Physical Properties: Color dull yellow; streak pale yellow; translucent to opaque; H. = 3–4; D. = 4.627.

Occurrence: Intimately mixed with curite (see *Am. Min.*, 7 (7), 128, 1922) at Kasolo, Belgian Congo.

Discussion: Evidently a valid new species, but further data on its composition and properties are desirable.

DOUBTFUL SPECIES

Family: Sulfides and Related Compounds. **Division:** R" : R"" = 3:1 (?)

Unnamed.

Chemical Properties: Formula, approximating NiAs, for which the theory is: Ni 70.1, As 29.9%. The amount of material available was very small, but analysis gave: Ni 67.11, Co 1.29, Fe 0.61, Cu 0.99, Ag 0.02, As 30.64, sum 100.66%.

Crystallographic Properties: Crystallizes in cubes 5 mm. on a side.

Physical Properties: Color grayish white; luster metallic.

Occurrence: Found in the vicinity of Radstadt, Salzburg, by Prof. C. Diener.

Discussion: May well await the finding and investigation of further material before acceptance as a new species.

Family: Silicates. **Division:** R" : R"" : R"''' = 1:4

“Granite”

Name: An abbreviation of orthoclase—anorthite, with the mineralogical termination *ite*.

Chemical Properties: A more or less hypothetical intergrowth of orthoclase (or microcline) and anorthite corresponding to plagioclase, ranging in composition from Or30Ab70 to Or80Ab20. Members with less than 30 An, are to be called “lime orthoclase,” with more than 80 Ab, “potash anorthite.”

Crystallographic and Physical Properties: Unknown.

Occurrence: Extremely rare in nature, if it exists at all. Alling’s tabulations of many hundreds of feldspar analyses show only 2 or 3 which appear to belong here.

Discussion: Whether this should be considered a mineral species or a group is not clear. The name seems unfortunate, as it looks so much like “granite” that it is sure to be set up thus by many compositors. Moreover, if not a species, it should not end in *ite*.

Family: Carbonates. **Division:** R" : R"" : H2O = 2:1:1

“Paraurichalcite”

Name: From *para* and *aurichalcite*.
Chemical Properties: The author assigns a variable composition between the limits $3R \text{CO}_3 \cdot 4R(\text{OH})_2$ and $4R \text{CO}_3 \cdot 5R(\text{OH})_2$, with $R = \text{Cu} : \text{Zn} = 2:1$ to 3:2. The evidence seems insufficient, however, to justify such complex formulas.

Occurrence: Formed at Tsumeb, by the action of zinc-bearing solutions on malachite. Sometimes contains an unaltered core of the latter.

“Cuprozincite”

Biehl: op. cit.

Name: From cuprum (copper) and zincite.

Chemical Properties: Formula: $R \text{CO}_3 \cdot R(\text{OH})_2$, with $R : \text{Cu} : \text{Zn} : 2 : 1$.

Optical Properties: Identical with malachite, therefore described as monoclinic.

Physical Properties: Sp. gr. 4.10, H. 3; otherwise like paraurichalcite.

Occurrence: As with paraurichalcite.

Discussion: These two basic copper-zinc carbonates are imperfectly described; they vary in composition, and are apparently impure. They are best regarded as somewhat altered zinc-bearing malachites. Compare rosasite, *Am. Min.*, 6, 166, 1921.

E. F. H.

Family: Phosphates, Arsenates, Etc. Division: Near

$R'' : R'''' : H_2O = 2:1:1$

“Parabayldonite”

Biehl: op. cit.

Name: From para and bayldonite.

Chemical Properties: A theoretical molecule, $R_x \text{As}_2 \text{O}_6 \cdot R(\text{OH})_2 \cdot \frac{1}{2}H_2O$, $R = \text{Cu}$ and Pb; assumed to be present with bayldonite in a group of Cu-Pb arsenates of variable composition.

Physical Properties: These arsenates are greenish cellular masses and pseudomorphous crusts; sp. gr. approx. 5.5.

Occurrence: At Tsumeb, presumably secondary after cerussite.

E. F. H.

“Cuproplumbite”. (Used in a new sense.)

Biehl: op. cit.

Name: From cuprum (copper) and plumbum (lead), with the termination ite.

Chemical Properties: Formula: $2R_x \text{As}_2 \text{O}_6 \cdot 3R(\text{OH})_2 \cdot H_2O$, with $R = \text{Cu}$ and Pb; $X = 0, 1, or 2$.

Other Properties: As with parabayldonite.

Occurrence: Alteration product of mimetite.

Discussion: The name cuproplumbite has previously been used (Dana’s System, 6th ed., p. 51), for a copper-lead sulfide. “Parabayldonite” and “cuproplumbite” are variable, and too near bayldonite to be accepted as species.

In the same paper are described: lead oxides; cerussite; smithsonite; malachite; azurite crystals with a, c, v, m, l, f, p, h, θ, η, σ; aurichalcite; brochantite [forms b, m, v, x, and (new) (301), (430)]; mimetite (forms c, m, x); and olivenite (forms m, e, a).

E. F. H.