Exsolution of ilmenite and rutile in hornblende

PANJAWAN MONGKOLTIP AND JOHN R. ASHWORTH

Department of Geological Sciences
University of Aston in Birmingham
Gosta Green, Birmingham B4 7ET, United Kingdom

Abstract

Hornblendes from two basic intrusions in the Caledonian metamorphic terrane of western Scotland contain small (~1 to 10 μm) particles of ilmenite and rutile, exsolved in orientations that are semi-coherent with the amphibole. They were studied by optical microscopy, electron microprobe analysis, scanning and transmission electron microscopy, and X-ray diffraction. Ilmenite occurs in 8 orientations (4 pairs in which members of a pair are equivalent by the symmetry of the hornblende). Rutile occurs in 6 orientations (4 symmetrically distinct orientations). The (0001) plane of ilmenite is approximately parallel to (100), (001), (½1), or (2½) of hornblende (C2/m setting). The c axis of rutile is approximately parallel to [010], [102], [016], [10½], [310], or [3½] of hornblende. Small ilmenite particles are platy parallel to (0001); larger ones tend to develop less simple morphologies. Rutile is usually elongated || c. Strain is accommodated by misfit dislocations in interfaces between oxide and hornblende. The orientations are interpreted in terms of the fully O-rotated model amphibole structure, in which the oxygen atoms are cubic close-packed. A real hornblende structure contains nearly close-packed planes, corresponding to the {111} planes of the cubic close-packed array, and these are the (0001) planes of the hexagonal close-packed oxygen arrays of the oriented ilmenites. The c vector of rutile is related to the linear close-packing in the (110) directions of the cubic close-packed array.

The proportion of ilmenite in one hornblende is estimated at 2.6 volume %, with much smaller amounts of rutile. At the other locality, rutile predominates over ilmenite. It is possible that the ilmenite and rutile were exsolved, in a closed system, from a parental amphibole with a normal structural formula, since slight changes in the total number of cations in the formula can be accommodated by movement of Na between the B sites and the partly vacant A sites. An analysis of an ilmenite particle indicates approximately 6 mole % Fe₂O₃, and a fine structure seen in transmission electron micrographs is attributed to incipient exsolution of hematite from the ilmenite.

Introduction

Oxide inclusions in amphiboles have been neglected by comparison with those in pyroxenes, where the identification of oriented spinel-group minerals and ilmenite (Bown and Gay, 1959) has been followed by the description of rutile (Moore, 1968; Griffin et al., 1971). Fleet et al. (1980) present a detailed study of magnetite in pyroxene, and the origin of ilmenite and spinel lamellae in pyroxene is assessed by Garrison and Taylor (1981).

Although oxide particles in hornblende have been noticed in passing (e.g., Fleet et al., 1980), to the best of our knowledge there has been no thorough investigation. Since it is generally accepted that the Ti content of hornblende tends to increase with increasing temperature of equilibration (Leake, 1965; Bard, 1970; Helz, 1973; Raase, 1974), exsolution of Ti minerals might be expected during the cooling of some hornblendes. In this paper, we infer this origin for oriented ilmenite and rutile particles in hornblendes from two slowly cooled intrusions in the western Highlands of Scotland.

Geological setting

Two rocks were studied, both from basic intrusions. One is from the Glen Scaddle basic igneous mass at National Grid reference NM 983 685. This metagabbroic intrusion pre-dates the main Caledo-
nian deformation of the region, during which its mineralogy was affected by metamorphism (Stoker, 1980). The occurrence of inclusions in hornblende is unusual in this intrusion; the rock studied also has unusually abundant, Ti-rich amphibole, and lacks pyroxene. It probably belongs to the minor component of the intrusion termed “appinite” by Drever (1940). “Appinite” is a local name for a hornblende-rich meladiorite (Hatch et al., 1972, p. 310). The other specimen is also “appinitic,” and is from Grid reference NN 131 831, in the Glen Loy intrusion, which is of Caledonian synorogenic age (Institute of Geological Sciences, 1975).

Petrography

In both rocks hornblende is the major mineral, with some plagioclase, and small amounts of chlorite, titanite and ilmenite. Oriented inclusions are abundant in the interiors of hornblende grains (Fig. 1). The color of the inclusion-bearing hornblende is generally green. Some interior parts of grains are brown, and these usually lack inclusions. Among the inclusions from Glen Scaddle, which range from 1 to 10 μm in longest dimension, brown plates can be distinguished from less strongly colored, rod-like to acicular particles. In the Glen Loy specimen, both the hornblende and its inclusions are finer-grained, and the inclusions are mostly acicular.

Scanning electron microscopy (SEM)

SEM of polished surfaces, combined with qualitative analysis by energy-dispersive X-ray detector, was used to assess the relative abundances of two types of particle, distinguished by their contrast in electron images and their major elements with atomic number greater than 8 (Fig. 2). One type of inclusion gave a Ti peak only, the other, both Ti and Fe (Fig. 2a). Anticipating the transmission electron microscopy (TEM), these can be identified as rutile and ilmenite respectively. The ilmenite forms the brown plates, and the rutile the rods and needles, seen optically. In electron images, they were most easily distinguished by using an annular silicon diode detector of the type developed by Hall and Lloyd (1981) for back-scattered electrons. This gives strong atomic number contrast (Fig. 2b). Using a conventional, commercial instrument (Cambridge Instruments Stereoscan S150), the two minerals could be clearly distinguished in X-ray scanning images (Fig. 2d,e), but this was tedious, and we found that sufficient contrast was obtained from the conventional electron detector for the distinction to be made in electron images (Fig. 2c).

It was found that most of the inclusions in the Glen Scaddle hornblendes were ilmenite, only a few percent being rutile, while rutile predominates over ilmenite in the Glen Loy material. The two minerals were usually found as separate grains scattered through the host amphibole, though intergrowths were occasionally seen (Fig. 2c), as were small arrays of particles (Fig. 2b).

Electron microprobe analysis

It was generally difficult to avoid inclusions when analyzing these amphiboles. However, in the Glen Scaddle material, it was possible to analyze an area of hornblende among the inclusions (Table 1, Analysis 1) and, separately, an ilmenite inclusion (Analysis 4). Tabulated for comparison are data from an inclusion-free, brown area of the same amphibole grain (Analysis 2), and a primary ilmenite (Analysis 3). The inclusion and the primary ilmenite are very

Fig. 1. Optical photomicrographs showing inclusions in hornblende from Glen Scaddle. (a) Transmitted, plane-polarized light. (b) Reflected light.
similar in composition. Both contain approximately 6 mole % Fe$_2$O$_3$ in solid solution. Inclusion-free green rims of hornblende grains are similar in Ti content to the tabulated green hornblende (Analysis 1). The high Ti of the inclusion-free, brown, internal area (Analysis 2) is explicable by the failure of ilmenite to develop there, but the composition of the brown area is not simply that of the green inclusion-bearing hornblende (Analysis 1) plus its inclusions, since the Fe content is almost exactly the same in Analyses 1 and 2. The amphibole must originally have been zoned, an effect which also accounts for the green, inclusion-free rims. In the Glen Loy material, these rims again have lower Ti (Analysis 7) than the bulk of the grain (Analysis 6). Here it was not possible to obtain good analyses of amphibole interiors without having some of the very small inclusions in the beam; the data for inclusion-bearing amphibole thus represent hornblende plus rutile inclusions. If the inclusions are exsolution products, this analysis should serve as an estimate of a primary amphibole composition. In 42 analyses from this rock, there is a strong inverse correlation between Ti and Si (Fig. 3). The correlation coefficient is -0.719, which is significant at the 0.1% level. The overall substitution is probably Ti + AlIV for Si + AlVI. This effect indicates that Ti in the primary amphibole did not simply represent solid solution towards a TiO$_2$ end-member, despite the subsequent production of predominantly TiO$_2$ inclusions.

In the I.M.A. nomenclature of amphiboles (Leake, 1978), the name hornblende is correct for the pure analyses (1, 2, and 7 in Table 1). In the recalculations of analyses contaminated by inclusions, high Ti values are associated with Si < 6.25 (Table 1, Analysis 6; Fig. 3): if, as suggested above, these represent primary amphiboles, they should be
called ferroan pargasite, or magnesio-hastingsite if Fe\(^{3+}\) exceeds Al\(^{3+}\). We cannot reliably estimate Fe\(^{3+}\). Since our cation totals excluding (Na * Ca * K) considerably exceed 13 (Table 1), recalculation of this total to 13 as suggested by Leake (1978) would indicate substantial Fe\(^{3+}\), very close to the amount of Al\(^{3+}\): averages are, for Glen Scadale (10 analyses) Fe\(^{3+}\) 0.58, Al\(^{3+}\) 0.54, Glen Loy (42 analyses) Fe\(^{3+}\) 0.46, Al\(^{3+}\) 0.45. However, this calculation gives a maximum Fe\(^{3+}\) content (Stout, 1972), by assuming that Fe\(^{2+}\) and Mg are confined to the C sites of the amphibole structural formula A\(_2\)B\(_2\)C\(_5\)T\(_5\)O\(_{22}\)(OH)\(_2\). Our raw cation totals including Ca, but excluding (Na + K), are always close to 15: means and standard deviations are 15.06±0.06 for Glen Scadale and 14.91±0.04 for Glen Loy, suggesting that the B, C and T sites are almost fully occupied by the cations other than Na and K, with the amount by which Ca is less than 2 representing Fe and Mg in the B site (solid solution towards cummingtonite). In this case, there need not be substantial Fe\(^{3+}\) (Stout, 1972). Thus, we regard the amphiboles as pargasitic rather than hastingsitic: the analyses of pure amphiboles (1, 2, and 7 of Table 1) are ferroan pargasitic hornblendes, while Analysis 6, of amphibole plus inclusions, suggests that the primary titanian amphibole was a ferroan pargasite.

Volume proportion of ilmenite inclusions in a hornblende

The relatively large sizes of the ilmenite plates in the Glen Scadale hornblende made it feasible to estimate their amount. The SEM study had shown that the amount of rutile is negligible. Two hornblende grains were selected; one was that analyzed in Table 1, and the other gave very similar analyses. Reflected-light photomicrographs were taken of 7 areas, each approximately 150 μm x 100 μm, containing evenly scattered particles. The images were analyzed by using a digitizer to record the positions of particle boundaries, and a microcomputer to convert these to modal proportions. The proportion of inclusions ranged from 1.99 to 3.34Vo, averaging 2.60% (with a standard error of 0.22Vo). This is a minimum estimate, since very small particles (seen in the TEM study) may not be resolved in an optical photomicrograph, but these probably contribute only a small additional volume of ilmenite. Since the oxygen atoms are more closely packed in ilmenite than in hornblende, the proportion on a constant-oxygen basis is slightly higher (2.8Vo rather than 2.6Vo). This estimated proportion is used to reconstruct the hypothetical hornblende.

Table 1. Electron microprobe analytical data

<table>
<thead>
<tr>
<th>Locality</th>
<th>Glen Scadale</th>
<th>Glen Loy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>amphibole</td>
<td>ilmenite</td>
</tr>
<tr>
<td>Analysis No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>41.19</td>
<td>41.93</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>1.56</td>
<td>2.16</td>
</tr>
<tr>
<td>FeO</td>
<td>13.15</td>
<td>12.86</td>
</tr>
<tr>
<td>MgO</td>
<td>11.13</td>
<td>11.70</td>
</tr>
<tr>
<td>CaO</td>
<td>11.62</td>
<td>11.51</td>
</tr>
<tr>
<td>Na(_2)O</td>
<td>1.94</td>
<td>1.91</td>
</tr>
<tr>
<td>K(_2)O</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>TiO(_2)</td>
<td>20.01</td>
<td>2.03</td>
</tr>
<tr>
<td>Total</td>
<td>99.11</td>
<td>99.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formula to 23 oxygens</th>
<th>to 6 oxygens</th>
<th>to 23 oxygens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>6.29</td>
<td>6.12</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>1.71</td>
<td>1.88</td>
</tr>
<tr>
<td>FeO</td>
<td>0.61</td>
<td>0.38</td>
</tr>
<tr>
<td>MgO</td>
<td>2.65</td>
<td>0.39</td>
</tr>
<tr>
<td>Na(_2)O</td>
<td>0.02</td>
<td>0.24</td>
</tr>
<tr>
<td>CaO</td>
<td>1.86</td>
<td>1.81</td>
</tr>
<tr>
<td>K(_2)O</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Total</td>
<td>2.55</td>
<td>2.48</td>
</tr>
</tbody>
</table>

*1: green amphibole associated with ilmenite inclusions. 2: brown inclusion-free area of the same amphibole grain. 3: primary ilmenite. 4: ilmenite inclusion in amphibole. 5: reconstructed composition of amphibole (1) prior to solution of 2.8% ilmenite. 6: amphibole plus rutile inclusions. 7: inclusion-free edge of the same amphibole grain. **total Fe as Fe\(^{3+}\).++Fe\(^{3+}\) estimated from stoichiometric constraints.

Fig. 3. Ti and Si per 24 (O,OH) in electron microprobe data from Glen Loy amphiboles. The straight line is the least-squares best fit to the data.
composition prior to exsolution of the ilmenite (Table 1, Column 5). Like the Glen Loy analysis of amphibole plus inclusions (Column 6), this is a titaniferous ferroan pargasite. Since this calculation gives a reasonable amphibole composition, it is plausible to suggest that the inclusions were produced by exsolution in a closed system. Constraints placed on this process by the hornblende structural formula are discussed below.

Orientational relations between hornblende and inclusions

Universal-stage measurements

In Glen Scaddle hornblende, swarms of ilmenite plates with rather consistent orientation (cf. Fig. 1) were oriented using a four-axis universal stage. There were uncertainties due to small sizes and irregular shapes of some particles, but consistent features emerged (Fig. 4). There are concentrations of plate-normals near c, b, and a* of the hornblende. Most other plate-normals are in hkl and hkl positions, rather than hkl and hkl. The distinction between hkl and the corresponding hkl is, of course, arbitrary; the left and right halves of Figure 4 are related by the (010) mirror plane of the hornblende, and a plate-normal is as likely to be found on one side as the other (this is an instance of the “intergrowth symmetry principle” of Bown and Gay, 1959). Thus the differences between the two halves of Figure 4 are merely statistical fluctuations; even allowing for this, there is considerable scatter, which exceeds measurement errors and implies statistical variations in the morphological development of those particles that are coarse enough to be measured optically. In order to study smaller particles and to assess lattice orientation rather than morphology, transmission electron microscopy and X-ray diffraction studies were undertaken.

Transmission electron microscopy

Selected parts of doubly polished thin-sections of both rocks were mounted on titanium mesh support grids and thinned by ion bombardment. TEM was carried out at high voltage (1 MV), with the advantage that thick foils could be studied, enabling relatively large areas to be surveyed. A double-tilt stage was used. Minerals, and their orientational relations, were identified from electron diffraction patterns. The C2/m setting of hornblende was used, and ilmenite was set on hexagonal axes. All oxide particles were identified as either rutile or ilmenite. No other mineral was found as simple inclusions, but the Glen Scaddle hornblende is patchily altered to chlorite and extensively cracked; these effects show no spatial relationship to the oxide inclusions.

Ilmenite particles, ~1 µm in size, are abundant in the Glen Scaddle hornblende (Fig. 5a). They are platy, the habit plane being (0001). They are clearly related crystallographically to the host mineral, the (0001) plates lying parallel to four planes in the amphibole, (100), (001), (261), and (261). The last two are indistinguishable from their opposites, respectively (261) and (261). Thus there are only two physically distinct orientations of the form {261}.

All four orientations can be found close together, but there is a tendency for one of them to predominate within areas of a size ~100 µm². For each (0001) orientation, two sets of a₁, a₂, a₃ axes of ilmenite are found. Thus, 8 ilmenite lattice orientations are recognized, but these form pairs related by the symmetry of the hornblende, so that 4 symmetrically distinct sets of ilmenite axes are identified (Table 2). The coincidence between (0001) of ilmenite and the stated lattice plane of hornblende is often exact, within the limits of angular measurement in electron diffraction (~0.5°), as illustrated in Figure 6a, though in other cases discordances of ~1° were noticed. The tabulated coincidences for a₁, a₂, a₃ of ilmenite are necessarily approximate because the angles between the stated hornblende vectors are not exactly 120°. Coincidences with directions lying in (010) of hornblende are generally close except in the {261} type of ilmenite, where there is usually a discordance of a few degrees between the {102} zone axis of hornblende and the ilmenite (110) zone axis with which it would ideally coincide (Fig. 6b).
Misfit dislocations, due to the lack of complete coherence between the two structures, are observed in the interfaces (Fig. 5b,c).

The largest ilmenite particles that can be observed by TEM retain the approximate lattice relation to the host, but lack the platy morphology of the small particles, tending to be irregular in shape (Fig. 5d).
Ilmenite often contains a fine substructure (Fig. 5b,c). This can sometimes be resolved into particles of finite size (Fig. 5c) which are associated with strain fields. They occur inside the ilmenite grains rather than being associated with boundaries, an observation confirmed by their presence at a thin edge of ilmenite where there is no overlapping hornblende (Fig. 5c). They are interpreted as exsolved platelets, presumably of hematite; coarser, lenticular particles of exsolved hematite in ilmenite are described by Lally et al. (1976). This interpretation is consistent with the inference, from the electron microprobe data, that the ilmenite contains Fe$^{3+}$. The platelets are often absent from a region near the interface with hornblende (Fig. 5c), suggesting that the ilmenite was zoned, the early-formed central part being richer in Fe$^{3+}$.

Rutile particles are usually elongate along the c axis (Fig. 5e), but otherwise variable in shape. Their approximate orientational relations to hornblende are given in Table 3. These relations are less exact than for ilmenite, variations up to 7° having been noticed between the lattices of adjacent particles in the same nominal orientation. In the simplest orientation, c of rutile is parallel to b of hornblende (Fig. 6c), while the (110) directions of rutile are less clearly related to the host, the one nominally parallel to [102] tending to be displaced approximately 7° from [102] towards a of hornblende with the effect that a (100) axis of rutile is approximately, but not exactly parallel to c* of the hornblende. The misfit
between the rutile and hornblende lattices gives
confused contrast in boundaries, sometimes resolv-
able into networks of dislocations. Other disloca-
tions usually emanate from rutile boundaries into
the adjacent hornblende (Fig. 5e).

Where the inclusions form small arrays (Fig. 5f),
the orientational relations remain valid. It is not
obvious what causes some particles to be arranged
in these arrays. No subgrain boundaries (disloca-
tion arrays) were detected in the hornblende, but
nucleation of the particles may have been assisted
by some such feature, subsequently obscured by
dislocation movement due to a deformation which
produced the scattered dislocations (Fig. 5) and

cracks throughout the hornblende.

X-ray diffraction

Single-crystal oscillation photographs were taken
of a hornblende crystal from Glen Scaddle, to check
the consistency of ilmenite lattice orientations
throughout a larger volume than could be sampled
by TEM. The oscillation axis was c, and various
centers were used for the oscillation range of 20°.
The center of oscillation for each photograph was
checked by indexing the hornblende spots. Ilmenite
spots were indexed using computer-generated tabu-
lations of ξ and ζ for all the lattice orientations
deduced from the TEM work, and bearing in mind
the constraints due to the restricted oscillation
range. For each ilmenite orientation, a rational zone
axis of ilmenite approximately coincides with c of
hornblende (Table 2, last column), so that ilmenite
layer-lines were found on the photographs (Fig. 7),
having spacings ξ differing from that of the horn-
blende and characteristic of the type of ilmenite
orientation, i.e., (100), (001), or [261]. Approxi-
mately equal numbers of spots were found for each
of these, and all 8 full orientations of Table 2 were
confirmed. The spots are sharp, indicating consist-
tent ilmenite orientation, though there are devi-
ations from ideally straight layer-lines, confirming
slight deviations from the ideal coincidence be-
tween c of hornblende and a simple zone axis of
ilmenite.

In all orientations of rutile, the c axis of horn-
blende represents an irrational direction, so rutile
layer-lines were not found, but some isolated spots
were identified as being from rutile in the expected
approximate orientations.

Interpretation of results

Oriental relations

Ilmenite. The observed orientations can be inter-
preted in terms of the arrangement of oxygen at-
oms. In ilmenite this is based on hexagonal close
packing. The oxygens in hornblende are not close-
packed, but nearly close-packed planes can be
identified using a theoretical model of the amphi-
bole structure. This is the "fully O-rotated" struc-
ture in the notation of Thompson (1970), where
"rotation" refers to the deviation of the double
chain of SiO$_4$ tetrahedra from a fully extended state.
The hornblende ($C2/m$ amphibole) structure is, in
fact, partly O-rotated (Cameron and Papike, 1979).
This leads to closer packing of the oxygens than in
the theoretical fully extended structure and, indeed,
the fully O-rotated structure would have cubic
close-packed oxygens. The amphibole structures
are treated in terms of oxygen packing by Law and
Whittaker (1980). The relations between lattice vec-
tors of the close-packed $C2/m$ model amphibole and
those of the cubic close-packed oxygen sub-lattice
are: $a_{\text{amph}} = [121]_{\text{ccp}}$, $b_{\text{amph}} = 3 [101]_{\text{ccp}}$, and $c_{\text{amph}} = 1.5 [121]_{\text{ccp}}$. The {111} close-packed planes of the
oxygen sub-lattice coincide exactly with (100),
(001), and [261] of this model amphibole (Fig. 8).
Law and Whittaker (1980) note that real amphiboles
are closer to the fully extended than the fully

![Fig. 7. X-ray oscillation photograph of hornblende from Glen Scaddle, CrKα radiation. Oscillation axis c(hb), center of oscillation 35° from b* towards $-a*$. The strongest ilmenite spots are labelled with the appropriate oscillation axis (Table 2, last column) and their indices.](image-url)
rotated theoretical structures. Whereas the “model hornblende” of Figure 8 has $\beta = 109.47^\circ$ and $\text{lacos } \beta_1 = 2c/3$ (Law and Whittaker, 1980), real hornblendes (Papike et al., 1969) have $\beta = 105^\circ$ and $\text{lacos } \beta_1 = 0.5c$. Nevertheless, the $\{111\}_{\text{lep}}$ planes of the theoretical structure are still those with the closest approach to planar close-packing (Fig. 9), and so they are found to be planes of semi-coherence in the present study (Table 2). There is considerable misfit between ilmenite and hornblende oxygen arrays (Fig. 9), which therefore cannot be fully coherent and must have misfit dislocations in their interfaces (Fig. 5b).

The oxygen stacking sequence must change from cubic to hexagonal close-packed when hornblende is made over to ilmenite, so there would be a misfit, between cubic close-packed hexagonal close-packed oxygen arrays, across $\{hkil\}$ prism faces of the ilmenite, even if the hornblende structure were ideally close-packed. In fact there is also a discrepancy between the oxygen-layer repeat in ilmenite ($c/6 = 2.35\text{Å}$) and the corresponding distance in hornblende (e.g., Fig. 6a). For the hornblende structure depicted in Figure 9, the average distances between oxygen layers, measured normal to (100), (001), and $\{261\}$, are respectively 2.38Å, 2.56Å, and 2.42Å. Therefore, considerable strain is associated with prism faces of ilmenite (Fig. 5c).

Despite the differences between the three types of orientation, none is so overwhelmingly favored as to suppress the occurrence of the others. Since two planes of the form $\{261\}$ are distinguishable in the observations, we have four possible (0001) planes for the ilmenite (Table 2). In each case there are two alternative sets of a_1, a_2, a_3 axes within this plane, separated by a phase-angle of 60°, giving a total of 8 distinguishable ilmenite orientations (Table 2). Because ilmenite has low symmetry (point group 3) arising from its cation configuration, there exists for each tabulated set of axes another set, having the reverse sign of c and a_1, a_2, a_3 in the same set of positions but reverse order. Such a pair of orientations are not equivalent by symmetry, but their oxygen arrays are indistinguishable and their diffraction patterns differ only in the intensities of some maxima. We cannot distinguish between such a pair, since intensities are unreliable in TEM (because of double diffraction) and in X-ray diffraction by inclusions (because of statistical fluctuations, from crystal to crystal, in the proportion of the ilmenite that has a particular orientation). Given the equivalence of the oxygen arrays, we do not expect one member of the pair to be markedly favored relative to the other, since there is little discrimination among orientations whose oxygen arrays differ in their misfits with the hornblende (Fig. 9).

In other silicate minerals it has likewise been found that oxygen packing controls the orientation in which oxide particles nucleate, during exsolution or oxidation. In olivine, the oxygens are almost exactly hexagonally close-packed with (100) as the close-packed plane, and this plane is duly shared by (0001) of ilmenite inclusions (Moseley, 1981), and $\{111\}$ of spinel-group inclusions (Champness, 1970; Ashworth, 1979). The oxygen stacking sequence changes from hexagonal close-packed to cubic close-packed during the exsolution of a spinel, the reverse of the change occurring when ilmenite is formed from hornblende.

Pyroxenes are closely analogous to amphiboles, and there is a theoretical clinopyroxene structure with cubic close-packed oxygens (Law and Whittaker, 1980). Of the four possible planes, analogous to those in hornblende, on which close-packed oxides might nucleate, the only two reported are those corresponding to the (100) and (001) orientations in the amphibole. These are both found in spinel-group particles in pyroxene (Bown and Gay, 1959; Fleet et al., 1980), while only the first has been reported for ilmenite (Bown and Gay, 1959; Le Maitre, 1965). Often, the morphology of oxides in pyroxene lacks any simple relation to lattice orientation. Spinel-group particles are often described as blade-like (Fleet et al., 1980), rod-like (Le Maitre,
Fig. 9. The arrangements of oxygen atoms in the nearly close-packed planes of a real C2/m amphibole, generated from the unit-cell parameters and atomic co-ordinates given by Papike et al. (1969) for a "hornblende," actually a titanian magnesio-hastingsite (Cameron and Papike, 1979) and thus similar to the amphiboles under investigation. (a) [261], (b) (100), (c) (001). The oxygen atoms are drawn with a nominal diameter of 2.14. The repeat unit is outlined. The numbers are distances, in Å, of the atom centers above and below the average plane. (d) The hexagonal arrangement in (0001) of ilmenite, for comparison.

1965), or needle-like (Elsdon, 1971; Okamura et al., 1976), and ilmenite also occurs as needles (Grapes, 1975). Large (>10 μm) magnetites with consistent, irrational elongations are interpreted by Fleet et al. (1980) in terms of optimal phase-boundary theory (dimensional fit of the two lattices rather than the oxygen arrays). A similar effect is discernible in our largest (001)-type and (100)-type particles (Fig. 4), whose poles are systematically displaced from 001 and 100 in the sense expected from optimal phase-boundary theory (Fleet et al., 1980). It is noteworthy that platy morphology on (010) of hornblende, observed on the universal stage (Fig. 4) and unrelated to oxygen packing, is similar to the blade-like (010) morphology of magnetite described by Fleet et al. (1980). This effect can be attributed to boundary adjustment during coarsening, but the ilmenite-hornblende boundaries in general are not fully equilibrated, as is shown by the scatter of [261]-type poles in Figure 4 and the tendency of large particles to have irregular shapes (Fig. 5d).

Rutile. Morphological elongations in pyroxene (Moore, 1968; Griffin et al., 1971) do not correspond to the c orientations observed in hornblende (Table 3). Like the other oxides discussed above, rutile as coarse inclusions in pyroxene can have a morphology determined mutually by both phases, so that elongations are oblique to c (Griffin et al., 1971). The smaller particles studied here are generally simpler, with elongation parallel to c. The particles have nucleated with this axis approximately parallel to one or another of the diads of the theoretical cubic close-packed oxygen array (Table 3; Fig. 8). These are the close-packed directions
within the close-packed planes, and this linear correspondence can be understood in terms of the linear elongation of the rutile. Evidently, the dominant control is the similarity between the oxygen repeat distance in rutile, $c = 2.96\AA$, and the inter-oxygen distance in a nearly close-packed layer, which ideally would be $2.93\AA$ but is greater, by varying amounts, in the real amphibole structure (Fig. 9). Vectors related by this tetrad in rutile are forced, by the lower symmetry of the cubic close-packed array about this axis, to occupy dissimilar environments. If one (100) axis of rutile coincided exactly with a triad of the cubic close-packed array, the other would not. Each of the approximate relations listed in Table 3 can be seen as a compromise between two simple orientations in which a (100) axis would coincide with one or other triad of Figure 8 in the plane perpendicular to c of the rutile. These simple orientations are those discussed by Armbruster (1981), in which a (101) vector as well as [001] of rutile coincides approximately with a diad of a close-packed oxygen array. The coincidence cannot be exact because the angle between the two vectors in rutile is not 60°, but approximately 57°, and various deviations from ideal relations are found in intergrowths between rutile and other oxides (Armbruster, 1981). Among the rutile particles in hornblende, it is likely that some of the orientational scatter reflects a tendency towards one or other of the simple orientations. Indeed, for one orientation of the rutile c axis (parallel to b of hornblende), we find a strong tendency for a (100) axis to approximate a particular triad of the cubic close-packed model, namely that represented by c^* of hornblende. This implies a close approximation between (100) of rutile and (001) of hornblende, and indicates that the latter is a better fit to the nearly close-packed plane of rutile than is (100) of the amphibole. The fit is far from perfect, as indicated by the intense strain in rutile boundaries seen in TEM.

Oxide exsolution and the amphibole structural formula

It is inferred, from the homogeneous spatial distribution of inclusions in large parts of the interiors of hornblende grains, and the close crystallographic relations between the minerals, that the inclusions grew from the hornblende in the solid state. The reactions were favored by the slow cooling of the intrusions which had been emplaced, at depth, before the end of the Caledonian regional metamorphism. There remains the question whether the reactions could occur as a simple exsolution process in a closed system. We do not observe any silicate product of exsolution. In olivine and pyroxenes, the exsolution of oxides without accompanying silicates often leads to the necessity of postulating non-stoichiometry or unusual cation coordination in the host mineral (Okamura et al., 1976; Ashworth, 1979). Formation of oxide particles in pyroxene may involve open-system behavior, in particular oxidation or reduction (Garrison and Taylor, 1981).

Hornblende differs from olivine and pyroxene in the extra flexibility conferred by partition of Na between the B sites and the partly vacant A sites. The standard amphibole formula, $A_{0.1}B_2C_{4-8}T_{16}^{IV}(O,OH,F,Cl)_{24}$, has 15 to 16 cations per 24 (O,OH,F,Cl). Ilmenite has a higher proportion of cations (16 per 24 O), and rutile a lower one (12). Thus, exsolution of ilmenite will cause the cation total in the remaining hornblende to decrease, so that Na should move from A to the B sites to keep the latter full, while exsolution of rutile will have the reverse effect. More generally, if a fraction I is made over to ilmenite and R to rutile, leaving $(1-I-R)$ as hornblende, then the original Fe and Ti contents of hornblende change to Fe' and Ti' thus:

$$\text{Fe'} = (\text{Fe} - 8I)$$

$$\text{Ti'} = (\text{Ti} - 8I - 12R).$$

Of the 15 atoms that occupied the B, C, and T sites before exsolution, there remain $(15 - 16I - 12R)$, to $24(1-I-R)$ anions. For all these sites to remain fully occupied, the amount of Na that should move from A to B sites is

$$\Delta \text{Na}^B = 15(1-I-R) - (15-16I-12R)$$

$$= I - 3R,$$

which is zero if ilmenite and rutile are exsolved in the ratio 3:1. In the hornblendes studied, this ratio is not found, and NaB is expected to change; however, the effect will be slight and may be undetectable in electron microprobe analysis. To produce a change, per amphibole formula unit, of 0.15 (1% of the B + C + T total) would require that approximately 5% of the oxygen atoms be made over to rutile or 13% to ilmenite, larger quantities than we observe. For exsolution of 2.8% ilmenite and negligible rutile (as estimated in the Glen Scad-
dle amphibole), $\Delta Na^B = 0.03$, which is smaller than the likely analytical errors. Thus, movement of Na to this extent is accepted as possible.

Some Al must move from four-fold to six-fold coordination, in order that the T^{IV} total remains 8:

$$\Delta Al^{VI} = -\Delta Al^{IV} = 8(I + R).$$

The increasing proportion of (OH,F,Cl) ions can continue to be accommodated if the original amphibole had less than 2 of these per formula unit, or if solid solution towards a hydroamphibole end-member is possible. The cation total reaches 16 when $4R$ becomes equal to the original number of vacant A sites.

In summary, exsolution of rutile and ilmenite from hornblende is possible, without introducing excess ions or vacancies relative to the standard amphibole structure, provided that: (1) the initial hornblende has at least $4R$ vacancies in the A sites; (2) the initial hornblende has at least $8(I + R)$ Al ions in the T^{IV} sites; and (3) $(I - 3R)$ Na atoms can move from the A to the B sites.

Restriction (3) seems the most severe in amphiboles of the type studied here; if we are correct in arguing that Fe^{3+} is low, then the analyses indicate very little Na in the B sites either before or after exsolution, i.e., very restricted solid solution towards a sodic calcic amphibole end-member under the conditions experienced by these amphiboles.

Conclusions

In the rocks studied, ilmenite and rutile particles formed inside hornblende by a process of nucleation and growth from the primary amphiboles, which were probably titanian ferroan pargasites. The reaction occurred during the slow cooling of the Caledonian terrane from regional metamorphic temperatures. The consequences for the amphibole structural formula are slight. The analytical data are consistent with exsolution in a closed system, accompanied by adjustments in site occupancies within the amphibole, some Al moving from the T^{IV} to the C^{VI} sites, and some Na moving between the A and B sites. Because of the vacancies in the A sites, the crystal chemistry of hornblende can accommodate exsolution of oxides more readily than can the pyroxene or olivine structures.

The orientations of the oxide minerals were controlled by nucleation in a semi-coherent relation to the hornblende lattice. Packing of oxygen atoms determines the orientation of (0001) of ilmenite and c of rutile. The morphology of small particles is simply related to their lattices, but the coarser particles lost their simple shapes as they grew, presumably through reducing the strain energy associated with the oxide-hornblende interfaces. The observations suggest that the clouding of amphiboles by opaque particles may often be due to the exsolution of Ti-rich oxide minerals during cooling, as the stable extent of Ti substitution in the amphibole decreases with decreasing temperature.

Acknowledgments

We are indebted to the following for facilities and advice: Dr. M. H. Loretto, Birmingham University (high-voltage TEM); Mr. R. G. Howell, Dr. S. Murphy, and Dr. W. B. Hutchinson, Department of Metallurgy and Materials Engineering, Aston (electron microprobe and SEM); Dr. A. E. McCarthy, Department of Chemistry, Aston (X-ray oscillation camera); and Miss G. Thomas, Department of Civil Engineering, Aston (digitizer and associated microcomputer). We thank Dr. D. J. Vaughan for criticizing a draft.

References

Manuscript received, March 11, 1982; accepted for publication, July 6, 1982.