the topic listed above. The aim of the meeting is to review some
of the available experimental and theoretical techniques for
investigating the kinetics and mass transport of silicate and oxide
systems, and some of their achievements within academic and
industrial environments. Sessions will be devoted to: material
characterization; mass transport studies; kinetic studies; theoreti-
cal/modelling studies; industrially-related problems. Invited
speakers will give review-type lectures to introduce the main
subject areas. Further details of the meeting and registration
forms are available from: Dr. R. Freer, Dept. Electrical &
Electronic Engineering, North Staffordshire Polytechnic, Bea-
constide, Stafford, ST18 OAD, Great Britain. Room reservations
must be made before February 1, 1984.

NBS Tables of Chemical Thermodynamic Properties

A new single-volume reference containing tables for standard-
state thermodynamic properties of inorganic and simple organic
compounds has been issued by the Commerce Department’s
National Bureau of Standards (NBS). The publication will be of
particular use to researchers in chemistry and physics, chemical
engineers, and manufacturers for the development of new prod-
ucts and the design of chemical and industrial processes.

NBS Tables of Chemical Thermodynamic Properties: Selec-
tions for Inorganic and C1 and C2 Organic Substances in SI
Units represents the results of a major effort to provide evaluated
data on enthalpy, Gibbs (free) energy of formation, heat capaci-
ty, and entropy for more than 14,000 substances at 25°C. The
original data on which the tables are based were drawn from
more than 60,000 references. All of the data have been carefully
evaluated and the “best” values for each substance have been
assigned. The results have been checked for thermodynamic
consistency using specially developed computer programs.

Dr. David R. Lide, Jr., chief of the NBS Office of Standard
Reference Data, anticipates the reference will also provide an
educational use because the information is given in SI units—
ergy units of joules, instead of the traditional calorie.

The tables, which were developed by the Chemical Thermody-
namics Data Center under the direction of Donald D. Wagman
of NBS, are a cumulative revised edition of the widely used NBS
Technical Note 270 series of publications on the selected values
of chemical thermodynamic properties. The first section of this
series appeared in 1965. Other contributors are: William H.
Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow,
Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttal.

The tablets have been published for NBS by the American
Chemical Society and the American Institute of Physics as
Supplement 2 to the Journal of Physical and Chemical Data.
Copies of the book may be ordered for $40 prepaid from the
American Chemical Society, Books and Journals Division, 1155
Sixteenth Street, N.W., Washington, D.C. 20036.

Abstractors Needed

Mineralogical Abstracts needs abstracting volunteers. Several
important journal assignments are available. Please contact Karl
A. Riggs, Mineralogical Abstracts Organizers for America, De-
partment of Geology and Geography, Mississippi State Universi-
ty, Mississippi State, Mississippi 39762.

ERRATA

A partisan review of proterozoic anorthosites by S. A. Morse
(Vol. 67, 1087–1100). The following reference was omitted:

Yoder, H. S. Jr. (1968) Experimental studies bearing on the
origin of anorthosite. In Y. W. Isachsen, Ed., Origin of
Anorthosite and Related Rocks, p. 13–22. New York State
Museum and Science Service Memoir 18, Albany, N.Y. The
citation on page 1090 of the text should refer to Yoder (1968).
(The volume cited carries both 1968 and 1969 dates.)

Orlickite and coyoteite, two new sulfide minerals from Coyote
Peak, Humboldt County, California by Richard C. Erd and
Gerald K. Czamanske (Vol. 68, 245–254). The formula for
rasvumite, p. 245, should read KFe2S3. Chemical formulas
appearing on pages 245, 248, 250, and 251 should have all
numbers as subscripts. The formula for hydroxycubanite, p.
251, should read CuFe2S3(OH)2.

New Mineral Names: Namuuwite by Adolph Pabst (Vol. 68, 281)
should be Mineral Mag., 46 (not 45).

New Mineral Names: Theisite by Adolph Pabst (Vol. 68, 282)
should be Mineral Mag., 46 (not 45).

New Mineral Names: Pääkkönene by Michael Fleischer (Vol.
67, 858). The name of the mineral should be Pääkkönene. It
was named for the late Dr. Veikko Pääkkönen. The name of
one of the authors was improperly transcribed into Russian. It
should have been V. Yletyinen.

New Mineral Names: Gobbinsite by Pete J. Dunn (Vol. 68, 642).
The chemical formula was given incorrectly. It is Na4(Ca,Mg,
K2)Al6S16O32·12H2O.

New Mineral Names: Tobelito by Pete J. Dunn (Vol. 68, 850). The
intensities for diffraction lines 5.12 and 4.486A should be 70.

New Mineral Names: Mooreite by Pete J. Dunn (Vol. 68, 474).
The correct chemical formula for mooreite is
Mge.1qZn4.9qMn1.89(SO4)2(OH)26·8H2O.

New Mineral Names: Yukonite by Pete J. Dunn (Vol. 68, 474–
475). The diffraction lines given are for yukonite and not
pitticite.

New Mineral Names: Monazite-(Nd) by Pete J. Dunn (Vol. 68,
849). The senior author’s name, Maksimovic, was misspelled.

New Mineral Names: Rebulito by Pete J. Dunn (Vol. 68, 644). The
name of the third author, P. Engel, was omitted in error.

New Mineral Names: Lovdarite by Pete J. Dunn (Vol. 68, 474).
The space group should be given as P2 3am (Pmc21).
Symbols for rock-forming minerals by R. Kretz (Vol. 68, 277–279). The following mineral names were misspelled (Table 1): analcime, cristobalite, digenite, fassaite, goethite, grossular, thomsonite (symbol Tms). Sphene should be deleted.

New data on and discreditation of “texasite,” “albrittonite,” “cuproartinite,” “cuprohydromagnesite,” and “yttrmicrolite,” with corrected data on nickelbischofite, rowlandite, and yttrocrasite by Donald R. Peacor, William B. Simmons, Jr., Eric J. Essene and E. Wm. Heinrich (Vol. 67, 156–169). The value for Pr/La in “texasite” as listed in Table 1, should be 140 rather than 14.0