The average structure of An 62–66 labradorite

HANS-RUDOLF WENK
Department of Geology and Geophysics, University of California
Berkeley, California 94720

WERNER JOSWIG, TOKUHEI TAGAI, MASAAKI KOREKAWA
Institut für Kristallographie und Mineralogie
Universität Frankfurt a.M., Frankfurt, F.R. Germany

AND BRADLEY K. SMITH
Department of Geology and Geophysics, University of California
Berkeley, California 94720

Abstract

The paper reports results of X-ray and neutron structure refinements of four labradorites An 62–An 66 with different geological histories and different superstructures. A rapidly quenched crystal collected during the eruption of Surtsey (Iceland) is essentially disordered. Labradorite from massive lava flows of Lake County (Oregon) shows b reflections, and two metamorphic labradorites from the Central Alps display an intermediate plagioclase structure with e reflections. The average structure (c = 7 Å) of all four samples converging at R factors of 3–6% are virtually identical with well-defined Si/Al and smeared-out oxygen positions. We interpret this as evidence that the different superstructures consist of periodic stackings of similar basic units probably resembling those in lllanorthite but with different stacking orders. The main intensity contribution to superstructure reflections comes from displacements of oxygens in the superstructures, probably caused by Al-Si ordering.

Phase relations are illustrated in a hypothetical TTT diagram in which we summarize results from structure refinements, microstructural observations and changes during experimental heating. At high temperature (little undercooling below the critical temperature) ordering takes place by a nucleation and growth mechanism which produced IT domains separated by curved APB’s (antiphase boundaries) (Lake County). At larger undercooling continuous ordering prevails, giving rise to periodic APB’s and satellites in the diffraction pattern.

Introduction

Calcic plagioclase shows considerable structural variation which is expressed in superstructures and documented by reflections which appear in addition to the basic reflections present in X-ray diffraction patterns of albite (for a review and references see Smith, 1974). While the low and high albite structures are fairly well established (e.g. Harlow et al., 1973; Prewitt et al., 1976; Winter et al., 1977), all superstructures of plagioclase, including anorthite, are still open to debate. Structural changes in plagioclase are on one hand caused by variations in chemical composition, while on the other hand they are also a function of the history of formation. In this paper we compare average structures derived from X-ray and neutron diffraction data of four specimens with almost the same chemical composition, An 62–An 66, but of different geological origin. We discuss structural features and relate them to microstructural characteristics as observed with X-ray and neutron film and diffractometer methods and electron microscopy, hoping to gain further information about the geometry and stability of intermediate plagioclase.

Material

We chose four specimens of labradorite: two of volcanic origin but a different cooling history and two from regionally metamorphic marbles and am-
perature evolution of the Surtsey magma prior to eruption. Steinthorsson (1972) concluded from the composition of coexisting titanomagnetite and hemo-ilmenite that the temperature of equilibration was 1020°C and the oxygen fugacity log fO2 = -11.5. But since opaque minerals are relatively late crystallization products, 1020°C is a lower limit for the temperature at which the labradorite megacrysts formed. Direct temperature measurements in the extruding lava in fall 1964 with thermocouples gave values ranging from 1125 to 1180°C (Sigurgeirsson, 1965). We estimate that labradorite crystallized between 1100 and 1250°C, close to the liquidus temperature (~1350°C), and was quenched from a temperature above 1000°C within a few minutes.

The megacrysts are chemically very homogeneous with no observable zoning. Table 1 gives the results of new microprobe analyses which document deviations from stoichiometry. In H. R. Wenk and Wilde's (1973) vector representation, the analysis plots at a location typical of the substitution of Na by Ca plus vacancies, and we assume that the non-stoichiometric composition was attained during crystallization in the magma chamber. Optical properties are consistent with the high plagioclase series and an An content of 63 percent (E. Wenk et al., 1965).

The preliminary X-ray experiments included a lattice-constant determination by Dr. Kroll, Münster, using a Jagodzinski-type Guinier camera (Table 1) and a photographic investigation using both focusing and non-focusing techniques. Figures 1a and b show strongly exposed X-ray and neutron 0kl Weissenberg photographs on which diffuse e and c reflections (first mentioned by H. R. Wenk, 1966) are observed together with strong and sharp a reflections. e reflections are streaked normal to (013) in Okl photographs on which diffuse e and c reflections (first mentioned by H. R. Wenk, 1966) are observed together with strong and sharp a reflections. e reflections are streaked normal to (013) in Okl photographs and have a spacing of 1/30A⁻¹. Note the similarity of X-ray and neutron diffractograms.

Electron diffraction shows similar features (Fig. 2a, inset). The material is very homogeneous on a microscopic scale also. Locally a low-contrast lamellar structure can be imaged with a reflections which documents weak structural or chemical heterogeneities (Fig. 2a).

Lake County. The second sample is from the “sunstone” north of Plush, Lake County, Oregon. Labradorite occurs as large phenocrysts in porphyritic basalt with augite, olivine, labradorite (An 60), and magnetite. Physical properties of the labradorite phenocrysts, which compose about 10% of the rock, have been extensively studied by Stewart et al. (1966). Optical properties are in better agreement with the low-plagioclase series (Table 1). On the

<table>
<thead>
<tr>
<th>Table 1. Chemical and physical properties of labradorites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight percent oxides</td>
</tr>
<tr>
<td>Surtsey</td>
</tr>
<tr>
<td>SiO₂</td>
</tr>
<tr>
<td>Al₂O₃</td>
</tr>
<tr>
<td>CaO</td>
</tr>
<tr>
<td>Na₂O</td>
</tr>
<tr>
<td>K₂O</td>
</tr>
<tr>
<td>Fe₂O₃</td>
</tr>
</tbody>
</table>

Formula based on 8 oxygens

<table>
<thead>
<tr>
<th>Sl</th>
<th>Al</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3.51</td>
<td>1.63</td>
<td>0.34</td>
<td>0.006</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Lattice parameters

a (Å)	8.1736 (5) ²	8.1747 (9) ²	8.151 (3) ²	8.152 (4) ³
b (Å)	12.8736 (5)	12.8706 (6)	13.829 (5)	12.83 (6)
c (Å)	7.1022 (2)	7.1014 (3)	7.103 (4)	7.079 (4)
α (deg)	93.462 (6)	93.461 (5)	93.461 (5)	93.462 (5)
β (deg)	115.054 (5)	115.054 (5)	115.054 (5)	115.054 (5)
γ (deg)	89.70 (2)	89.70 (2)	89.70 (2)	89.70 (2)

Euler angels defining orientation of optical indicatrix

φ (deg)	51.81⁷	44.09⁷	40.5⁴
θ (deg)	36.2	34.5	33.0
ψ (deg)	-25.8	-17.5	-16.0
2V (deg)	82.0	85.0	86.0

- Measured with 8-channel ARL microprobe.
- Determined with Jagodzinski-type Guinier camera by Dr. Kroll, Münster.
- Determined by automatic centering of 20 reflections on single crystal diffractometer.
- From E. Wenk et al. (1965).
- From E. Wenk (unpublished).
- From E. Wenk et al. (1975). Specimen Vz 624 from the same locality.
basis of lack of zoning Stewart et al. conclude that the phenocrysts formed in a magma chamber at depth under uniform conditions. They estimate a crystallization temperature of 1100°C. It seems that the primary crystallization may have been similar in Surtsey and Lake County labradorite, but that cooling in extensive lava flows was considerably slower in Lake County.

Single-crystal photographs show, in addition to a reflections, sharp b reflections as reported by Stewart et al. and diffuse e and c reflections. Diffuse e reflections can be distinguished from b reflections on the basis of intensity differences (Rainey and Wenk, 1978) and streaking. Diffuse streaks in c reflections are similar to those in the Surtsey specimen. With the electron microscope it is possible to image a domain structure with b reflections (Fig. 2b). We interpret the curved boundaries as APB's corresponding to those which have been observed in lunar anorthite.

Verzasca. This specimen is a regionally metamorphic labradorite of the same chemical composition from Gordemo, Verzasca Valley (E. Wenk et al., 1975). While the crystals from Surtsey and Lake County grew in a liquid magma, the metamorphic one crystallized in the solid state in rocks of sedimentary origin during regional metamorphism which reached peak temperatures of 620–650°C at the sample locality in late Miocene. Cooling was slow and extended over many million years. The crystal analyzed is extraordinary because it constitutes the calcic portion of an andesine (An 38)-labradorite (An 63) intergrowth, documenting simultaneous crystallization of the two phases. Optical properties and lattice constants are those of low plagioclase. Single-crystal photographs display sharp e satellites with a satellite vector $\Delta h = 0.080(9), \Delta k = 0.031(8), \Delta l = -0.261(10), T = 51.4(1.1)A$, which is close to that reported for igneous plagioclase of similar composition (Gay, 1956). Electron microscopy reveals a fringe pattern which is, however, fairly irregular. f fringes, imaged in darkfield with f and a reflections (Fig. 2d) represent more or less periodic APB's which decompose locally by pairwise recombination into b boundaries (compare Wenk, 1978b). The periodic structure is best preserved in areas which contain defects, reducing the mobility of APB's.

Experimental techniques

The refinement of the average structure using only a reflections was done with X-ray and neutron diffraction data. (For a general appraisal of advantages and disadvantages of neutron diffraction, compare e.g. Will, 1969.) Neutron diffraction was used for two main reasons. Firstly, we were hoping to be able to distinguish between Al and Si, whose neutron scattering lengths show a greater difference than X-ray scattering factors (Table 2). Secondly, we anticipated getting better resolution for positional and particu-
Fig. 2. Microstructural characterization of labradorites, using a JEM100C electron microscope at 100kV accelerating voltage. Attached 0k1 SAD’s are taken on the same area but not in the same orientation as images. c* is horizontal. Bars in micrographs are 1000Å. (a) Surtsey. Fine structures are probably artifacts due to carbon coating and astigmatism. A possible lamellar structure is indicated by ink line. Darkfield with a reflection. (b) Lake County. Curved b APB’s. Darkfield imaged with b reflection. (c) Verzasca. Periodic APB’s imaged with c reflections (cf E. Wenk et al., 1975). The periodic structure is interrupted by curved boundaries. (d) Sisone. Periodic antiphase boundaries decomposing into curved b APB’s imaged with a and f reflections. The diffraction pattern with e and f satellites is taken in a region with periodic APB’s.

larly for thermal parameters because of the angle independence of neutron scattering lengths. Accurate thermal parameters are particularly important in average structures, where they do not only express thermal motion but also periodic or nearly periodic displacements of the atoms. Neither expectation was fulfilled. However, in the Surtsey and Lake County samples the agreements between neutron and X-ray
refinements are excellent, which makes us confident in the significance of the derived parameters (compare Tables 4 and 5) and the reliability of both diffrac-
tion techniques.

For the X-ray investigation full data sets of in-
tensities were collected using MoKα radiation from a
graphite monochromator by the ω-scan (Surtsey) and
θ–2θ scan technique (Lake County, Verzasca, and
Sissone). An absorption correction (μ = 13.4 cm⁻¹)
was applied only to Surtsey (computer program AB-

Neutron diffraction data were collected on a four-
circle diffractometer at the research reactor FR2 of
the Kernforschungszentrum Karlsruhe, Germany.
The approximate flux at the sample position was 6 ×
10⁴ n cm⁻² sec⁻¹. With a neutron wavelength of λ :
1.0327Å from (311) planes of a copper mono-
chromator, intensities were measured in a ω-scan mode with variable step sizes according to the resolu-
tion curve.

For Lake County labradorite we also measured in-
tensities of b reflections and for the Verzasca and Sis-
sone samples pairs of e reflections, but the refinement of
the superstructures is not part of this paper.

Structure refinements were done with full-matrix
least-squares programs, varying 134 positional, ther-
mal, and occupational parameters with all reflections
of more than 3σ intensity. Reflections were weighted
according to individual standard deviations. Weights
w = 1/σ² were assigned to avoid overweighting of in-
tense reflections, where σ² = A + σc² + CF² and σc is
the standard deviation based on counting statistics.
For neutron data: A = 20, C = 0.001; for Surtsey X-
ray data: A = 3, C = 0.001; for Lake County, Ver-
zasca, and Sissone X-ray data: A = 0, C = 0.0025.
Atomic scattering factors were interpolated from the
table of Cromer and Mann (1968). Program CRYLSQ
(from X-RAY-SYSTEM, Stewart et al., 1970) was used
in Frankfurt, NUCLS6, a modified version of ORFLS
(Busing et al., 1962), at Berkeley. Surtsey X-ray data
were refined with both programs, and the results
were identical. Refinements converged with R factors
between 3 and 6% (Table 3).

In the asymmetric unit of the average structure,
there are 4 tetrahedral atoms, 8 oxygens, and a large
cation site occupied by Ca and Na which was split
into two positions of unequal occupancy. We at-
tended to split oxygen sites following the procedure
of Toman and Frueh (1973), but the refiaement did
not converge. Effective electrical charges were found
to be close to one-half of the full ionic charge and
scattering factors were adjusted accordingly in the re-
finement.

Results

We notice a great similarity of most parameters in
these refinements of the average structure of plagi-
oclase (Tables 4, 5, and 6). Surtsey and Lake County
labradorites are almost identical, even though the
former has very diffuse and weak e satellites and the
latter sharp b reflections in the diffraction pattern.
Neutron and X-ray refinements of the same samples
gave identical results, differences fging within one
standard deviation. Despite advantages of angle-in-

\[R = \frac{\sum w|F_o - F_c|^2}{\sum w|F_o|^2} \]
dependent scattering amplitudes and lack of absorption uncertainties, standard deviations for all parameters are higher in the case of neutrons, which we attribute to the fact that a rather large crystal had to be used and the number of measured intensities was much smaller.

Atomic positions

From atomic positions selected interatomic distances and angles (Table 7) were calculated. Of these average \((T-O)\) distances are most informative, because they have been used to derive the Al–Si distribution, assuming a linear relationship between bond-lengths and Al–Si occupancy (Ribbe and Gibbs, 1969; Ribbe et al., 1974). In all four samples we find that \(T_1(m) = T_2(m) = T_1(0)\) and \(T_3(0)\) is larger, in accord with previous determinations of sodic plagioclase (Fig. 3a). There is a larger difference in size in the metamorphic crystals, implying that Al has a site preference for \(T_1(0)\), but average bond-lengths are nowhere close to those of fully-ordered structures (e.g. for low albite: \((Al-O) = 1.743\AA, (Si-
O) = 1.612Å, Harlow et al., 1973; or for anorthite: (Al-O) = 1.746Å and 1.756Å, (Si-O) = 1.613 and 1.623Å, Czank, 1973). This is not due to partial order but to the fact that in the average structure (c = 7Å) of ordered anorthite Al and Si are superposed, resulting in an equal distribution of Al and Si over all four T sites ((T-O) ~ 1.685Å) (Fig. 3c). Figure 4 is a plot of (T-O) distances of average structures of plagioclase, which shows that the size of the tetrahedra does not vary linearly with the An content, implying a different Al–Si ordering pattern in chemically intermediate plagioclase from end members or indicating that the size-occupancy relation is not linear. In fact, the size of the Al site in sodic plagioclase seems much more sensitive to minor Si substitution than does the size of the Si site to Al substitution, which could be explained by a regular solution model with Al close to the radius-ratio limits from tetrahedral coordination being more unstable. Surtsey, Lake County, and Sissone follow closely the general trend, while for Verzasca the difference between T₁(0) and the other three sites is slightly larger.

We tried to refine the Al/Si distribution directly, based on differences in scattering power. We are at the limit of resolution but in most refinements the T₁(0) site is slightly lighter and therefore preferentially occupied by Al with fewer electrons than Si.

Thermal parameters

Anisotropic temperature factors (in Table 5 we list \(\beta_{ij}\) for T atoms are surprisingly small, almost of the same magnitude as in refinements of anorthite (Wainwright and Starkey, 1969). This indicates that in the superstructures of the plagioclases we studied atomic shifts of T atoms from average positions are minimal. Oxygen atoms, on the other hand, have larger and strongly anisotropic temperature factors in contrast to e.g. low albite. This is illustrated in ORTEP

<table>
<thead>
<tr>
<th>Table 5. Anisotropic thermal parameters of labradorite (β×100). Estimated errors of the least significant digits in parentheses. Temperature factors are of the form $exp\left[-(β_1h^2 + β_2k^2 + β_3l^2 + 2β_{12}hk + 2β_{13}hl + 2β_{23}kl)\right]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surtsey</td>
</tr>
<tr>
<td>X-ray</td>
</tr>
<tr>
<td>Ca–Na (1)</td>
</tr>
<tr>
<td>T₁(0)</td>
</tr>
<tr>
<td>T₁(m)</td>
</tr>
<tr>
<td>T₂(0)</td>
</tr>
<tr>
<td>T₂(m)</td>
</tr>
<tr>
<td>Ca–Na (2)</td>
</tr>
<tr>
<td>T₁(0)</td>
</tr>
<tr>
<td>T₁(m)</td>
</tr>
<tr>
<td>T₂(0)</td>
</tr>
<tr>
<td>T₂(m)</td>
</tr>
</tbody>
</table>
plots in Figure 3, where 98% probability contours are drawn. Assuming a real mean amplitude of thermal vibration of 0.12A (B = 1.1) for oxygen (e.g. low albite, Winter et al., 1977) then the high apparent temperature factors for O₁ and O₄ atoms (B₀ = 2.5) has to be explained by actual atomic displacements of at least 0.1A. Thermal parameters of all four specimens are similar.

Splitting of Ca/Na

We have followed the procedure applied by Ribbe et al. (1969) to albite and by Czank (1973) to anorthite to split the Ca/Na atoms, distributing Ca/Na unequally over two positions. Positional, thermal, and occupational parameters were refined independently and the R factor improved. As Czank (1973)
showed for anorthite, splitting persists up to high temperatures but occupation of the split positions becomes more and more similar with increasing temperature. He interprets it as a statistical distribution of the large cation over two positions of different energy, with preferences determined by the environment (such as the Al/Si distribution in impure anorthite), rather than a thermal vibration between two positions (Quareni and Taylor, 1971).

Splitting of the Ca/Na site is visible in Fourier maps but only if low-order components, which include several very strong reflections, are omitted from the summation. Figure 5 shows Fourier maps with \(d_{\text{rel}} < 1.25 \)A for all four samples and documents a great similarity of this structural detail. We determine from Fourier maps and direct refinement of occupancies (Table 6) that the Ca/Na (2) peak is preferentially occupied over Ca/Na (1), which is in agreement with Czank's findings. The separation of split Ca/Na atoms is about 0.8A in all four structures (Table 7) and is very close to that of anorthite, indicating that this aspect of the plagioclase structure is similar over a wide composition range (e.g. Quareni and Taylor, 1971, and Winter et al., 1977, find it even in low albite; and Prewitt et al., 1976, document it in high albite), and in crystals with different thermal histories.

Extinction coefficient

At the last stages of the refinements, relatively large extinctions of strong low-angle reflections were encountered in the volcanic samples, and an isotropic correction for secondary extinction was carried out (Zachariasen, 1968). Values for extinction coefficients of Surtsey \(1.56(3) \times 10^{-7} \) and Lake County \(0.80(4) \times 10^{-7} \) are rather large, indicating a high perfection of the volcanic crystals, while metamorphic crystals showed low extinction \((<10^{-7}) \).

Discussion

Average structure

In this paper we will discuss average structures and atomic parameters that have been derived from main reflections only (type a). All information is contained in a \(c = 7 \)A unit cell with space-group symmetry \(\text{CT} \). The presence of superstructure reflections in the diffraction pattern (\(b \) and \(e \) type) indicates that this is not the true structure. Physically the average structure is best visualized as a projection of the larger unit cell of the true structure into the unit cell of albite. This means that corresponding atoms with slight atomic shifts in the true structure appear in the average structure as partially occupied sites, very close to each other. If they are far enough separated, their positions can be refined as split atoms such as Ca/Na in our refinement. Alternatively an average site may be calculated and displacements are integrated in an apparent temperature factor which is generally larger than that of the true structure. In order to deconvolute the average structure, one has to use the intensities of superreflections.

The superstructure of plagioclase with \(b \) reflections (body-centered anorthite) is well established (e.g. Fleet et al., 1966; Czank, 1973; Berking, 1976; Tagai et al., 1978). For intermediate plagioclase with \(e \) reflections, several more or less quantitative models have been proposed, which all differ in important respects and emphasize either Ca/Na or Al/Si order, or wavelike or discrete periodic atomic displacements (Kitamura and Morimoto, 1977; Korekawa et al., 1978; Toman and Frueh, 1976). In this paper we do not discuss detailed atomic arrangements in the superstructures, but wish to see how results from average structure determinations constrain models for the true structure of labradorites.

The principal conclusion is that all four average structures are very similar, even though Verzasca and Sissone have sharp \(e \) satellites, Lake County has \(b \) reflections, and Surtsey is highly disordered. This seems to imply that all crystals are composed of similar structural units, and differences are mainly due to the stacking of these units. In intermediate plagioclase (\(e \) plagioclase) they are stacked in a long-range periodic pattern with antiphase relationships which are expressed in extinctions in the satellite diffraction pattern (Korekawa, 1967). In \(b \) plagioclase units alternate regularly along the \(z \) axis, causing a doubling

Table 6. Occupancies of Ca–Na positions

<table>
<thead>
<tr>
<th></th>
<th>Ca–Na (1)</th>
<th>Ca–Na (2)</th>
<th>Electron density of Ca–Na (2) peak in e A⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surtsey</td>
<td>0.447 (9)</td>
<td>0.553</td>
<td>38</td>
</tr>
<tr>
<td>Lake County</td>
<td>0.366 (2)</td>
<td>0.634</td>
<td>47</td>
</tr>
<tr>
<td>Verzasca</td>
<td>0.486 (2)</td>
<td>0.514</td>
<td>43</td>
</tr>
<tr>
<td>Sissone</td>
<td>0.438 (10)</td>
<td>0.561</td>
<td>41</td>
</tr>
</tbody>
</table>
of c. The relative displacement between units is 1/2 [001] (which is equal to 1/2 [110] in space group I1; compare Müller et al., 1973). In disordered plagioclase distribution of the units is random and neither e nor b reflections are observed. (Very weak and diffuse c and e reflections are present on strongly-exposed photographs of Surtsey, indicating that even this rapidly-quenched volcanic crystal shows at least short-range order.)

A second feature of all refinements is that temperature factors for tetrahedral sites are of the same magnitude (Fig. 3b) as those observed in albite (Fig. 3a) and anorthite (Fig. 3c). Averaging does not smear out atomic positions of Al and Si and displacements in the true structure from average atomic positions are minimal. This is different for oxygens, particularly O\(_a\)(m), O\(_a\)(0), O\(_o\)(m), and O\(_o\)(0), which have much larger and more strongly anisotropic temperature factors than equivalent atoms in the resolved albite and anorthite structures, and must therefore be due to displacements and not anisotropic thermal vibration. The oxygen displacements in the average structures are plausible by comparison with the anorthite structure (Fig. 3c, from Wainwright and Starkey, 1971), with distorted chains of tetrahedra extending parallel to x. Anisotropic temperature factors for Surtsey are identical to those of the other samples which show a well-developed superstructure. This implies that this rapidly-quenched crystal with essentially only a reflections has not a low or high albite structure. Rather Surtsey is composed of the same structural units as the others, except that stacking is random. The sharp split of the Ca/Na position in all four samples, including e plagioclase, is evidence for stacking of units with discrete displacements rather than a sinusoidal variation (e.g. Fig. 4 in Kitamura and Morimoto, 1977).

A third striking observation is that intensities of b and e reflections are similar in X-ray and neutron diffraction photographs (Fig. 1), even though scattering powers of atoms are different (Table 2). This supports a model with atomic displacements rather than occupational differences.

Another structure with periodic stacking is ferroelectric NaNO\(_3\). Böhm (1977) has used this example to extend the satellite theory of Korekawa (1967), which is mainly concerned with transverse and longitudinal displacement and density waves, to include periodic stacking, and was able to explain intensity variations with glancing angle. In general, several orders of satellites are expected at medium and high glancing angles if a modulated structure contains periodic atomic displacements. Higher orders have not been observed in NaNO\(_3\), nor in intermediate plagi-
For labradorite with e reflections the same elements may build the superstructure in a periodic antiphase pattern with less-ordered transition zones at the domain boundaries (Fig. 6b; Korekawa et al., 1978). In this model orientation and spacing of the periodic APB's are a function of the extent of ordered bands relative to disordered zones which separate them. The average structure does not allow extraction of quantitative details about the atomic distribution in the superstructures, but we may imply further information from the microstructure of the four samples, their geological history, and some additional heating experiments.

Microstructure

All four samples appear to be chemically homogeneous. Apart from minor local lamellar structures in labradorite with e reflections the same elements are both acentric and related to each other by a center of symmetry (compare Fig. 3c). A combination of these elements in fI1 symmetry (c = 14A) with A on 0,0,0 and B on 0,0 and 1/2,1/2,1/2, and B on 0,1/2,1/2,0 (Fig. 6a) produces the superstructure of body-centered plagioclase with b reflections (Tagai et al., 1978).

![Fig. 4. Plot of average T-O distances of average plagioclase structures vs. composition. [Samples plotted include Wainwright lake County Verzasca Sissone Surse](https://example.com)](https://example.com)
Surtsey (Fig. 2) and Verzasca (E. Wenk et al., 1975, their Fig. 6c), there is no evidence for chemical heterogeneity. The a reflections in X-ray diffraction patterns obtained with focusing Laue technique are sharp and not split. This is in contrast to “schiller”

Fig. 5. Four $F(\text{obs})$ maps of the Ca–Na peak. Reflections with $d > 1.25\, \text{Å}$ are omitted from the summation to increase resolution. yz section at $x = 0.27$. (Compare Table 6).

Fig. 6. Schematic models for the superstructure of labradorites as different stackings of units A and B. (a) Body-centered plagioclase (Tagai et al., 1978). (b) Intermediate plagioclase An$_{50}$ (Korekawa et al., 1978).

laboradrites An 50–60 and bytownites An 70–85 which show chemical exsolution (e.g. Cliff et al., 1976). There are structural homogeneities, though: we described antiphase domains in Lake County samples which probably formed during cooling. There are similar boundaries in the Verzasca crystal (Fig. 2e). The presence of two structures in the Lake County sample is documented by a diffraction pattern with sharp b and diffuse e reflections (Rainey and Wenk, 1978, their Fig. 4b).

In solid solutions either exsolution or ordering will occur, depending on whether repulsive or attractive forces dominate between unlike atoms. In plagioclase with two coupled substitutions both processes take place, but the four labradorite samples described here appear to be chemically homogeneous representatives from the region between the Bøggild and Hutenlocher exsolution gaps in the phase diagram (compare e.g. Fig. 3 in Wenk, 1979).

Ordering can take place by different mechanisms. It may start at nuclei and proceed by growth of ordered domains. Microstructures which are the result of such a mechanism are often characterized by curved APB’s like those observed in Lake County crystals (Fig. 2b). Alternatively, at larger undercooling below the critical ordering temperature, or-

Fig. 7. Schematic diagram illustrating homogeneous ordering of two atomic species A and B in a one-dimensional crystal by a spinodal mechanism (b) with formation of a superstructure with a_0 and continuous order (c) resulting in periodic APB’s. Horizontal axis x is a crystal coordinate. Vertical axes give amounts of A (solid) and B (dashed) in each site.
Derdering may take place homogeneously throughout the crystal.

De Fontaine (1975) distinguishes between two modes of homogeneous ordering which are illustrated schematically in Figure 7. In *spinodal ordering* the new site distribution in the superstructure is attained gradually as the transformation proceeds. Ordering generally results in a superstructure with a decrease in symmetry—such as in Figure 7—or a doubling of the unit cell. In *continuous ordering* a large wavelength compositional modulation is convoluted with the short wavelength of ordering. This latter mechanism produces modulated structures with periodic APB's.

The thermal history of samples and accompanying structural changes can be traced in a time-temperature-transformation diagram (TTT) which has been used to illustrate chemical decompositions of geological samples (e.g. Champness and Lorimer, 1976). The analogy to ordering is not strictly applicable. Structures in the regions labeled “nucleation and growth” and “continuous ordering” could be different. Volcanic samples with b reflections may only have a short-range ordered Al/Si distribution adjusting for non-stoichiometry in a random pattern.

The very schematic and empirical diagram in Figure 8 shows fields for heterogeneous (or possibly homogeneous) nucleation of an ordered equilibrium structure (I1 structure with b reflections) and for continuous ordering at conditions of undercooling (intermediate plagioclase with e reflections). Beginning and end of the ordering reaction are indicated. In the case of nucleation and growth the end product is a pattern of ordered domains separated by APB’s. In continuous ordering a modulated structure forms which decomposes during prolonged annealing by pairwise recombination of APB’s. Changes in microstructure and particularly the high mobility of ½[001]APB’s are further elaborated by Wenk and Nakajima (1979), who document a whole range of transitions between e and b plagioclase simply due to different arrangements of APB’s. Temperatures in Figure 8 are rough estimates, and the time coordinate is based on empirical observations.

Surtsey labradorite (Su) was rapidly quenched from temperatures close to the solidus. The cooling path barely passes through the “continuous” nose and leaves it again before ordering in a periodic pattern is complete. Lake County (LC) cooled more slowly, allowing nucleation of ordered I1 domains. A small volume fraction is still disordered when the curve passes through the field of continuous ordering, giving rise to additional weak e reflections. The two metamorphic samples Verzasca (Vz) and Sissone (Si) crystallized at low temperature and cooled very slowly, forming fully-ordered periodic structures. Sis- sone, the higher-grade plagioclase, attains a larger wavelength (51A) than Verzasca (27A) and decomposes partially by recombination of e APB’s to b plagioclase.

We have done heating experiments which seem to conform with such a model (see also Tagai et al., 1977). Heating Lake County crystals in a furnace at 1180°C for 1 week erases b reflections and b APB’s (Fig. 9b). Our model leaves two alternatives. Either heating produces true disordering of Si and Al on tetrahedral sites or it merely causes a random stacking of still-ordered units. We prefer the latter explanation unless crystals are heated very close to the melting point. Such a mechanism requires only mobility of antiphase boundaries rather than structural rearrangements, which is in better agreement with observed changes during cooling. Consecutive slow cooling to 900°C at 25°C per day produced b reflections again, and darkfield images show a microstructure with small ordered domains (Fig. 9c). All these experiments were in the field of I1 structures. Hydrothermal annealing of Surtsey at 870°C produces sharp e satellites (Wenk, 1978a), while after longer annealing at 900°C e reflections are replaced.
by b reflections (McConnell, 1974). The upper boundary of the field for continuous ordering is estimated to be around 900–950°C. The geological history of a sample which established the state of order has a decisive influence on changes during heat treatment, and results presented here cannot be generalized and applied to other labradorites.

c reflections

A last point to mention is the presence of diffuse c reflections in volcanic labradorite. Streaking is most pronounced parallel to b^*, but more exactly intensity is distributed in a disk normal to [001]. [001] is the important direction in the plagioclase structure, along which chains of 4-fold tetrahedral rings extend. In anorthite this is the direction of antiphase Al–Si stacking. We interpret these streaks as due to faults with a displacement vector $\frac{1}{2}[111]$ and a fault plane (010) but a poor periodicity. It is interesting that c reflections are weaker in metamorphic than in volcanic labradorite.

The ideas presented here, which attempt to synthesize evidence from both structural and physical features of labradorite plagioclase, are speculative and need to be corroborated further by experimental investigations of stability relations and also comparative refinements of both average and superstructures of heat-treated crystals. We hope that we can provoke other feldspar researchers to participate in this fascinating endeavor.

Acknowledgments

H. R. W. is most indebted to Professor Korekawa and the Frankfurt Institute for the hospitality during a sabbatical leave in 1976 which started this program. He also acknowledges support from NSF grants EAR76-14756 and EAR77-00127, and valuable discussions with D. de Fontaine and G. Nord. W. J., T. T., and M. K. are indebted to the Bundesministerium für Forschung und Technologie, F. R. G. and the Deutsche Forschungsgemeinschaft for financial support. Computations were carried out at the Computer Centers of the University of California, Berkeley, and the University of Frankfurt am Main. We thank Dr. H. Kroll, Münster, for determinations of precise lattice parameters of Surtsey and Lake County crystals. A. Ross cheerfully typed the various versions of the manuscript.

References

Manuscript received, September 18, 1978; accepted for publication, July 30, 1979.