder

Diffractometer trace of selenite, smear mount on glass slide

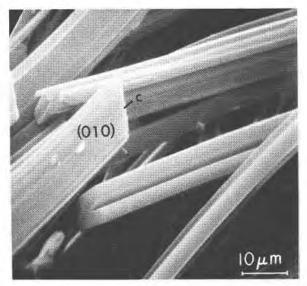


FIG. 1. Gypsum crystals on the surface of fragments of shale, magnified about 2,000 times in the scanning electron microscope. Either tabular morphology (1a) or acicular morphology (1b) is obtained when larger crystals of gypsum are crushed for X-ray powder diffraction examination. It is evident that it would be difficult to avoid preferred orientation in diffractometer mounts owing to the tendency of the crystals to lie on the well developed (010) faces.

samples of gypsum packed into lithium glass capillary tubes; intensities were measured from microdensitometer traces of the photographs. Intensities from the powder photographs matched those obtained from a crystal of gypsum mounted on a single crystal diffractometer, indicating that the X-ray powder photographs were essentially free from the effect of preferred orientation. A similar pattern of intensities was observed on a powder pattern obtained from a single crystal mounted on a Gandolfi camera (Gandolfi, 1967) and by Becherer and Fiedler (1955) using a Debye-Scherrer camera.

The intensities listed on JCPDs card 21-816 are different from those of card 6-46 and from those found by the author (Table 1). The reason for this is not apparent because the geometry of the transmission powder camera and the experimental details used to obtain the intensity data for card 21-816 are not given.

Acknowledgments

The author is grateful to Dr. A. W. Hanson, Division of Biological Sciences, National Research Council of Canada, for useful discussions and for his contribution of single-crystal measurements. The author also wishes to thank P. J. Lefebvre for maintaining the X-ray laboratory and for taking many of the diffractograms used in this study.

This paper is a contribution from the Division of Building Research, National Research Council of Canada, and is published with the approval of the Director of the Division.

References

BECHERER, G., AND H. FIEDLER (1955) Über röntgenografische Untersuchungen des Abbindevorganges bei Gips. Silikattechnik 6.Jg., 7, 292-295.

Gandolfi, G. (1967) Discussion upon methods to obtain X-ray powder patterns from a single crystal. *Micr. Petrogr. Acta*, 13, 67-74

KLUG, H. P., AND L. E. ALEXANDER (1974) X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 2nd ed, John Wiley and Sons, p. 368-376.

PENNER, E., W. J. EDEN, AND P. E. GRATTAN-BELLEW (1973) Expansion of Pyritic Shales. National Research Council of Canada, Division of Building Research, CBD 152.