Al-Fe³⁺ and Ca-Sr²⁺ epidotes in metagreywacke-quartzofeldspathic schist, Southern Alps, New Zealand

RODNEY GRAVES AND TERUO WATANABE

Joint Mineral Sciences Research Laboratory
Victoria University of Wellington, New Zealand

Abstract

Al-Fe³⁺ and Sr²⁺-bearing epidotes are a common constituent in chlorite and biotite-albite zone metagreywacke-quartzofeldspathic schist in the Southern Alps of New Zealand. On the basis of electron microprobe backscattered electron scanning of complexly zoned grains five generations of epidote growth are recognized. First generation epidotes (Ps₂₉-₂₅) are typically fractured as a result of cataclasis during D₁ deformation and presumably represent relics of prehnite-pumpellyte and/or pumpellyte-actinolite facies conditions of metamorphism. Second generation epidote (Ps₂₅-₂₀) rims first generation epidote and replaces fragmented grains. Third generation epidote involved Sr-replacement, up to 8.5 wt.% SrO, of earlier grains along fracture planes and grain margins. Single grains exhibit a range of Sr = Ca replacement that can vary by up to 4 wt.% SrO. Fourth generation (post D₁) epidote (Ps₂₀-₉) occurs as overgrowths on earlier generation epidotes and as continuously zoned grains. Within the lowest grade part of the biotite–albite–oligoclase zone fourth generation epidote cores (Ps₁₆-₁₃) are overgrown by slightly more Fe-rich fifth generation rims (Ps₁₆-₁₄) suggesting involvement of the epidote Ca₂Al₃ Si₃O₁₂(OH) component in an oligoclase-producing reaction. In quartzofeldspathic lithologies epidote disappears at higher grades than the appearance of oligoclase.

Epidote compositions plot within the miscibility gap defined by Raith (1976) and a discontinuity between compositions of Ps₂₀ and Ps₁₆ in chlorite zone rocks is attributed to the persistence of relic cores due to incomplete Fe³⁺ = Al diffusional exchange at low temperature and textural grade. With increasing grade there is a decrease in the range of zoning in individual epidote grains resulting in a more homogeneous population of epidote compositions with the most Al-rich epidotes becoming Fe³⁺-rich and the most Fe³⁺-rich epidotes becoming more Al-rich. The formation of Sr-epidote appears to be related to the release of Sr into the fluid phase from the breakdown of detrital plagioclase over the pumpellyte-clinozoisite isograd during D₁ deformation. Early-formed oligoclase in the biotite–albite–oligoclase zone resulting from the disappearance of epidote contains up to 0.4% SrO. Mobility of Sr (and Ca) is indicated by veins containing Sr-bearing epidote and calcite. The complex zoning of epidotes is a function of bulk composition, time, variation in fluid composition, temperature, pressure and deformation of the rocks.

Introduction

Minerals of the clinozoisite (Ca₂Al₃Si₃O₁₂(OH))-pistacite (Ca₂Fe₃Si₃O₁₂(OH)) series have been extensively studied in rocks ranging in grade from greenschist to amphibolite facies (e.g., Strens, 1964; Holdaway, 1965; Brown, 1967; Cooper, 1972; Hörnann and Raith, 1973; Hietanen, 1974; Raith, 1976). Nearly all petrological studies to date relate to epidote paragenesis in metasedimentary rocks. These studies are supported by experimental work (Holdaway, 1972; Liou, 1973) which find that oxygen fugacity and bulk composition exert important controls on epidote composition. Consequently, epidotes in metasedimentary or carbonate rocks associated with metapelites of the same grade may be expected to show significant differences in their paragenesis, compositional ranges, reactions and stability. This paper examines the relationship between epidote composition and paragenesis in the transition from metagreywacke to schist in the Southern Alps of New Zealand. Because of variable and complex zonal relationships exhibited by the epidotes, compositional mapping of individual grains using backscattered electron scanning was used to determine their
growth history and relate this to the metamorphic chronology of the rocks studied.

Regional setting, bulk composition and mineral assemblages

Epidote-bearing metasediments and schists were collected from the upper reaches of the Franz Josef and Fox Glacier Valleys, central part of the Southern Alps, South Island of New Zealand. The samples extend from the pumpellyite-clinozoisite isograd near the Main Divide of the Island of New Zealand. The samples extend from the upper reaches of the Franz Josef and Fox Glacier Valleys, central part of the Southern Alps, South Island of New Zealand. Glaciers from the upper reaches of the Franz Josef and Fox Glacier Valleys, central part of the Southern Alps, South Island of New Zealand. The samples extend from the upper reaches of the Franz Josef and Fox Glacier Valleys, central part of the Southern Alps, South Island of New Zealand.

Epidote analyses were made on carbon-coated thin sections using an automated JEOL 733 electron microprobe. Accelerating voltage was 15 kV with a specimen current of 1.2×10^{-5} A and a beam diameter of 2–3 μm. Synthetic and natural mineral standards were used (Watanabe et al., 1981). Correction for dead time, background and current drift were applied before wt.% oxides were calculated using the method of Bence and Albee (1968). Alpha factors are those of Albee (pers. comm.) or Nakamura and Kushiro (1970). Grain homogeneity and analyzing positions were determined using backsctattered electron imaging (BEI) in all cases.

Analytical method

Epidote analyses were made on carbon-coated thin sections using an automated JEOL 733 electron microprobe. Accelerating voltage was 15 kV with a specimen current of 1.2×10^{-5} A and a beam diameter of 2–3 μm. Synthetic and natural mineral standards were used (Watanabe et al., 1981). Correction for dead time, background and current drift were applied before wt.% oxides were calculated using the method of Bence and Albee (1968). Alpha factors are those of Albee (pers. comm.) or Nakamura and Kushiro (1970). Grain homogeneity and analyzing positions were determined using backsctattered electron imaging (BEI) in all cases.

Epidote composition

Bulk variation

Epidote composition (expressed as pistacite (Ps) content = $100 \times Ca_3Fe_2Si_3O_9(SiO_2H)$ from the pumpellyite-clinozoisite isograd to the lower-grade part of the biotite-albite-oligoclase zone is given in Figure 1. The large spread of epidote Ps contents is mainly due to the presence of several generations of epidote within the rocks (described in more detail below). With increasing metamorphic grade this compositional range diminishes with progressive Fe$^{3+}$ enrichment of the most Al-rich epidotes and, to a lesser extent, Al-enrichment of the most Fe$^{3+}$-rich epidotes. The iron enrichment of the most Al-rich epidotes with increasing grade is consistent with a similar trend shown by the clinozoisite limb of the zoisite-clinozoisite solvus documented by Enami and Banno (1980). Above the oligoclase-in isograd epidote composition are decidedly more aluminous (Fig. 1).

In chlorite zone rocks no epidotes with Ps contents between Ps$_{20}$ and Ps$_{16}$ have been found whereas in the biotite-albite and biotite-albite-oligoclase zone rocks epidote compositions occupy this gap. Epidotes in lowest grade chlorite zone quartzofeldspathic schists in the Dansey Pass area, North Otago (Bishop, 1972) contain a similar hiatus between Ps$_{21}$ and Ps$_{13-14}$ as do epidotes in rocks of the same grade elsewhere in the Haast schist terrane, e.g., Brown (1967); Kawachi (1975). Below the pumpellyite-clinozoisite isograd, i.e., in pumpellyite-actinolite facies metagreywackes, epidote compositions are greater than Ps$_{20}$ (see also Bishop, 1972 and Kawachi, 1975). Such gross compositional shifts support the suggestion of Miyashiro and Seki (1958) that iron-rich epidotes form early or at low temperatures and become more aluminous with increasing temperature. In detail, however, rock chemistry, oxidation ratio, and fluctuations in fluid composition are probably more important than temperature in affecting Al = Fe$^{3+}$ substitution in epidote.

Zoning and replacement relations

Core-rim and replacement relations displayed by heterogeneous epidote grains (Fig. 2) indicate that, with the
Table 1. Mineral distribution in chlorite-biotite zone metagreywacke–quartzofeldspathic schist, Franz Josef-Fox Glacier area, Southern Alps, New Zealand.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>724</th>
<th>620</th>
<th>723</th>
<th>622</th>
<th>692</th>
<th>993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textural Zone (see below)</td>
<td>2A</td>
<td>2B</td>
<td>3A</td>
<td>3B</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>Pumpellyite-actinolite zone</td>
<td>Chlorite zone</td>
<td>Biotite-albite zone</td>
<td>Biotite-albite oligoclase zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facies</td>
<td>Pumpellyite-actinolite facies</td>
<td>Greenschist</td>
<td>Transitional</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Detrital Minerals | | | | |
|-------------------|-----------------|-----------------|
| Quartz | Plagioclase | K-feldspar |
| Fe²⁺-Epidote | Allanite | Muscovite |
| Biotite | Chlorite | Hornblende |
| Zircon | Apatite | Graphite |
| Ilmenite | | |

| Authigenic Minerals | | | |
|---------------------|-----------------|-----------------|
| Quartz | Albite | Oligoclase |
| Epidote | Chlorite | Biotite |
| Actinolite | Clinohumite | Stilpnomelane |
| Carbonate | Tourmaline | Sphene |
| Ilmenite | Sulphide | |

| Vein Minerals | | |
|--------------|-----------------|
| Quartz | Adularia | Pumpellyite |
| Epidote | Chlorite | Carbonate |

Textural Zone nomenclature after Bishop (1972); 2A - weakly schistose fissile greywacke with axial plane cleavage penetrative on microscope scale; 2B - semischist with penetrative foliation down to microscope scale; 3A - semischist with weakly developed quartz-albite rich segregation lamellae; 3B - distinctly laminated schists with segregation lamellae <2mm thick; 4 - schist with segregation lamellae >2mm thick.

exception of detrital epidote and allanite, there are four generations of epidote growth/replacement in most of the rocks examined. A fifth generation of epidote is found in schists of the biotite–albite–oligoclase zone.

Detrital grains are recognized by their smoothed subdued outlines and typically coarse grain size. Most grains are Fe-rich (Ps > 30) although rare grains of Ps15–14 have been found in one metagreywacke (No. 724) near the pumpellyite-clinozoisite isograd. Lithic fragments and detrital minerals indicate that the New Zealand greywackes were derived from a granitic-gneissic terrane (e.g., Reed, 1957). Although epidotes (both magmatic and hydrothermal) are typically Fe-rich in such rocks (e.g., Tulloch, 1979; Dickin et al., 1980), the restricted Ps range (Ps29–33) of the detrital Fe-rich epidotes in the rocks of the present area could be the result of compositional adjustment during subsequent prehnite–pumpellyite or zeolite facies metamorphism. Partial microprobe analysis of detrital allanite indicates that it is an Mg-rich variety with up to 4.2% MgO.

The earliest authigenic epidote recognized is also Fe-rich and has compositions ranging from Ps29–25. It occurs as individual grains (chlorite zone), as cores (biotite–albite zone), and as overgrowths on detrital epidote and...
The fragmentation of first generation epidote has occurred, especially in biotite-albite samples, where many grains (>80 µm diameter) of this generation, especially those in biotite-albite samples, have been extensively fractured and are often fragmented by cataclasis that accompanies the transition from metagreywacke to schist (Figs. 2b,c). Such a textural relationship indicates that these epidotes formed prior to the development of the weak S1 foliation. They presumably represent relics of a lower grade of metamorphism, perhaps equivalent to pumpellyite-actinolite or even prehnite-pumpellyite facies grade. Epidotes of a similar composition have been analyzed by Brown (1967) as relic cores in chlorite zone rocks of east Otago and by Kawanishi et al. (1977) in pumpellyite-actinolite facies pelitic rocks of the upper Wakatipu area, western Otago.

Second generation epidote, with compositions between Ps25 and Ps30, occurs as both replacement rims and sharply defined overgrowths on first generation epidote, and as discrete, homogeneous to weakly continuously zoned grains with rims enriched in Al. Where extensive fragmentation of first generation epidote has occurred, nearly total replacement of the smaller fragments by second generation epidote has taken place.

The third generation of epidote is characterized by significant amounts of SrO, which is detailed below. Sr-rich epidote shows up clearly as bright areas on backscattered electron scanning images and in chlorite and biotite-albite zone rocks it denotes a distinctive time and composition marker between first, second and fourth generation epidotes (Fig. 2a,b,c,d,e). Sr-rich epidote replaces previously formed epidote around margins and along fracture planes. Depending on the generation of epidote that is being replaced, Sr-epidote compositions fall within two groupings of Ps29-25 and Ps25-20. Smaller grains in the upper grade part of the biotite-albite zone (e.g., Fig. 2e), often exhibit a diffuse contact between areas of Sr-enrichment and overgrowths of fourth generation epidote suggesting that a limited amount of Sr-replacement of these overgrowths occurred after they had formed. In the biotite-albite-oligoclase zone, Sr-epidote may occur as narrow rims on fourth generation epidote of Ps11-13 (Fig. 2f).

Epidotes of the fourth generation mantle first and second generation grains and also typically enclose third generation Sr-epidote replacement rims and grains. Compositions vary from Ps15-16 in chlorite zone rocks and from Ps20-20.5 and Ps20-16.5 in the lower and higher grade rocks of the biotite-albite zone respectively (Fig. 1). Small (<10 µm), homogeneous grains of this generation are always the most Al-rich in any one sample, but otherwise compositional variation in fourth generation epidotes is due to a continuous zoning from Fe-rich cores to Al-rich rims. Overgrowths on earlier formed epidote tend to be relatively homogeneous. In the lowest grade rocks of the biotite-albite-oligoclase zone, the epidotes are notably more aluminous (Fig. 1) with cores of Ps10-11 gradationally zoned by compositions up to Ps13, the reverse trend of that in lower grade rocks.

In the biotite-albite zone, overgrowths of fourth generation, and rarely second generation epidote, characteristically have well developed crystal outlines and are often poikiloblastic (e.g., Fig. 2d). This habit suggests that they are post S1 which fragmented the larger grains of earlier generations.

Fourth generation Al-rich epidote (<Ps15) is first found in the vicinity of the pumpellyite-out-clinozoisite-in isograd and is accompanied by a decrease in modal chlorite and increasing amounts of actinolite suggesting a pumpellylite consuming reaction leading to a greenschist facies assemblage such as, pumpellyite + chlorite + quartz = actinolite + clinozoisite + H2O (Banno, 1964).

The continuous nature of this reaction has led to a degree of uncertainty in determining the position of this isograd. Expansion of the range of epidote composition across the pumpellyite-clinozoisite isograd "zone", especially with regard to the minimum Ps content (cf. Nakajima et al., 1977) results in the appearance of clino-
Table 2. Representative analyses and formulae on the basis of 12.5 (O) of Sr-epidotes, Franz Josef-Fox Glacier area, Southern Alps, New Zealand.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>725</th>
<th>723</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>37.67</td>
<td>36.72</td>
<td>36.67</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>25.27</td>
<td>24.37</td>
<td>23.06</td>
</tr>
<tr>
<td>Fe₂O₃*</td>
<td>10.12</td>
<td>11.13</td>
<td>12.24</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>22.78</td>
<td>19.96</td>
<td>18.65</td>
</tr>
<tr>
<td>SrO</td>
<td>2.13</td>
<td>5.73</td>
<td>8.36</td>
</tr>
<tr>
<td>H₂O(calc)</td>
<td>1.88</td>
<td>1.84</td>
<td>1.83</td>
</tr>
</tbody>
</table>

*All iron as Fe₂O₃

Total	99.94	99.79	100.86
Si	3.014	2.984	3.014
Al	2.366	2.334	2.323
Fe₂O₃*	0.599	0.680	0.753
Σ(M)	2.965	3.014	2.976
Ca	1.382	1.738	1.634
Sr	0.180	0.270	0.397
Σ(A)	2.012	2.008	2.031

Above the oligoclase isograd, which more or less coincides with the development of >2mm thick quartz-plagioclase and mica-rich laminae (textural zone 4), fourth generation epidotes have their long axes oriented parallel to the lamellae. Fifth generation optically discontinuous rims (Ps14–16) typically extend these grains in the direction of the schistosity (Fig. 2f) which implies that they grew during S2 development. Iron enrichment of the epidote rims coincides with the incoming of small amounts of epidote (Anzo-za) (Grapes and Otsuki, 1983) and an abrupt decrease in the modal amount of epidote. Such a relationship suggests a reaction where the Ca₂Al₃ Si₃O₁₀(OH) component of epidote is selectively consumed to form the anorthite molecule in plagioclase which would result in concomitant iron enrichment of the reactant epidote through a reaction such as

zoisite (Ps <10) some distance upgrade of the approximate position of the isograd (Fig. 1).

Fig. 2. Backscattered electron scanning photos of epidotes, Franz Josef-Fox Glacier area. Bar scale = 10 μm. (a) First generation epidote (Ps26) showing Sr-replacement (white) along cracks (No. 723, chlorite zone). (b) Disrupted and intensely fractured first generation epidote (Ps27-28) with extensive Sr-replacement (white areas) along fractures, surrounded by a spongy overgrowth of fourth generation epidote (dark grey of Ps16). Weakly developed S₁ schistosity in the section runs diagonally across the photo parallel to the elongation of the fractured first generation epidote (No. 621, low grade part of the biotite–albite zone; Textural zone 2B). (c) Large grain of first generation epidote (Ps22) (light grey) partially replaced by second generation epidote (Ps23-24) (dark grey patches) that has been extensively fractured and disrupted. Cracks and fractured fragments have been rimmed and partially replaced by Sr-epidote (white) which in turn has been overgrown in places by fourth generation epidote (right side of photo) of Ps16 with euhedral outlines (No. 625, low grade part of biotite–albite zone; Textural zone 3A). (d) Euhedral overgrowth of fourth generation epidote (Ps16) (grey) on second generation epidote (Ps22) (light grey) partially rimmed by Sr-epidote (white). Mica flakes in lower part of photo define the S₁ schistosity (No. 725, biotite–albite zone; Textural zone 3A). (e) Large euhedral grains of fourth generation epidote (Ps18–19) with cores of second generation epidote (Ps23-24) largely replaced by Sr-epidote. Brighter areas contain greater amounts of SrO. In comparison with (d) boundaries between core and rim are diffuse. (No. 991, higher grade part of biotite–albite zone; Textural zone 3B). (f) Heterogeneous fourth generation epidote in mica-rich layer of quartzo-feldspathic schist containing a core (dark grey) of Ps16 continuously zoned to Ps13 and overgrown by fifth generation epidote of Ps16 (lighter grey) elongated in the direction of the S₂ schistosity. The thin white rim marking the junction between fourth generation epidote and fifth generation overgrowth is enriched in SrO. The white areas along the outermost margins of the grain are the result of an edge effect. (No. 993, biotite–albite– oligoclase zone; Textural zone 4).
Fig. 3. Range of Sr$^{2+}$ ↔ Ca$^{2+}$ substitution in A(2) site of epidotes, Franz Josef-Fox Glacier area.

Epidote (Solid Solution) + muscovite + chlorite + quartz = anorthite component of plagioclase + Fe-richer epidote + biotite + H$_2$O. (1)

Sr-content of epidote

As stated above, Sr-bearing epidotes were only revealed by backscattered electron scanning where they show up as bright areas from the grey tones of Fe–Al epidote. Microprobe analyses (Table 2) indicate SrO contents ranging from 0.10 to 8.5 wt.% with the degree of BEI brightness intensifying as SrO content rises. Representative analyses of Sr-bearing epidotes are given in Table 2. According to Dollase (1971) Sr should replace Ca only in the A(2) site of the epidote structure and Figure 3 indicates that up to 40% of this site is occupied by Sr$^{2+}$ in epidotes of this study. In most cases single epidote grains exhibit a range of Sr = Ca replacement that can vary by as much as 4 wt.% SrO. Variation of SrO in epidotes with respect to metamorphic grade is shown in Figure 4. Near the pumpellyite-clinozoisite isograd, epidote SrO content is below 2 wt.% and rapidly increases to a maximum of 8.5% in epidotes of the chlorite zone (No. 723) and maintains high concentrations of up to 7% in those of the biotite–albite zone. SrO contents of epidotes in schists of the biotite–albite–oligoclase zone are below 2.3%.

Sr-bearing epidotes and piemontite have only been rarely reported. A Pb–Sr epidote (hancockite) with 3.81% SrO have been analyzed from a pegmatite, Franklin, New Jersey, by Palache (1933). Hutton (1940) records a piemontite with 1.23% SrO from a manganiferous quartzose schist from northwest Otago. More recently, Schreyer and Abraham (1978) have analyzed epidotes with between 0.18 and 0.70% SrO in a metatonalite from the Venn-Stavelot Massif, Belgium. The Alpine Sr-epidotes are therefore the most Sr-rich reported to date and their discovery indicates that they are probably widespread throughout the low grade metagreywacke-quartzofeldspathic schist lithology of the Torlesse and Haast schist terranes. The well known enrichment of Sr in greenstones dominated by epidote (e.g., Melson et al., 1968; Humphris and Thompson, 1978) suggests that Sr-rich epidotes may also be present in the associated metabasite horizons.

Mn-content of epidote

MnO contents are variable and in most epidotes range from 0.10 to 0.30 wt.%. There is no systematic change in epidote MnO contents with grade but within any one rock more Fe-rich grains have higher MnO than later generation Al-rich epidotes. Highest MnO contents (typically >0.6%) are recorded in detrital grains. In Sr-bearing epidote MnO is either absent or only present in minor amounts (<0.05 wt.%).

Discussion

Effect of host rock composition

In addition to T–P conditions of metamorphism, fo$_2$ and bulk composition, particularly the oxidation and Fe$_2$O$_3$/Al$_2$O$_3$ ratios, control the maximum Fe$^{3+}$ content of epidote (e.g., Holdaway, 1972; Cooper, 1972; Liou, 1973; Hörmann and Raith, 1973; Raith, 1976).

Oxidation ratios typically decrease with increasing metamorphic grade (e.g., Miyashiro, 1964). As in the present area (Fig. 1). There is a gradual overall decrease in the maximum Fe$^{3+}$ content of epidotes, especially those in rocks of the biotite–albite–oligoclase zone where oxidation ratios <20 and Fe$_2$O$_3$/Al$_2$O$_3$ ratios are low (e.g.,
No. 993, Fig. 1). Hematite and/or magnetite are absent in the samples studied and the opaque phases in the chlorite and biotite–albite zone rocks are pyrite and detrital ilmenite. Autogenic ilmenite first appears near the oligoclase–in isograd (Table 1). Minor amounts of graphite occur in all the rocks which indicates that f_O^2 during metamorphism was low. These data are consistent with the maximum iron-enrichment of P_{S_2} for second and fourth generation epidotes (cf. Liou, 1973) and underscores the conclusion that epidotes with P_s > 0.25 in the same rocks (Fig. 1) are relics of a lower metamorphic grade. On a more localized scale, the continuous zoning in single generation epidotes to more Al-rich compositions may, in part, record gradually decreasing f_O^2 in the fluid phase with time under essentially isothermal/isobaric conditions (see also Bird and Helgeson, 1981). The decrease of rock Fe_2O_3/AI_2O_3 ratio from 0.13–0.10 in chlorite and biotite–albite zone rocks to values of 0.05–0.04 over the oligoclase–in isograd would explain the shift to more aluminous epidote compositions (Fig. 1).

Origin of Sr-bearing epidote

The occurrence of Sr-epidote as rims and fracture lineings indicates increased aSr^{2+} in the fluid phase which resulted in hydrothermally-induced Sr \approx Ca replacement of epidotes (the only major Ca-bearing phase present, Table 1) formed prior to or during the D_1 event. The most probable source of the strontium is detrital plagioclase which contains up to 0.24% SrO. Figure 4 indicates a significant increase in the extent of Sr \approx Ca replacement in epidote over the pumpellyite–actinolite isograd which in this area coincides with extensive albitionization and cataclastic reduction of detrital feldspar, suggesting that rapid Sr exchange between feldspar and fluid took place. With the breakdown of epidote over the oligoclase–in isograd, Sr is incorporated into newly-formed oligoclase. Oligoclase coexisting with epidote almost on the isograd, Sr is incorporated into newly-formed oligoclase.

Origin of Sr-bearing epidote

The occurrence of Sr-epidote as rims and fracture lineings indicates increased aSr^{2+} in the fluid phase which resulted in hydrothermally-induced Sr \approx Ca replacement of epidotes (the only major Ca-bearing phase present, Table 1) formed prior to or during the D_1 event. The most probable source of the strontium is detrital plagioclase which contains up to 0.24% SrO. Figure 4 indicates a significant increase in the extent of Sr \approx Ca replacement in epidote over the pumpellyite–actinolite isograd which in this area coincides with extensive albitionization and cataclastic reduction of detrital feldspar, suggesting that rapid Sr exchange between feldspar and fluid took place. With the breakdown of epidote over the oligoclase–in isograd, Sr is incorporated into newly-formed oligoclase. Oligoclase coexisting with epidote almost on the isograd, Sr is incorporated into newly-formed oligoclase.

Origin of Sr-bearing epidote

The occurrence of Sr-epidote as rims and fracture lineings indicates increased aSr^{2+} in the fluid phase which resulted in hydrothermally-induced Sr \approx Ca replacement of epidotes (the only major Ca-bearing phase present, Table 1) formed prior to or during the D_1 event. The most probable source of the strontium is detrital plagioclase which contains up to 0.24% SrO. Figure 4 indicates a significant increase in the extent of Sr \approx Ca replacement in epidote over the pumpellyite–actinolite isograd which in this area coincides with extensive albitionization and cataclastic reduction of detrital feldspar, suggesting that rapid Sr exchange between feldspar and fluid took place. With the breakdown of epidote over the oligoclase–in isograd, Sr is incorporated into newly-formed oligoclase. Oligoclase coexisting with epidote almost on the isograd, Sr is incorporated into newly-formed oligoclase.

Origin of Sr-bearing epidote

The occurrence of Sr-epidote as rims and fracture lineings indicates increased aSr^{2+} in the fluid phase which resulted in hydrothermally-induced Sr \approx Ca replacement of epidotes (the only major Ca-bearing phase present, Table 1) formed prior to or during the D_1 event. The most probable source of the strontium is detrital plagioclase which contains up to 0.24% SrO. Figure 4 indicates a significant increase in the extent of Sr \approx Ca replacement in epidote over the pumpellyite–actinolite isograd which in this area coincides with extensive albitionization and cataclastic reduction of detrital feldspar, suggesting that rapid Sr exchange between feldspar and fluid took place. With the breakdown of epidote over the oligoclase–in isograd, Sr is incorporated into newly-formed oligoclase. Oligoclase coexisting with epidote almost on the isograd, Sr is incorporated into newly-formed oligoclase.

Origin of Sr-bearing epidote

The occurrence of Sr-epidote as rims and fracture lineings indicates increased aSr^{2+} in the fluid phase which resulted in hydrothermally-induced Sr \approx Ca replacement of epidotes (the only major Ca-bearing phase present, Table 1) formed prior to or during the D_1 event. The most probable source of the strontium is detrital plagioclase which contains up to 0.24% SrO. Figure 4 indicates a significant increase in the extent of Sr \approx Ca replacement in epidote over the pumpellyite–actinolite isograd which in this area coincides with extensive albitionization and cataclastic reduction of detrital feldspar, suggesting that rapid Sr exchange between feldspar and fluid took place. With the breakdown of epidote over the oligoclase–in isograd, Sr is incorporated into newly-formed oligoclase. Oligoclase coexisting with epidote almost on the isograd, Sr is incorporated into newly-formed oligoclase.
second generation epidotes or outwards into fourth generation rims suggesting the effect of a diffusion gradient. The amount of Sr replacement would presumably depend on the diffusion rate of Sr into epidote from the fluid phase and within the epidote itself, and this should increase with increasing temperature.

For a given bulk composition therefore, the tendency towards homogenization by Al = Fe3+ exchange between the M(1) and M(3) sites and the extent of Sr = Ca substitution in A(2)-site of earlier generation cores and later generation rims is a complex function of time, variation in fluid composition under isothermal/isobaric conditions, increasing temperature, pressure and deformation of the rocks.

Acknowledgments

We are indebted to Dr. Yosuke Kawachi, Geology Department, Otago University, and Dr. John Gamble, Geology Department, Victoria University, who read an early draft of the manuscript and offered helpful suggestions. We would also like to express our sincere thanks to Professor J. G. Liou, Department of Geology, Stanford University, for his constructive criticism which greatly improved a more final version of the manuscript. Support from the Victoria University Internal Research Grants Committee is gratefully acknowledged.

References

Banno, S. (1964) Petrologic studies on Sambagawa crystalline schists in the Bessi-Ino district, central Sikoku, Japan. Journal of the Faculty of Science, University of Tokyo, Sec. II, 15, 203-319.

Raith, M. (1976) The Al-Fe (III) epidote miscibility gap in a metamorphic profile through the Penninic Series of the Tauern
Window, Austria. Contributions to Mineralogy and Petrology, 57, 99–117.

Manuscript received, April 12, 1983; accepted for publication, December 27, 1983.