Thermodynamic properties of tetrahedrite-tennantites: constraints on the interdependence of the Ag=Cu, Fe=Zn, Cu=Fe, and As=Sb exchange reactions

RICHARD OLMSTED SACK AND ROBERT R. LOUCKS
Department of Geosciences
Purdue University
West Lafayette, Indiana 47907

Abstract
Experimental constraints, petrologic studies, and theoretical analysis suggest that, energetically, tetrahedrite-tennantite sulfosalts are remarkably well behaved multisite reciprocal solutions. Fe-Zn exchange experiments (500°C) between tetrahedrite-tennantite and sphalerites yield values of 2.59±0.14 and 2.07±0.07 kcal/gfw for the Gibbs energies of the reciprocal reaction

$$\text{Cu}_{10}\text{Zn}_2\text{Sb}_2\text{S}_{13} + \text{Cu}_{10}\text{Fe}_2\text{As}_4\text{S}_{13} = \text{Cu}_{10}\text{Fe}_2\text{Sb}_2\text{S}_{13} + \text{Cu}_{10}\text{Zn}_2\text{As}_4\text{S}_{13}$$

and Fe-Zn exchange reaction

$$1/2 \text{Cu}_{10}\text{Fe}_2\text{Sb}_4\text{S}_{13} + \text{ZnS} = 1/2 \text{Cu}_{10}\text{Zn}_2\text{Sb}_4\text{S}_{13} + \text{FeS},$$

These results, plus petrologic studies of tetrahedrite-tennantite + sphalerite assemblages, and preliminary experimental results at 435 and 365°C suggest that the above parameters are insensitive to temperature and permit estimates for the Gibbs energies of the remaining two reciprocal reactions of “ideal” tetrahedrite-tennantite ((Ag,Cu)$_6$Cu$_4$(Fe,Zn)$_2$ (As,Sb)$_2$S$_3$):

$$\text{Cu}_{10}\text{Zn}_2\text{Sb}_2\text{S}_{13} + \text{Ag}_6\text{Cu}_4\text{Fe}_2\text{Sb}_4\text{S}_{13} = \text{Cu}_{10}\text{Fe}_2\text{Sb}_2\text{S}_{13} + \text{Ag}_6\text{Cu}_4\text{Zn}_2\text{Sb}_4\text{S}_{13}$$

and

$$\text{Cu}_{10}\text{Fe}_2\text{As}_4\text{S}_{13} + \text{Ag}_6\text{Cu}_4\text{Fe}_2\text{Sb}_4\text{S}_{13} = \text{Cu}_{10}\text{Fe}_2\text{Sb}_2\text{S}_{13} + \text{Ag}_6\text{Cu}_4\text{Fe}_2\text{Sb}_4\text{S}_{13}$$

of 3.0±1.5 and 17±5 kcal/gfw, respectively.

These considerations suggest that tetrahedrite-tennantites are the “Cadillac” of reciprocal solutions and of petrogenetic indicators of hydrothermal mineralizing environments; they are the sulfide analog of amphiboles. In addition to providing a means for deducing aspects of the chemistry of many hydrothermal mineralizing fluids, our results afford an improved basis for understanding downstream chemical zoning in polymetallic base-metal sulfide and bonanza precious metal deposits. In particular they provide strong evidence that crystallochemical control coupled with As-Sb fractionation determines the distribution of silver in many zoned Pb-Zn-Cu-Ag deposits.

Introduction
The sulfosalts of interest here, Fe- and Zn-bearing tetrahedrite-tennantite solid solutions, are common constituents of polymetallic base metal sulfide deposits (e.g., Riley, 1974; Barton et al., 1977; Wu and Petersen, 1977; Einaudi, 1977; Knight, 1977; Loucks, 1984) and bonanza precious metal deposits (Hackbarth et al., 1981; Hackbarth and Petersen, 1983). They are the most common economic ore minerals of silver and often contain at least trace amounts of Hg, Bi, Te, Cd, Pb, and Se. They typically approximate the simple stoichiometry

$$(\text{Cu}_{10}\text{Ag}_{10/3}[\text{Cu}_{2/3}(\text{Fe,Zn,Cd,Hg,Pb})_{1/3}]^{2+}\text{Sb,As,Bi})_{10/3}(\text{S,Se})_{13}$$

of an ideal tetrahedrite-tennantite structure.
and Morimoto, 1973, 1977a, 1977b; Luce et al., 1977; Makovicky and Skinner, 1978, 1979). Although the synthetic analogues have the same space group symmetry, \(I \bar{4} 3 m \), they typically deviate from the simple stoichiometry of the classical formula, \(\text{Cu}_{10+x} \text{Fe}_{2-x} (\text{As}, \text{Sb})_y \text{S}_{13} \), requiring the additional component \(\text{Cu}_{14} (\text{As}, \text{Sb})_4 \text{S}_{13} \) and/or \(\text{Cu}_{12} (\text{As}, \text{Sb})_{14/3} \text{S}_{13} \) to describe their composition for positive values of \(x \) (Tatsuka and Morimoto, 1977; Makovicky and Skinner, 1978). Measurements of electrical resistivity and optical absorption spectra suggest that tetrahedrite-tennantites with \(208 \) valence electrons per unit cell are large-gap semiconductors, whereas those with between \(204 \) and \(208 \) valence electrons appear to be metallic (Johnson and Jeanloz, 1983; Jeanloz and Johnson, 1984).

Our interest in tetrahedrite-tennantite solid solutions derives, in part, from their potential to serve as sliding scale indicators of the physicochemical environment of ore deposition (e.g., Barton and Skinner, 1979). To date, pyrrhotite and particularly sphalerite are the mineral solutions which have been most widely applied to the study of hydrothermal ore deposits (e.g., Toulmin and Barton, 1964; Barton and Toullin, 1966; Boorman, 1967; Scott and Barnes, 1971; Barton and Skinner, 1979). As noted by Barton and Skinner (1979, p. 365), “the usefulness of sphalerite derives from its desirable quenching properties, capacity for a wide range of Fe-Zn substitution, widespread occurrence in natural environments, and near ideality for examination by optical and X-ray methods”. Among other common ore minerals, tetrahedrite-tennantite is perhaps the most promising as a chemical indicator of hydrothermal mineralizing environments, because it has considerable compositional variability, forms as a primary mineral over a broad range of temperatures—e.g., ca. 375°C at Darwin, California (Czamanske and Hall, 1975) to 200°C at Topia, Durango, Mexico (Loucks, 1984)—and is present as at least an accessory mineral in most Pb-Zn-Cu-Ag deposits. Tetrahedrite-tennantite reacts slowly in the laboratory (e.g., Skinner et al., 1972), and preservation of marked compositional discontinuities in natural growth-zoned crystals demonstrates that initial compositions are commonly retained in nature, at least at the lower temperatures of epithermal mineralization, \(<300°C\) (e.g., Yui, 1971; Wu and Petersen, 1977; Raabe and Sack, 1984; Hackbarth and Petersen, 1984). Unfortunately, the chemical complexity of tetrahedrite-tennantite has thwarted attempts to acquire the thermodynamic information necessary to interpret the factors influencing its compositional variation.

This paper reports results of Fe-Zn-Cu exchange experiments between sphalerites and tetrahedrite-tennantite in portions of the Cu-Fe-Zn-Sb-S, Cu-Fe-Zn-As-S, and Cu-Fe-Zn-Sb-As-S systems at 500°C. Results of these experiments bear on (1) elucidating the zoning mechanism responsible for the covariance between (As/Sb) and (Fe/Zn) ratios often observed in natural tennahedrites (e.g., Bushnell, 1983; Raabe and Sack, 1984), (2) defining the composition variables of sphalerite and tetrahedrite-tennantite in the low-variance assemblage sphalerite + ISS\(^2\) + arsenopyrite + tetrahedrite-tennantite and (3) defining activity-composition relations for copper-bearing components in sphalerite and ISS (e.g., Hutchison and Scott, 1981). Together with natural tetrahedrite-tennantite-bearing assemblages (e.g., Loucks, 1984; Raabe and Sack, 1984) and preliminary results of similar exchange experiments at 365 and 435°C, they provide a basis for developing a provisional calibration for the thermodynamic mixing properties of \((\text{Ag}, \text{Cu})_{1/3} (\text{Cu}_{2/3} (\text{Fe}, \text{Zn})_{1/3})_{2/3} (\text{As}, \text{Sb})_4 \text{S}_{13}\) tetrahedrite-tennantite.

Experimental methods

Elements of purity exceeding 99.99% were used as starting materials for the synthesis of \((\text{Zn}, \text{Fe}) \text{Sphalerites and Cu}_{14}(\text{Zn}, \text{Fe})_2(\text{As}, \text{Sb})_4 \text{S}_{13}\) tetrahedrite-tennantites. Homogeneous tetrahedrite-tennantites with ratios of \(\text{Fe}/(\text{Fe} + \text{Zn})\) of 0.00, 0.35, 0.60, 0.90 and 1.00, and \(\text{As}/(\text{As} + \text{Sb})\) of 0.00, 0.65, and 1.00 were synthesized from HCl-cleaned 0.5 mm diameter copper wire (mN-Johnson Matthey Puratonic, Alfa Ventron \#400338), 2-mm diameter iron wire (m4N5-J.M.P., A.V. \#00027), antimony ingot (m5N5, A.V. \#00032), fire-polished lumps of arsenic (m6N, A.V. \#00034), and random pieces of sulfur (m5N5, A.V. \#00038). Tetrahedrites, tetrahedrite-tennantite, and tennantites were prepared in 1.5 to 4 gm quantities by initially combining pre-synthesized FeS with other elements (weighed accurately to 4 decimal places) and with LiCl-KCl flux in evacuated silica tubes for 400°C in one-atmosphere furnaces for times between 3 weeks and 2 months (Boorman, 1967; Kullerud, 1971). These charges were then annealed at temperatures between 300°C (tennantites) and 575°C (tetrahedrites) for times between two and three months. The contents of quenched charges were washed in distilled water to remove flux, dried with acetone, and examined with the optical microscope and electron microprobe. This examination revealed that all tetrahedrites and tetrahedrite-tennantites with \(\text{Fe}/(\text{Fe} + \text{Zn})\) ratios of 0.00, 0.35, and 0.60 were homogeneous with respect to Fe/Zn ratios, whereas the remaining tetrahedrite-tennantites and tennantites were not. Consequently, the tennantites and iron-rich tetrahedrite-tennantites were rerun until homogeneity with respect to \(\text{Fe}/\text{Zn}\) ratio could be established from electron microprobe analyses. Repeated attempts at 500°C synthesis of \(\text{Cu}_{14} \text{Fe}_2 \text{As}_2 \text{S}_{13}\) were unsuccessful, but Springer (1969, sample 13) reports a lower temperature natural tennantite that closely approaches this composition.

Homogeneous sphalerites with \(\text{Fe}/(\text{Fe} + \text{Zn})\) ratios of 0.005, 0.010, 0.020, 0.050, 0.100, 0.170, and 0.250 were prepared from end-member ZnS sphalerite and FeS troilite by interdiffusion in the presence of NaCl-KCl flux in evacuated silica tubes at 850°C for times between 2 and 4 months. End-member ZnS was prepared by combining \(\text{H}_2\)-reduced zinc powder with excess sulfur at 500°C for 2 weeks, and then removing excess sulfur by rinsing with carbon disulfide. Stoichiometric FeS was synthesized from \(\text{H}_2\)-reduced iron powder and sulfur crystals in evacuated silica tubes at 800°C. To ensure FeS stoichiometry, the contents were subsequently resealed with chunks of iron metal; following

\[^2\text{ISS}\] is the cubic, Cu-Fe disordered “intermediate solid solution” having the \(I \bar{4} 3 m\) sphalerite structure and a broad composition field in the central part of the Cu-Fe-S system above 200°C (Cabri, 1973). Chalcopyrite is cubic only above 547°C (Yund and Kullerud, 1966).
<table>
<thead>
<tr>
<th>Sample</th>
<th>Phase</th>
<th>Fe/Fe + Zn</th>
<th>S</th>
<th>As</th>
<th>Sn</th>
<th>Zn</th>
<th>Cu</th>
<th>Sn</th>
<th>Smp.</th>
<th>Temp.</th>
<th>ESP</th>
<th>Phase</th>
<th>Fe/Fe + Zn</th>
<th>S</th>
<th>As</th>
<th>Sn</th>
<th>Zn</th>
<th>Cu</th>
<th>Sn</th>
<th>Smp.</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.350</td>
<td>0.350</td>
<td>0.350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.350</td>
<td>0.350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.306</td>
<td>0.306</td>
<td>0.306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.306</td>
<td>0.306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.262</td>
<td>0.262</td>
<td>0.262</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.262</td>
<td>0.262</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.218</td>
<td>0.218</td>
<td>0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.218</td>
<td>0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.174</td>
<td>0.174</td>
<td>0.174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.174</td>
<td>0.174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.130</td>
<td>0.130</td>
<td>0.130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.130</td>
<td>0.130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.086</td>
<td>0.086</td>
<td>0.086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.086</td>
<td>0.086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.042</td>
<td>0.042</td>
<td>0.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.042</td>
<td>0.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.018</td>
<td>0.018</td>
<td>0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.018</td>
<td>0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.009</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Electron microprobe analyses of run products of Fe-Zn exchange experiments at 500°C. Values in wt.% elements, followed by standard deviation in parentheses. N = number of point analyses. "Fe/Fe + Zn" refers to starting compositions. Superscript 1 in As and Sn columns designates values of As and Sn not analyzed, but assumed equivalent to proportions in starting tetrahedrite-tennantite (run products contain only sphalerite and tetrahedrite-tennantite).
Seventy-seven combinations of synthetic sphalerites and tetrahedrite-tennantite were selected to provide reversal brackets on the Fe-Zn exchange isotherm at 500°C (see Table 1). Due to the known refractory properties of sphalerite (e.g., Barton and Toulmin, 1966), it was decided to "make tetrahedrite-tennantite do the work" in attaining Fe-Zn exchange equilibrium, so in each experiment sphalerite and tetrahedrite-tennantite were run in the mass proportions 0.04 g sphalerite:0.005 g tetrahedrite-tennantite. This ratio corresponds to atomic proportions of about 60:1 in terms of exchangeable Fe + Zn. These mixtures were combined with LiCl-KCl flux, sealed in silica tubes under vacuum, and heated in one atmosphere furnaces for slightly over 5 months at 500°C, 10 months at 365°C, and 14 months at 435°C. During this period the furnace temperatures were monitored regularly for controller drift using reference chromel-alumel thermocouples calibrated against the melting points of Se (217°C), Te (450°C) and Sb (631°C). These temperature measurements demonstrate that the temperatures of the charges were controlled within ±3° during the experiments.

The quenched products of the exchange experiments were washed free of flux and mounted in cold-setting epoxy, polished, and examined by reflected light microscopy and electron microprobe analysis. Electron microprobe analyses of the products of the exchange experiments were accomplished utilizing the eight-spectrometer ARL-SEMQ microprobe interfaced with a PDP-11/10 computer in the Department of Geology and Geophysics of the University of California, Berkeley; microprobe analyses of the starting materials for these experiments were accomplished with the 3-spectrometer ARL-EMX microprobe formerly in the Hoffman Laboratory of Harvard University. In operating both microprobes, operating voltages of 20 kV and sample currents near 0.03 μA (on MgO) were employed, and synthetic sphalerites and tetrahedrite-tennantite of the compositions Zn₀.₉₆₈Fe₀.₀₁₇S, Zn₀.₆₆₂Fe₀.₆₄₈S, Cu₁₀Zn₂Sb₂S₄, Cu₁₀Fe₂Sb₂S₄, and Cu₁₀Fe₂Zn₁₅S₄S₄ were used as standards for sphalerites and tetrahedrite-tennantite, respectively. Magic IV corrections (Colby, 1972) were used to reduce the data. Based on intercomparison of standards, it is believed that the analytical uncertainties are well within the errors generally reported for microprobe analyses, less than ±2% relative for elements present in concentrations greater than 5 wt.%, and less than ±5% for elements present in concentrations between 1 and 5 wt.%.

Experimental results

Tetrahedrite-tennantite and sphalerite were observed in the products of all experiments at 500°C. In addition to tetrahedrite-tennantite and sphalerite, the phases ISS and arsenopyrite were observed in some runs. ISS was observed in all charges which had sphalerites with initial X₁⁺spn of 0.10, 0.17, and 0.25. In these charges there is a direct correlation between initial X₁⁺spn and modal ISS produced. ISS produced in the experiments occurs both as equant grains and as an emulsion of fine specks and lamellae in original
sphalerite grains. Arsenopyrite was observed only in (1) tennantite-bearing charges with initial X_{FeS}^{SPH} of 0.17 and 0.25, and (2) tetrahedrite-tennantite-bearing charges with the initial X_{FeS}^{SPH} of 0.25. In tetrahedrite-tennantite- and tennantite-bearing charges with X_{FeS}^{SPH} of 0.25, the original sphalerite grains are so pervasively infected with the ISS analogue of “chalcopyrite disease” (e.g., Barton, 1978; Hutchison and Scott, 1981) that it was not possible to obtain adequate electron microprobe analyses of relic sphalerite in these grains. Assuming chemical equilibrium, secondary sphalerites that grew during the experiments suggest approximate values of the composition of sphalerite in the four-phase assemblage in charges with initial X_{FeS}^{SPH} of 0.25 and $As/(As + Sb)$ of 0.65.

Results of electron microprobe analyses of the products of the 500°C Fe–Zn exchange experiments are given in Table 1. The main feature of the electron microprobe analyses is that they demonstrate that the experiments provide tight reversal brackets on the 500°C isotherms for Fe–Zn exchange between sphalerites and tetrahedrites, tetrahedrite-tennantites and tennantites (Fig. 1). These data demonstrate that, at a given Fe/Zn ratio in sphalerite, there is a direct correlation between the Fe/Zn and As/Sb ratios in tetrahedrite-tennantites. In contrast, experiments at 435 and 365°C did not produce similar tight reversal brackets on the Fe–Zn exchange isotherms at these temperatures. Accordingly, only preliminary results for experiments in which tetrahedrite-tennantites exhibit significant changes in Fe/Zn ratios (Fe-rich charges) are reported here (Table 2).

Table 2. Electron microprobe analyses of preliminary experiments that provide the tightest brackets on the Fe-Zn exchange isotherms between sphalerite and tetrahedrite or tennantite at 435 and 365°C. Format as in Table 1.

<table>
<thead>
<tr>
<th>EXP#</th>
<th>Phase</th>
<th>Fe/(Fe+Zn)</th>
<th>S</th>
<th>As</th>
<th>Sb</th>
<th>Fe</th>
<th>Zn</th>
<th>Cu</th>
<th>Sum</th>
<th>N*</th>
</tr>
</thead>
<tbody>
<tr>
<td>435-35</td>
<td>TD</td>
<td>0.600</td>
<td>25.25(22)</td>
<td>29.30(13)</td>
<td>5.57(08)</td>
<td>2.72(04)</td>
<td>37.85(07)</td>
<td>100.69</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.050</td>
<td>33.46(05)</td>
<td>2.97(03)</td>
<td>64.05(18)</td>
<td>0.09(02)</td>
<td>100.57</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>435-42</td>
<td>TN</td>
<td>0.350</td>
<td>28.05(20)</td>
<td>20.17(12)</td>
<td>4.35(03)</td>
<td>4.69(05)</td>
<td>42.03(18)</td>
<td>99.29</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.050</td>
<td>32.90(17)</td>
<td>2.87(06)</td>
<td>63.23(60)</td>
<td>0.09(05)</td>
<td>99.10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>435-45</td>
<td>TD</td>
<td>0.000</td>
<td>24.84(23)</td>
<td>29.18(19)</td>
<td>5.77(10)</td>
<td>3.32(02)</td>
<td>37.53(16)</td>
<td>100.64</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.100</td>
<td>33.30(23)</td>
<td>5.39(13)</td>
<td>60.69(71)</td>
<td>0.07(03)</td>
<td>99.45</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>435-48</td>
<td>TD</td>
<td>0.900</td>
<td>25.07(34)</td>
<td>29.21(50)</td>
<td>4.12(07)</td>
<td>4.87(24)</td>
<td>37.34(29)</td>
<td>100.61</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.100</td>
<td>32.70(22)</td>
<td>6.30(13)</td>
<td>61.60(60)</td>
<td>0.08(03)</td>
<td>100.73</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>435-55</td>
<td>TN</td>
<td>0.600</td>
<td>28.25(28)</td>
<td>20.44(19)</td>
<td>5.88(07)</td>
<td>3.75(31)</td>
<td>42.12(36)</td>
<td>100.43</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.100</td>
<td>33.32(26)</td>
<td>5.64(15)</td>
<td>61.60(36)</td>
<td>0.21(11)</td>
<td>100.77</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>435-56</td>
<td>TN</td>
<td>0.800</td>
<td>28.04(90)</td>
<td>20.37(31)</td>
<td>6.39(06)</td>
<td>3.21(05)</td>
<td>41.62(43)</td>
<td>99.64</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.32(02)</td>
<td>32.40(02)</td>
<td>5.97(07)</td>
<td>59.88(20)</td>
<td>0.10(02)</td>
<td>98.38</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>435-57</td>
<td>TD</td>
<td>0.350</td>
<td>25.32(14)</td>
<td>29.49(16)</td>
<td>4.74(16)</td>
<td>4.82(32)</td>
<td>36.30(08)</td>
<td>100.66</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.170</td>
<td>33.67()</td>
<td>5.69()</td>
<td>56.15()</td>
<td>0.31(15)</td>
<td>98.82</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>435-69</td>
<td>TD</td>
<td>0.600</td>
<td>25.51(15)</td>
<td>29.58(22)</td>
<td>5.93(07)</td>
<td>3.77(13)</td>
<td>36.22(25)</td>
<td>100.67</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.250</td>
<td>33.37()</td>
<td>14.19(08)</td>
<td>51.19(40)</td>
<td>0.75(08)</td>
<td>99.00</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365-71</td>
<td>TD</td>
<td>1.000</td>
<td>24.98(19)</td>
<td>29.50(12)</td>
<td>8.02(03)</td>
<td>2.90(11)</td>
<td>37.40(17)</td>
<td>100.76</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>SPH</td>
<td>0.250</td>
<td>34.33(17)</td>
<td>14.52(19)</td>
<td>51.16(37)</td>
<td>0.09(03)</td>
<td>99.24</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

which have the ideal formula of the initial tetrahedrite-tennantites, Cu$_{10}$Fe$_2$(Zn$_2$Sb$_4$As)$_4$S$_3$, because they have exchanged Cu with sphalerites initially on the Cu-free join ZnS–FeS. The 52 microprobe analyses listed in Table 1 demonstrate that the Fe–Zn-exchanged tetrahedrite-tennantites have molar (As + Sb)/S ratios well within analytical uncertainty of the 4/13 ratio of the ideal formula [(As + Sb)/S] = (3.9975+0.0452)/13. However, relative to the starting materials, all Fe–Zn-exchanged tetrahedrite-tennantites are enriched in (Fe + Zn) and depleted in Cu due to Fe–Cu and Zn–Cu exchange with sphalerites initially on the join FeS–ZnS, and due to the reaction of tetrahedrite-tennantite and sphalerite to form ISS in iron-rich charges. The average composition of all tetrahedrite-tennantites calculated on a 4 semimetal basis (with standard deviations in parentheses), is

$$\text{Cu}_9.720(0.211)\text{(Fe,Zn)}_2.2730(0.167)\text{(As,Sb)}_4\text{S}_{13.0080(0.148)}$$

which suggests that, to a first approximation, the reactions

$$\text{Cu}_{10}\text{Fe}_2\text{(As,Sb)}_4\text{S}_{13} + \text{FeS} \rightarrow \text{CuS} + \text{Cu}_9\text{Fe}_2\text{(As,Sb)}_4\text{S}_{13} \quad (1)$$

and

$$\text{Cu}_{10}\text{Zn}_2\text{(As,Sb)}_4\text{S}_{13} + \text{ZnS} \rightarrow \text{CuS} + \text{Cu}_9\text{Zn}_2\text{(As,Sb)}_4\text{S}_{13} \quad (2)$$

adequately describe the removal of Cu to form the Fe–Zn-exchanged tetrahedrite-tennantite. This inference is confirmed by microprobe analyses of ISS, which demonstrate that ISS is on the composition plane CuS–FeS–ZnS, to a close approximation. The average ratio of (Cu + Fe + Zn)/(S + As + Sb) of all ISS's is 0.992±0.028, with Sb being a negligible constituent and As an almost negligible constituent of ISS.
The progressive removal of Cu from tetrahedrites, tetrahedrite-tennantites, and tennantites with increasing $X^{\text{Sph}}_{\text{FeS}}$ is illustrated in Figure 2. From Figure 2 it may be noted that although the average tetrahedrite-tennantite plots near the $(10 - Cu)/(Fe + Zn - 2) = 1/1$ line (i.e., the $[Fe,Zn]_2(Cu)_1$ exchange direction), the data suggest that a line of slightly greater slope relates tetrahedrites, tetrahedrite-tennantites and tennantites in ISS-free and ISS-bearing charges, respectively (i.e., there is a component of the $[[Fe,Zn]_2(Cu)_1$ exchange direction). Although the experimental results do not rule out the operation of the $(Fe,Zn),(Cu)_1$ exchange in tetrahedrite-tennantites, they do suggest that at least a large component of the $(Zn,Fe)(Cu)_1$ exchange reaction is required to interrelate Cu-rich and Cu-poor tetrahedrite-tennantites, because available evidence indicates that Zn-rich sphalerites do not depart significantly from ideal (Zn,Fe)S stoichiometry by more than 0.1 atom% (e.g., Kullerud, 1953; Barton and

![Fig. 2. Deviations of experimental tetrahedrite-tennantites from their initial “ideal” formulas, Cu$_{10}(Fe,Zn)_{2}(As,Sb)_{4}S_{13}$, as measured by the quantities (10-Cu) and (Fe + Zn - 2) calculated on the assumption of four semimetals (right figure) and thirteen sulfurs (left figure) per formula unit. Circles, squares, and stars represent tetrahedrites, tetrahedrite-tennantites, and tennantites, respectively. Solid and open symbols differentiate sulfosalts that coexisted with ISS from those that did not, respectively. Large solid circles represent the average of all tetrahedrite-tennantite microprobe analyses calculated on a four semimetal and a thirteen sulfur basis. Lines labeled 2:1 and 1:1 represents the linear arrays which would be defined by tetrahedrite-tennantites displaying the formulas Cu$_{10-2x}(Fe,Zn)_{12-x}(As,Sb)_{4}S_{13}$ and Cu$_{10-x}(Fe,Zn)_{12-x}(As,Sb)_{4}S_{13}$, respectively.](image1)

Fig. 2. Deviations of experimental tetrahedrite-tennantites from their initial “ideal” formulas, Cu$_{10}(Fe,Zn)_{2}(As,Sb)_{4}S_{13}$, as measured by the quantities (10-Cu) and (Fe + Zn - 2) calculated on the assumption of four semimetals (right figure) and thirteen sulfurs (left figure) per formula unit. Circles, squares, and stars represent tetrahedrites, tetrahedrite-tennantites, and tennantites, respectively. Solid and open symbols differentiate sulfosalts that coexisted with ISS from those that did not, respectively. Large solid circles represent the average of all tetrahedrite-tennantite microprobe analyses calculated on a four semimetal and a thirteen sulfur basis. Lines labeled 2:1 and 1:1 represents the linear arrays which would be defined by tetrahedrite-tennantites displaying the formulas Cu$_{10-2x}(Fe,Zn)_{12-x}(As,Sb)_{4}S_{13}$ and Cu$_{10-x}(Fe,Zn)_{12-x}(As,Sb)_{4}S_{13}$, respectively.

![Fig. 3. Projection of ISS-sphalerite phase relations onto the composition plane CuS-FeS-ZnS. Tielines connect coexisting ISS and sphalerite compositions. Vertices of triangle formed by dashed lines represent the compositions of phases in the assemblage ISS-sphalerite-pyrrhotite determined from the calibration of Hutchison and Scott (1981) at 500°C.](image2)

Fig. 3. Projection of ISS-sphalerite phase relations onto the composition plane CuS-FeS-ZnS. Tielines connect coexisting ISS and sphalerite compositions. Vertices of triangle formed by dashed lines represent the compositions of phases in the assemblage ISS-sphalerite-pyrrhotite determined from the calibration of Hutchison and Scott (1981) at 500°C.
Sack and Loucks: Thermodynamic Properties of Tetrahedrite-Tennantites

Skinner, 1979, p. 366) and ISS is close to the composition plane CuS-ZnS-FeS. Thus, in subsequent discussion, we will assume that our tetrahedrite-tennantites may be described by the formula

\[\text{Cu}_{10-x}(\text{Fe}, \text{Zn})_x\text{S}_{13} \]

where \(x \) varies between 0 and 0.8 in the Fe-Zn exchanged experimental products. Inspection of Figure 2 reveals that (1) the ordering of tetrahedrites, tetrahedrite-tennantites, and tennantites in terms of \(x \) is tetrahedrites > tetrahedrite-tennantites > tennantites at a given \(X_{Fe}^{SPH} \), and (2) \(x \) increases progressively with \(X_{Fe}^{SPH} \) in ISS-bearing charges.

Unlike tetrahedrite-tennantites, initial and Fe-Zn exchanged sphalerites exhibit minor differences in Cu. Within the analytical uncertainties for elements present in dilute concentrations, values of \(X_{Fe}^{SPH} \) in sphalerites saturated with ISS exhibit composition dependence similar to but slightly greater than those given by the calibration of Hutchison and Scott (1981) for sphalerites in the assemblages ISS-sphalerite-pyrite and ISS-sphalerite-pyrite-pyrrhotite (Fig. 3). ISS was the principal sink for Cu removed from tetrahedrite-tennantites in the experiments reported here.

The experiments provide tight bounds on ISS-sphalerite tie lines in the CuS-FeS-ZnS system for \(X_{Fe}^{SPH} \) between 0.086 and 0.245. As shown in Figure 3, these data show that relative to ISS in the assemblages ISS-sphalerite-pyrite and ISS-sphalerite-pyrite-pyrrhotite (e.g., Hutchison and Scott, 1981), ISS on the composition plane CuS-FeS-ZnS in these experiments has a greater Cu/(Cu + Fe + Zn) ratio for the same value of \(X_{Fe}^{SPH} \) in coexisting sphalerite.

Interpretation of exchange equilibria in experimental products and natural assemblages

In a first approximation, it is convenient to interpret the experimental data and natural assemblages in terms of a thermodynamic formulation based on the simplified structural formula

\[(\text{Ag,Cu})^{18+}(\text{Cu}_{2/3},(\text{Fe}, \text{Zn}))_{1/3}^{18+}(\text{Sb}, \text{As})_{6}^{18+}\text{S}_{13} \]

for tetrahedrite-tennantites in the system Ag-Cu-Fe-Zn-

\[\text{Sb}-\text{As}-\text{S}. \] As mentioned above, most natural tetrahedrite-tennantite closely correspond to this formula, having negligible departure from full S-site occupancy, only minor amounts of Mn, Cd, Hg, Bi, and Te and, with few exceptions, less than six atoms of Ag per formula unit (e.g., Riley, 1974). It has been established that Ag is highly concentrated in trigonal-planar relative to tetrahedral sites, at least at silver concentrations of several atoms/formula unit (e.g., Kalbskopf, 1971, 1972; Johnson and Burnham, 1985; Peterson and Miller, 1985). Although this site distribution model may not be strictly correct (e.g., Patruck, 1983), the systematics of the ordering of Ag and Cu between tetrahedral and trigonal-planar sites are not known well enough to justify a less restrictive model. In addition, it should be noted that although metal ratios in some of the experimental tetrahedrite-tennantites deviate substantially from the simplified formula, it will be shown that it is unlikely that these deviations significantly influence Fe-Zn partitioning between tetrahedrite-tennantite and sphalerite.

For the assumptions stated above, the simplest formulation for the thermodynamic properties of tetrahedrite-tennantites requires at least a second degree polynomial in composition variables to describe the vibrational Gibbs energy of tetrahedrite-tennantites, if it is to be consistent with the Fe-Zn exchange data. These data indicate that the \(\text{As} \rightarrow \text{Sb} \) and \(\text{Fe} \rightarrow \text{Zn} \) exchange reactions are coupled energetically; at a given Fe/Zn ratio in sphalerite, an increase in (As/Sb) is accompanied by an increase in Fe/Zn in coexisting tetrahedrite-tennantite. Accordingly, we will provisionally assume that the vibrational Gibbs energy of tetrahedrite-tennantite may be adequately described by a second degree Taylor’s series expansion about \(\text{Cu}_{10}\text{Fe}_{2}\text{Sb}_{2}\text{S}_{13} \) \(X_1 \) in terms of the mole fractions of \(\text{Cu}_{10}\text{Zn}_{2}\text{Sb}_{2}\text{S}_{13} \) \(X_2 \), \(\text{Cu}_{10}\text{Fe}_{2}\text{As}_{2}\text{S}_{13} \) \(X_3 \), and \(\text{Ag}_{x}\text{Cu}_{4}\text{Fe}_{2}\text{Sb}_{2}\text{S}_{13} \) \(X_4 \) components. Such a formulation (e.g., Sack, 1982) leads to the following expression for the vibrational Gibbs energy of tetrahedrite-tennantites:

\[G^v = G^v_{\text{Cu}_{10}\text{Fe}_{2}\text{Sb}_{2}\text{S}_{13}}(X_1) + G^v_{\text{Cu}_{10}\text{Zn}_{2}\text{Sb}_{2}\text{S}_{13}}(X_2) + G^v_{\text{Cu}_{10}\text{Fe}_{2}\text{As}_{2}\text{S}_{13}}(X_3) + G^v_{\text{Ag}_{x}\text{Cu}_{4}\text{Fe}_{2}\text{Sb}_{2}\text{S}_{13}}(X_4) \]

\[+ \Delta G^{v}_{23}(X_2X_3) + \Delta G^{v}_{24}(X_2X_4) + \Delta G^{v}_{34}(X_3X_4) \]

\[+ W^{v}_{\text{Fe}_{\text{Sph}}}X_2(1 - X_2) + W^{v}_{\text{As}_{\text{Sph}}}X_3(1 - X_3) \]

\[+ W^{v}_{\text{Ag}_{\text{Cu}}}X_4(1 - X_4) \]

where the \(G^v \)'s are the vibrational Gibbs energies of the linearly independent components,

\[X_2 = 3X_{\text{Zn}}^{\text{ETF}} \]

\[X_3 = X_{\text{As}}^{\text{SM}} \]

and

\[X_4 = X_{\text{Ag}}^{\text{TRG}} \]

\[\Delta G^{v}_{23}, \Delta G^{v}_{24}, \text{ and } \Delta G^{v}_{34} \text{ are the standard state Gibbs energies of the reciprocal reactions} \]

\[\text{Cu}_{10}\text{Zn}_{2}\text{Sb}_{2}\text{S}_{13} + \text{Cu}_{10}\text{Fe}_{2}\text{As}_{2}\text{S}_{13} = \text{Cu}_{10}\text{Fe}_{2}\text{Sb}_{2}\text{S}_{13} + \text{Cu}_{10}\text{Zn}_{2}\text{As}_{2}\text{S}_{13} \]
Cu_{10}Zn_2Sb_4S_{13} + Ag_6Cu_4Fe_2Sb_4S_{13} \\
= Cu_{10}Fe_2Sb_4S_{13} + Ag_6Cu_4Zn_2Sb_4S_{13}, \quad (8)

and

Cu_{10}Fe_2As_4S_{13} + Ag_6Cu_4Fe_2Sb_4S_{13} \\
= Cu_{10}Fe_2Sb_4S_{13} + Ag_6Cu_4Fe_2As_4S_{13}, \quad (9)

and \(W_{\text{TET}}^{\text{TET}}, W_{\text{AsSb}}^{\text{AsSb}}, \) and \(W_{\text{AgCu}}^{\text{AgCu}} \) are binary regular-solution-type energy terms which describe deviations from linearity in vibrational Gibbs energy along joins between end-member components differing only in concentrations of Fe and Zn, As and Sb, and Ag and Cu, respectively. An expression for the total Gibbs energy may be obtained by combining (3) with an expression for the configurational entropy of a tetrahedrite-tennantite with the "ideal" stoichiometry

\(S_{\text{IC}} = -R[2X_2 \ln (X_2/3) + 2(1 - X_2) \ln ((1 - X_2)/3) + 4 \ln (2/3) + 4X_3 \ln X_3 + 4(1 - X_3) \ln (1 - X_3) + 6X_4 \ln X_4 + 6(1 - X_4) \ln (1 - X_4)] \quad (10) \)

through the relation

\(G = G^* - T S_{\text{IC}} \). \quad (11) \)

From this relation for the Gibbs energy, the chemical potential of any endmember component \(j \) may be readily obtained by application of the Darken equation (e.g., Darken and Gurry, 1953)

\[\mu_j = G + \sum_i n_i \left(1 - x_i \right) \left(\frac{\partial G}{\partial X_i} \right) \]

where the \(n_i \)'s are the mole fractions of the linearly independent components \(Cu_{10}Fe_2Sb_4S_{13}, Cu_{10}Zn_2Sb_4S_{13}, Cu_{10}Fe_2As_4S_{13}, \) and \(Ag_6Cu_4Fe_2Sb_4S_{13} \) in tetrahedrite-tennantite component \(j \) (e.g., these \(n_i \) are \(-2, +1, +1, +1\), respectively, for the component \(Ag_6Cu_4Zn_2As_4S_{13} \)).

Applications of the Darken equation yield the following expressions for the chemical potentials of the exchange components, the exchange potentials (e.g., Thompson and Thompson, 1976), of principal interest here:

\[\mu_{\text{Zn(Fe)-}_{1}} = 1/2(\mu_{Cu_{10}Zn_2Sb_4S_{13}} - \mu_{Cu_{10}Fe_2Sb_4S_{13}}) = G^{\text{Zn(Fe)-}_{1}} + RT \ln [X_2/(1 - X_2)] + 1/2[\Delta G_{23}^{0}(X_3) + \Delta G_{24}^{0}(X_4) + W_{\text{TET}}^{\text{TET}}(1 - 2X_2)], \quad (13) \]

\[\mu_{\text{Ag(Cu)-}_{1}} = 1/6(\mu_{Ag_6Cu_4Fe_2Sb_4S_{13}} - \mu_{Cu_{10}Fe_2Sb_4S_{13}}) = G^{\text{Ag(Cu)-}_{1}} + RT \ln [X_4(1 - X_4)] + 1/6[\Delta G_{24}^{0}(X_2) + \Delta G_{34}^{0}(X_3) + W_{\text{AgCu}}^{\text{AgCu}}(1 - 2X_4)], \quad (14) \]

and

\[\mu_{\text{As(Fe)-}_{1}} = 1/4(\mu_{Cu_{10}Fe_2As_4S_{13}} - \mu_{Cu_{10}Fe_2Sb_4S_{13}}) = G^{\text{As(Fe)-}_{1}} + RT \ln [X_3/(1 - X_3)] + 1/4[\Delta G_{23}^{0}(X_2) + \Delta G_{34}^{0}(X_4) + W_{\text{AsSb}}^{\text{AsSb}}(1 - 2X_3)] \quad (15) \]

where \(G^{\text{Zn(Fe)-}_{1}}, G^{\text{Ag(Cu)-}_{1}}, \) and \(G^{\text{As(Fe)-}_{1}} \) are the quantities

\[1/2(G^{\text{Zn(Fe)-}_{1}} - G^{\text{Cu(Fe)-}_{1}}), \quad 1/6(G^{\text{Ag(Cu)-}_{1}} - G^{\text{Cu(Fe)-}_{1}}), \quad \frac{1}{4}(G^{\text{As(Fe)-}_{1}} - G^{\text{Cu(Fe)-}_{1}}), \]

respectively.

\[G^{\text{Zn(Fe)-}_{1}} = G^{\text{FeS}}_{\text{x-Fes}} - G^{\text{ZnS}}_{\text{x-Zns}} + \frac{1}{2}RT\left[X_{\text{Fes}}^{\text{SPH}} \ln X_{\text{Fes}}^{\text{SPH}} + (1 - X_{\text{Fes}}^{\text{SPH}}) \ln (1 - X_{\text{Fes}}^{\text{SPH}}) \right] \]

\[+ \frac{1}{2}RT\left[X_{\text{Fes}}^{\text{Zns}} \ln X_{\text{Fes}}^{\text{Zns}} + (1 - X_{\text{Fes}}^{\text{Zns}}) \ln (1 - X_{\text{Fes}}^{\text{Zns}}) \right] \quad (17) \]

where \(G^{\text{Zn(Fe)-}_{1}} \) is the exchange potential of tetrahedrite-tennantite, and \(G^{\text{FeS}}_{\text{x-Fes}} \) and \(G^{\text{ZnS}}_{\text{x-Zns}} \) are the quantities.

The condition of Zn-Fe exchange equilibrium between tetrahedrite-tennantites and sphalerites may be written as

\[\frac{RT_{\text{Fes}}^{\text{TD}}}{\mu_{\text{FeS}}} = \frac{RT_{\text{Fes}}^{\text{ZnS}}}{\mu_{\text{ZnS}}} \]

where the Zn(Fe)-\(^{1}\) exchange potential of tetrahedrite-tennantite is defined by expression (13), and that for (Zn,Fe)S sphalerites may be readily calculated from the following expression for the Gibbs energy of sphalerite

\[G^{\text{Zn(Fe)-}_{1}} = G^{\text{FeS}}_{\text{x-Fes}} + \frac{1}{2}RT\left[X_{\text{Fes}}^{\text{SPH}} \ln X_{\text{Fes}}^{\text{SPH}} + (1 - X_{\text{Fes}}^{\text{SPH}}) \ln (1 - X_{\text{Fes}}^{\text{SPH}}) \right] \]

\[+ \frac{1}{2}RT\left[X_{\text{Fes}}^{\text{Zns}} \ln X_{\text{Fes}}^{\text{Zns}} + (1 - X_{\text{Fes}}^{\text{Zns}}) \ln (1 - X_{\text{Fes}}^{\text{Zns}}) \right] \quad (17) \]

given values for the activity coefficients \(\gamma_{\text{FeS}}^{\text{SPH}} \) and \(\gamma_{\text{ZnS}}^{\text{SPH}} \).

Values for \(\gamma_{\text{FeS}}^{\text{SPH}} \) and \(\gamma_{\text{ZnS}}^{\text{SPH}} \) (for FeS and ZnS components referred to the F43m standard state) appropriate for 500°C may be taken directly from Fleet's (1975) Gibbs-Duhem integration of the data of Barton and Toulmin (1966) for 850°C because \(\delta_{\text{FeS}}^{\text{SPH}} - X_{\text{FeS}}^{\text{SPH}} \) relations are insensitive to temperature from at least 340 to 850°C (Barton and Toulmin, 1966; Scott and Barnes, 1971). Accordingly, if the trivial concentration of Cu in sphalerite is ignored, the condition of Zn(Fe)-\(^{1}\) exchange equilibrium between tetrahedrite-tennantite and sphalerite may be written as

\[RT \ln K_{\text{p}} = RT \ln \left[\left(\frac{X_{\text{Fes}}^{\text{SPH}}}{X_{\text{Zns}}^{\text{SPH}}} \right) \left(\frac{X_{\text{Zns}}^{\text{SPH}}}{X_{\text{Zns}}^{\text{SPH}}} \right) \right] \quad (18) \]

where

\[\Delta G^{\text{Zn(Fe)-}_{1}} = 1/2(G^{\text{Cu_{10}Zn_2Sb_4S_{13}}} - G^{\text{Cu_{10}Fe_2Sb_4S_{13}}} - G^{\text{Cu_{10}Fe_2Sb_4S_{13}}} + (G^{\text{FeS}} - G^{\text{Zns}})). \quad (19) \]
An examination of a plot of $RT \ln K_D$ versus X_{FeS} (Fig. 4) suggests that only two of the three energy parameters which apply to Ag-free systems ($X_A = 0$) are tightly constrained by the experimental data at 500°C. Values of 2.07 ± 0.07 and 2.59 ± 0.14 kcal/gfw are obtained for the energy parameters $\Delta G_{Zn(Fe)_-,r}$ and $\Delta G_{Zn,3}$ from linear regression of (18) for the data sets defining the reversal brackets on $RT \ln K_D$ over the sphalerite composition range 0.04 < X_{FeS} < 0.25 and the assumption that $W_{FeZn} = 0$. As shown in Figure 4, these results describe all the experimental data to an excellent approximation and are adopted here. Despite the success of the “ideal” reciprocal solution formulation for tetrahedrite-tennantite in treating the Fe-Zn exchange data, we may not conclude, a priori, that tetrahedrite-tennantite behaves ideally with respect to mixing of Fe, Zn, and Cu on tetrahedral sites. Indeed, the experimental data suggest that some consideration of non-ideality in the mixing of Cu, Fe, and Zn in tetrahedrite-tennantites is required, as the chords corresponding to constant X_{FeS} in Figure 4 appear to exhibit progressive counterclockwise rotation, relative to those for “ideal” tennantite, with increasing X_{FeS} over the X_{FeS} range of tight reversal brackets on $RT \ln K_D$ for 0.04 < X_{FeS} < 0.17; the tetrahedrites exhibit the maximum deviation from the ideal formula. These observations suggest that tetrahedrite-tennantites which are enriched in Fe and Zn relative to tetrahedrite-tennantites with the ideal formula have slightly greater values of $RT \ln K_D$ and would thus imply that the values of $\Delta G_{Zn(Fe)_-,r}$ and $\Delta G_{Zn,3}$ deduced from (18) are minimum and maximum bounds on these energies, respectively. However, we choose not to correct for any deviation from the “ideal” tetrahedrite-tennantite formulation in treating the Fe-Zn exchange data, because any deviations from this formulation are well within the uncertainties of the analytical data and of the determinations of activity-composition relations in sphalerite.

Given the values of $\Delta G_{Zn,3}$ and $\Delta G_{Zn(Fe)_-,r}$ for 500°C, preliminary reversals on the Fe-Zn exchange isotherms at 435 and 365°C, and composition and temperature data for natural sphalerite + tetrahedrite-tennantite assemblages, it should be relatively straightforward to develop a calibration for the temperature dependence of the distribution coefficient for Fe-Zn exchange between sphalerites and tetrahedrite-tennantites in both silver-free and silver-bearing systems. Unfortunately, there is presently a paucity of composition data on natural sphalerite + tetrahedrite-tennantite assemblages, and the Fe-Zn exchange isotherms at 435 and 365°C are not well constrained by the preliminary results. Thus any calibration developed from such comparisons must be viewed as tentative. Nevertheless, such comparisons do suggest that $\Delta G_{Zn,3}$ and $\Delta G_{Zn(Fe)_-,r}$ are temperature insensitive over the range 200–500°C. Thus, such comparisons suggest that the Fe-Zn exchange reaction between sphalerite and tetrahedrite-tennantite could be a useful geothermometer for a wide variety of polymetallic base-metal sulfide and bonanza precious-metal deposits, if the compositions of tetrahedrite-tennantites were quenchable over this temperature range.

Approximate constancy of $\Delta G_{Zn,3}$ and $\Delta G_{Zn(Fe)_-,r}$ over the temperature range 200–500°C may be demonstrated from comparison of the experimental results with composition and temperature data for sphalerite + tetrahedrite-tennantite assemblages from the Hock Hocking mine at Alma, Colorado (Raabe and Sack, 1984) and a gold–quartz vein from Alleghany, California (J. K. Bohlke, pers. comm., 1984). Tetrahedrite-tennantites from both of these localities have negligible concentrations of Ag, and they are close to the “ideal” formula; tetrahedrite-tennantites from the Hock...
Hocking mine span virtually the entire range of $X_{\text{As}}^{\text{mm}}$. Raabe and Sack (1984) have shown that the covariance of $\ln (Z_{\text{nl}}/\text{Fe})$ and $X_{\text{As}}^{\text{mm}}$ exhibited by growth-zoned tetrahedrite-tennantites from Hocking mine is consistent with fluid inclusion temperatures from sphalerites ($T = 249 \pm 7^\circ C$) employing the value of $\Delta G^*_{23} = 2.59 \pm 0.14$ kcal/gfw, and the assumption that the Fe/Zn ratio of sphalerite was constant during the growth of tetrahedrite-tennantite. Microprobe analyses do not reveal composition zoning in sphalerites, and they do not exhibit color zoning, a sensitive indicator of composition zoning (e.g., Barton et al., 1963; McLimans et al., 1980). Accordingly, we will adopt the value of $\Delta G^*_{23} = 2.59 \pm 0.14$ kcal/gfw from 200-500°C as the basis for comparison of the experimental Fe-Zn distribution coefficients with natural assemblages, employing for Ag-free tetrahedrite-tennantites equation (18) rewritten in terms of the variables $\ln K_D$ and $(1/T)$,

$$\delta^*_k = \ln K_D - \ln \frac{K_D}{X_{\text{Fe}}^{\text{SPH}}} \frac{\Delta G^*_{23}}{2RT} (X_3)$$

$$= \frac{\Delta H_{23}^{\text{FeS}} - (1/T)}{R} \frac{\Delta S_{Zn(FeS)}^{\text{FeS}}}{R}$$

(20)

Such a comparison (Fig. 5) reveals that the simplest assumption, that $\partial \Delta G^*_{23}/\partial T$ and $\partial \Delta S_{Zn(FeS)}^{\text{FeS}}/\partial T$ are negligible, is consistent with both the experimental data and natural assemblages, to a first approximation. However, it does not rule out positive values for $\Delta S_{Zn(FeS)}^{\text{FeS}}$, because (1) the values of $\ln K_D$ and δ^*_k defined by the data of Raabe and Sack (1984) are quite uncertain given that $X_{\text{SPH}}^{\text{FeS}} < 0.003$ and that there is a fair degree of uncertainty in the assumption that $\partial \Delta G^*_{23}/\partial T = 0$, (2) some of the tetrahedrite-tennantites analyzed by Bohlke are in contact with sphalerites with $X_{\text{SPH}}^{\text{FeS}} \geq 0.02$, and all of them are antimony-rich [$X_{\text{As}}^{\text{mm}}/(X_{\text{As}}^{\text{mm}} + X_{\text{Sb}}^{\text{mm}}) = 0.14 \pm 0.03$], and (3) the preliminary constraints on the Fe-Zn isotherms at 365 and 435°C will permit counter-clockwise (but not clockwise) rotation of the $\Delta S_{Zn(FeS)}^{\text{FeS}}$ line through the brackets on δ^*_k at 500°C (in Fig. 5).

Despite the uncertainties associated with the assumptions that ΔG^*_{23} and $\Delta S_{Zn(FeS)}^{\text{FeS}}$ are constant, it may be readily established that exchange of Ag for Cu in tetrahedrite-tennantites significantly alters the Fe-Zn exchange isotherms from those in Ag-free systems. Ag-bearing tetrahedrites in fissure veins from Topia, Durango, Mexico (Loucks, 1984) ($X_{\text{As}}^{\text{mm}} = 0.58 \pm 0.08$, $T = 215 \pm 20^\circ C$, $X_{\text{SPH}}^{\text{FeS}} = 0.022 \pm 0.013$, and $0.66 \leq X_{\text{SPH}}^{\text{FeS}} \leq 0.13$, for 8 tetrahedrite-tennantite-sphalerite assemblages) have values of δ^*_k significantly greater than those in Ag-free systems. Comparison of the Topia data with the provisional calibration for the Fe-Zn exchange reaction in Ag-free systems (Fig. 5) suggests that the magnitude of the stabilization of Fe relative to Zn due to the exchange of Ag for Cu is similar to that due to the exchange of As for Sb. Amending (20) to include provision for this stabilization in Ag-bearing tetrahedrite-tennantites,

$$\delta^*_k = \frac{\Delta G^*_{Zn(FeS)}^{\text{FeS}}}{RT} + \frac{\Delta G^*_{24}}{2RT} (X_4)$$

(21)

permits an estimate for ΔG^*_{24} of 3.0 ± 1.5 kcal/gfw for $215 \pm 20^\circ C$ and $\Delta G^*_{23}^{\text{Zn(FeS)}} = 2.07 \pm 0.07$ kcal/gfw. This estimate is probably an upper bound on ΔG^*_{24} for the reasons cited above.

Ag(Cu)_1 exchange equilibria

In principle, the variables which express the energetic interdependence of the Ag(Cu)_1 and As(Sb)_1 exchange reactions and nonideality due to the Ag(Cu)_1 exchange, ΔG^*_{24} and $\Delta (\text{AgCu})$, respectively, may be assessed from natural assemblages utilizing the condition of Ag(Cu)_1 exchange equilibrium. For this purpose expression (14) for the Ag(Cu)_1 exchange potential in tetrahedrite-tennantite may be combined with equivalent statements for $\mu_{\text{Ag(Cu)_1}}$.

![Fig. 5. The variation of δ^*_k with $(1/T)$ $(^\circ K)^{-1}$. Small circle and associated error bar represent the experimental constraints at 500°C. Arrows indicate preliminary brackets from exchange experiments at 435 and 365°C. Large circles represent the values of δ^*_k defined by the natural sphalerite + tetrahedrite-tennantite assemblages reported by J. K. Bohlke (pers. comm., 1984; $K_D = 2.10 \pm 0.20$, $X_{\text{Fe}}^{\text{FeS}} = 0.022 \pm 0.004$, and $X_{\text{As}}^{\text{mm}}/(X_{\text{As}}^{\text{mm}} + X_{\text{Sb}}^{\text{mm}}) = 0.14 \pm 0.03$ for three samples) and Raabe and Sack (1984). Fluid inclusion studies establish a temperature of $249 \pm 7^\circ C$ for the tetrahedrite-tennantites assemblages reported by Raabe and Sack (1984). A temperature between 240 and 280°C has been inferred for the sphalerite + tetrahedrite-tennantite assemblages from Allegheny, California. Although most oxygen isotope temperatures of mica-carbonate-quartz assemblages give temperatures between 300 and 340°C for these deposits, fluid inclusion and petrographic studies suggest that the later sulfides were deposited at lower temperatures (J. K. Bohlke, pers. comm., 1984). The star with associated error bar represents the data of Loucks (1984) for tetrahedrites with > 18 wt.% Ag. The line crossing Fig. 5 represents the calibration of equation (18) for values of $\Delta H_{23}^{\text{FeS}}$, $\Delta H_{24}^{\text{Zn(FeS)}}$, and $\Delta S_{24}^{\text{Zn(FeS)}}$ of 2.0718 kcal/gfw, 2.5898 kcal/gfw, 0 Gibbs/gfw, and 0 Gibbs/gfw, and the expression for $\ln (Y_{\text{SPH}}/Y_{\text{SPH}})$ given in the caption to Fig. 4.](image)
defined by coexisting sulfides or hydrothermal solutions. In practice, however, it is evident that there is presently a paucity of appropriate data, and that it will be necessary to make several assumptions to derive estimates of the parameters ΔG_{23}^a and W_{AGCu}^{TRG}. Nevertheless, it is certain that ΔG_{34}^a is a large positive number (i.e., $\Delta G_{34}^a \gg \Delta G_{23}^a$ or ΔG_{24}^a) and that the correlations between Ag and Sb commonly observed in tetrahedrite-tennantite suites are largely crystallographically controlled rather than being simply “permissive” as suggested by Miller and Craig (1983). This conclusion is readily evident from plots of ΔG_{34}^a versus X_{As} and could be anticipated from structural refinements of tetrahedrite-tennantites (e.g., Wuench, 1964; Wuench et al., 1966; Kalbskopf, 1972; Johnson and Burnham, 1985; Peterson and Miller, 1985). Examination of Pb-Zn-Cu-Ag sulfide deposits reveals that tetrahedrite-tennantites often exhibit composition zoning in both time and space. Both Sb and Ag tend to be concentrated in earlier growth zones of individual crystals and at the distal ends of paths of fluid flow (e.g., Goodell and Petersen, 1974; WU and Petersen, 1977; Hackbarth and Petersen, 1984). In addition, correlations between Ag and Sb in tetrahedrite-tennantites along paths of fluid flow typically deviate from linearity on plots of Ag or Ag/(Ag + Cu) versus X_{As} in a manner which would be predicted from (14) for the assumption of constant ΔG_{34}^{AgCu} exchange potential and values of $\Delta G_{34}^a \gg \Delta G_{23}^a$ or ΔG_{24}^a.

Despite the paucity of appropriate phase equilibrium constraints, provisional values of ΔG_{34}^a may be obtained from analysis of trends in $RT \ln \left(\frac{X_{Cu}^{TRG}}{X_{Ag}^{TRG}} \right)$ versus X_{As} of the growth zoned tetrahedrite-tennantite crystals reported by Shimazaki (1974) and those from Julcani, Peru (Kane and Peterson, 1985). If values of $RT \ln \left(\frac{X_{Cu}^{TRG}}{X_{Ag}^{TRG}} \right)$ are corrected to those which would correspond to a constant value of the Zn(Fe)$_{3+}$ exchange potential in each sample, trends in $RT \ln \left(\frac{X_{Cu}^{TRG}}{X_{Ag}^{TRG}} \right)$ versus X_{As} of tetrahedrite-tennantites are remarkably parallel, except for several samples from Julcani (Fig. 6). It is apparent that most of these trends are strikingly parallel with the covariance trend given by (14) for constant values of the Zn(Fe)$_{3+}$ and Ag(Cu)$_{1-}$ exchange potentials and the assumptions that

$$\Delta G_{34}^a = 3(\Delta G_{23}^a + \Delta G_{24}^a)$$

(i.e., $\Delta G_{34}^a = 16.8 \pm 4.5$ kcal/gfw), and $W_{AGCu}^{TRG} = 0.4$. Parallelism of the trends of the tetrahedrite-tennantites of the Kosaka and Shakani Kuroko deposits is not surprising because they contain the low-variance assemblage pyrite + chalcopyrite + sphalerite + electrum (e.g., Eldridge et al., 1983), an assemblage which defines (but does not buffer) the Ag(Cu)$_{1-}$ exchange potential. Although the striking parallelism of $RT \ln \left(\frac{X_{Cu}^{TRG}}{X_{Ag}^{TRG}} \right)$ versus X_{As} covariation curves and their linearity suggests that $W_{AGCu}^{TRG} \sim 0$ to a first approximation, this conclusion cannot be advanced with certainty because this assemblage does not guarantee that the Ag(Cu)$_{1-}$ exchange potential was fixed to a single value during hydrothermal mineralization. Certainly W_{AGCu}^{TRG} is considerably less than 10.1 kcal/gfw, the upper bound deduced from the consideration that X_{As} can assume all values between zero and unity down to temperatures of at least 150°C. Although the Julcani assemblages have higher...
variance in the phase rule sense, the accord between actual and theoretical slopes is nevertheless striking. Therefore, we consider the above to be compelling evidence for strong influence of crystal energetics on Ag content in these tetrahedrite-tennantite-bearing suites, and tentatively adopt a value of 16.8 ± 4.5 kcal for ΔG°_{34}.

As(Sb)$_{-1}$ exchange equilibria

Very little may be inferred about As(Sb)$_{-1}$ exchange reactions between tetrahedrite-tennantites and other As- and Sb-bearing phases based on presently available experimental and petrological data. Perhaps the only inferences that are secure are (1) that $X_{AS}^{SSB} < 8.3$ kcal/gfw and (2) that tetrahedrite-tennantites with intermediate Sb/(As + Sb) ratios have greater As/Sb ratios than the hydrothermal solutions from which they precipitated. The former inference is indicated by the observation that tetrahedrite-tennantites spanning the entire range of $X_{AS}^{SSB}/(X_{AS}^{SSB} + X_{Sb}^{SSB})$ ratios are formed at temperatures as low as 250°C (e.g., Raabe and Sack, 1984). The latter inference is suggested by the observation that in paragenetic stages in hydrothermal veins in which tetrahedrite-tennantite is the only As- and Sb-bearing ore phase precipitated, it typically evolves towards greater $X_{AS}^{SSB}/(X_{AS}^{SSB} + X_{Sb}^{SSB})$ ratios along the direction of flow of the mineralizing solutions. Because the Gibbs energies of appropriate tetrahedrite-tennantites are unknown, quantitative modelling of their compositional variations in epithermal deposits is premature. However, some constraints on As(Sb)$_{-1}$ exchange reactions between tetrahedrite-tennantites and hydrothermal fluids may be obtained by comparison of evaporative fractionation calculations for model tetrahedrite-tennantite-bearing solutions with compositional variation trends of tetrahedrite-tennantite in hydrothermal vein deposits. These calculations illustrate the important role that site interactions in the crystal play in influencing the downstream trends in chemical zoning of the ore deposit.

Hackbarth and Petersen (1984) have summarized composition zoning trends of tetrahedrite-tennantites from the Galena, Coeur, Sunshine, and Crescent mines in the Coeur d’Alene district in northern Idaho and from mines in the Casapalca, and Orcopampa districts in Peru. From their studies of effectively monomineralic crustification bands of tetrahedrite-tennantites, they have established probable temporal and spatial compositional zoning patterns, have identified Ag/(Ag + Cu) - Sb/(Sb + As) curves which enclose spatial composition zoning trends (Fig. 7), and have interpreted these zoning trends in terms of a general model of fractional crystallization. They have assumed (1) that As(Sb)$_{-1}$, Ag(Cu)$_{-1}$, and Zn(Fe)$_{-1}$ exchange reactions between tetrahedrite-tennantite and hydrothermal fluid are energetically independent, (2) that the distribution coefficients for As(Sb)$_{-1}$ and Ag(Cu)$_{-1}$ exchange between these phases,

$$K_{D1} = \frac{\left(\frac{n_{AS}^{TD-TN}}{n_{Cu}^{TD-TN}}\right) \left(\frac{m_{LA}^{Ag}}{m_{LA}^{Ag}}\right)}{\left(\frac{1}{X_4 (1 - X_4)} + 2/3\right) \left(\frac{m_{LA}^{Ag}}{m_{AS}^{Ag}}\right)}$$

are constant, (3) that surface equilibrium obtains between hydrothermal fluid and each successive batch of tetrahedrite-tennantite it crystallizes, (4) that after crystallization tetrahedrite-tennantites do not react with hydrothermal fluid, and (5) that changes in the composition of the hydrothermal fluid are due to the crystallization of tetrahedrite-tennantite alone. In their analysis Hackbarth and Petersen (1984) demonstrate that although both K_{D1} and K_{D2} must be less than unity to predict observed com-
position zoning trends from probable hydrothermal fluids, a wide range of values of K_{D1} and K_{D2} (between 0.1 and 0.9) are required for this purpose. The consistency between the observation that K_{D1} and K_{D2} are highly variable and the extents of energetic coupling among the As(Sb)^{-1}, Ag(Cu)^{-1}, and Zn(Fe)^{-1}, exchange reactions inferred on preceding pages is readily appreciated from inspection of the corresponding conditions of exchange equilibrium between tetrahedrite-tennantite and hydrothermal fluid written in an appropriate format for comparison with (23) and (24):

$$1/K_{D1} = \left(\frac{(5/3 - X_4)}{(1 - X_4)} \right) \exp \left\{ \frac{[a + 1/6(\Delta G_{24}^o(X_2) + \Delta G_{34}^o(X_4))] / RT}{RT} \right\},$$

(25)

$$K_{D2} = \exp \left\{ \frac{[b + 1/4(\Delta G_{23}^o(X_2) + \Delta G_{34}^o(X_4))] / RT}{RT} \right\},$$

(26)

and

$$K_{D3} = \frac{(1 - X_2) m^e_{\text{Zn(Fe)}} m^e_{\text{Fe}}} {X_2 m^e_{\text{Zn}}},$$

$$= \exp \left\{ \frac{[c + 1/2(\Delta G_{23}^o(X_2) + \Delta G_{34}^o(X_4))] / RT}{RT} \right\}$$

(27)

where the exchange potentials in the hydrothermal fluid are defined by the expressions

$$\mu^e_{\text{As(Sb)}^{-1}} = \mu^e_{\text{As(Sb)}^{-1}} + RT \ln \left(\frac{m^e_{\text{As}}}{m^e_{\text{Sb}}} \right) + RT \ln \left(\frac{m^e_{\text{As}}}{m^e_{\text{Sb}}} \right),$$

(28)

$$\mu^e_{\text{Ag(Cu)}^{-1}} = \mu^e_{\text{Ag(Cu)}^{-1}} + RT \ln \left(\frac{m^e_{\text{Ag}}}{m^e_{\text{Cu}}} \right) + RT \ln \left(\frac{m^e_{\text{Ag}}}{m^e_{\text{Cu}}} \right),$$

(29)

and

$$\mu^e_{\text{Zn(Fe)}^{-1}} = \mu^e_{\text{Zn(Fe)}^{-1}} + RT \ln \left(\frac{m^e_{\text{Zn}}}{m^e_{\text{Fe}}} \right) + RT \ln \left(\frac{m^e_{\text{Zn}}}{m^e_{\text{Fe}}} \right),$$

(30)

a, b, and c are

$$a = 1/6(\mu^e_{\text{Ag(Cu)Fe}^{2+}Sb_{2}Se_{3}} - \mu^e_{\text{Cu}^{2+}Fe^{2+}Sb_{2}Se_{3}}),$$

(31)

$$b = 1/4(\mu^e_{\text{Cu}^{2+}Fe^{2+}Sb_{2}Se_{3}} - \mu^e_{\text{Cu}^{1+}Fe^{2+}Sb_{2}Se_{3}}),$$

(32)

and

$$c = 1/2(\mu^e_{\text{Cu}^{1+}ZnSb_{2}Se_{3}} - \mu^e_{\text{Cu}^{1+}Fe^{2+}Sb_{2}Se_{3}}) - \left(\mu^e_{\text{As(Sb)}^{-1}} + RT \ln \left(\frac{m^e_{\text{As}}}{m^e_{\text{Sb}}} \right) \right),$$

(33)

and it has been assumed that tetrahedrite-tennantite is an "ideal" reciprocal solution.\(^5\)

It is readily demonstrated that most of the downstream compositional variation trends exhibited by tetrahedrite-tennantites from essentially monomineralic crustification bands in zoned hydrothermal ore deposits may be reproduced by an heuristic fractionation model in which constant values of the coefficients a, b, and c in (25)-(27) are employed. In the simplest such model of perfect fractionation an average temperature ($T = 260^\circ$C) is chosen, and tetrahedrite-tennantite is crystallized from solutions having ratios of the sums (Ag + Cu), (Fe + Zn), and (As + Sb) equal to those of the stoichiometric formula for "ideal" tetrahedrite-tennantite. The composition of tetrahedrite-tennantite crystallized at each step of fractionation is calculated by iterative solution of (25H27).

Comparison of the results of trial calculations with space-time envelopes on $Ag/(Ag + Cu) - Sb/(As + Sb)$ fractionation paths in zoned hydrothermal vein deposits (Hackbarth and Petersen, 1984) allows deduction of approximate values of a, b, and c.

Lacking quantitative fluid temperature-composition data, the schematic representation of aqueous species precludes recovery of exact values of the coefficients a, b, and c by this numerical simulation example, but it suggests several probable bounds on these coefficients. Because ΔG_{34}^o and ΔG_{33}^o are positive and the sense of downstream zoning requires that tetrahedrite-tennantites with intermediate $Sb/(As + Sb)$ ratios have lower values of this ratio than the hydrothermal fluids that crystallize them, the coefficient b.

\(^5\) In order to preserve generality, relations (28)-(33) are represented in schematic form. It is well established that for the acidic brines implicated in formation of most hydrothermal silver-base metal sulfide deposits, chloride complexes of Ag, Cu, Zn, and possibly Fe are likely to predominate greatly over simple ions. Work by Helgeson (1969), Crerar and Barnes (1976), Seward (1976), and Crerar et al. (1978) indicate that over the range of salinities pertinent to these ore-forming solutions, the predominant chloride complexes of silver have higher ligand numbers than the predominant complexes of copper in the same solution, and zinc forms chloride complexes of higher ligand number than iron. Presently available data (Helgeson, 1969; Crerar et al., 1978) suggest that in a 2 molal NaCl solution at 260°C, Zn-Fe exchange between tetrahedrite-tennantite and predominant aqueous species might be described by

$$1/2\text{Cu}^{2+}\text{Fe}^{2+}\text{Sb}_{2}\text{Se}_{3} + \text{ZnCl}_{2}^{-2} \rightarrow 1/2\text{Cu}^{1+}\text{ZnSb}_{2}\text{Se}_{3} + \text{FeCl}^{+} + 3\text{Cl}^{-},$$

in which case the Zn-Fe distribution coefficient for that fluid and tetrahedrite-tennantite could be recovered by setting $\mu^e_{\text{ZnCl}_{2}^{-2}} = \mu^e_{\text{ZnCl}_{2}^{-2}} + \mu^e_{\text{ZnCl}_{2}^{-2}} - 3\mu^e_{\text{ZnCl}_{2}^{-2}}$, the right-hand term would become $RT \ln \left(\gamma_{\text{ZnCl}_{2}^{-2}} \gamma_{\text{FeCl}^{+}} \gamma_{\text{Cl}^{-}} \right)$, and

$$c' = -RT \ln \left(\frac{X_2}{1 - X_2} \frac{m^e_{\text{FeCl}^{+}}}{m^e_{\text{ZnCl}_{2}^{-2}}} \right)$$

The exchange distribution parameters a and c respond to salinity variations only to the extent that the difference in ligand numbers of the exchange pair varies with salinity.
in (26) must be negative. Values of b in the range of -1.0 to -1.5 kcal/gfw appear to give adequate fits to down-icovation trends in Ag/(Ag + Cu) and Sb/(As + Sb) in tetrahedrite-tennantites from the Casapalca and Coeur d’Alene deposits for $a = c = 0$. Values of b in this range seem reasonable, because the form of tetrahedrite-tennantite Ag/(Ag + Cu) - Sb/(As + Sb) fractionation curves are fairly insensitive to values of c, and a must be a fairly small number in absolute value relative to the absolute value of b. For a given value of b, comparable values of a are not permitted because they lead to the development of unnatural negative correlations between Ag/(Ag + Cu) and Sb/(As + Sb) at advanced stages of crystallization of many of the tetrahedrite-tennantite bulk compositions investigated. Alternatively, positive values of a comparable in absolute value to b are not permitted because they do not allow duplication of the left-hand envelope on tetrahedrite-tennantite fractionation curves in Figure 7 for reasonable tetrahedrite-tennantite bulk compositions, by virtually excluding Ag from tetrahedrite-tennantite crystallized in the early stages of fractionation. To be consistent with the observation that virtually monomineralic tetrahedrite-tennantite fractionation paths in the Coeur d’Alene district do not exhibit prominent zoning in Zn/(Zn + Fe) (e.g., Hackbarth and Petersen, 1984), values of c must satisfy the inequality $b \leq c \leq 0$. Values of c near these lower and upper bounds lead to tetrahedrite-tennantite fractionation paths characterized respectively by decreasing and increasing Zn/(Zn + Fe) with increasing degree of crystallization.

Although, in detail, many of the assumptions of the model given above cannot be correct, even for stages of vein mineralization dominated by tetrahedrite-tennantite crystallization, agreement between spatial tetrahedrite-tennantite composition zoning trends observed in vein ore deposits and those predicted by the model suggests that it provides a useful paradigm. The conditions in the preceding calculations that are most unlikely to be fulfilled when applied to paragenetic stages of hydrothermal deposition are that only tennahedrite is crystallized and that the fluid has the ratios of (Ag + Cu)/(As + Sb) and (Fe + Zn)/(As + Sb) of tennahedrite-tennantites with the “ideal” formula. In cases in which other sulfides are precipitated with tetrahedrite-tennantite, spatial zoning trends of tetrahedrite-tennantite will differ from those given by the model in a predictable manner. For example, where pyrite and sphalerite are coprecipitated with tetrahedrite-tennantite, the sulfidation trajectory will influence spatial zoning trends of (Fe/Zn) in tetrahedrite-tennantite, as a_{es} is reciprocally related to In f_{S}. Where arsenopyrite is co-precipitated with tetrahedrite-tennantite, the spatial variations of Ag/(Ag + Cu) versus Sb/(As + Sb) ratios tetrahedrite-tennantite will probably show enhanced concavity similar to curves 3 or 4 in Figure 7. Finally, coprecipitation of chalcopyrite will result in more positive concave upward slopes of tetrahedrite-tennantite fractionation curves than those displayed on Figure 7, because it will increase the Ag/Cu ratio of the fluid relative to that due to tetrahedrite-tennantite precipitation alone. In addition, as noted by Hackbarth and Petersen (1984), ratios of (Cu + Ag)/(As + Sb) in the fluid greater and less than those of tetrahedrite-tennantite with the “ideal” formula will yield tetrahedrite-tennantite fractionation paths characterized by smaller and greater slopes d(Ag/(Ag + Cu))/d(Sb/(As + Sb)), respectively. The remaining assumptions are less likely to result in serious discrepancies between tetrahedrite-tennantite fractionation paths observed in hydrothermal deposits and those predicted by the model.

Although exact precipitation mechanisms (e.g., cooling, dilution, boiling, change in chemistry by wallrock reaction, etc.) and fluid chemistries vary among and within deposits, tetrahedrite-tennantite zoning systematics along flowpaths are not likely to be sensitive to likely ranges of temperature or pH variations given the large relative magnitude of crystal energetic effects. However, due to differential complexing of metals with chloride in aqueous solutions, changes in fluid salinity along the flowpath (e.g., due to dilution or boiling) may strongly influence downstream zoning trends in mineral chemistry. For the exchange reaction

\[
\begin{align*}
\text{Cu}_{10}\text{Fe}_{7}\text{Sb}_{2}\text{S}_{13} + 6\text{AgCl}^2^- &= \text{Ag}_{6}\text{Cu}_{4}\text{Fe}_{2}\text{Sb}_{4}\text{S}_{13} + 6\text{CuCl}^+ + 6\text{Cl}^- \nonumber \\
&= \frac{d \log \left(\frac{(X_4/X_1)^{TD}}{(a_{\text{AgCl}^-}/a_{\text{CuCl}^+})_{\text{LIQ}}}\right)}{d \log a_{\text{Cl}^-}} = -1
\end{align*}
\]

Thus, for a fluid fractionally precipitating tetrahedrite-tennantite along its flow-path, isothermal dilution from 10.5 to 8.5 wt.% NaCl would tend to cause (Ag/Cu)$_{TD}$ to increase by 26%. Fluid inclusion studies have demonstrated that dilution of ascending metalliferous brines by heated, dilute groundwaters has been influential in the development of several tetrahedrite-tennantite-bearing, epithermal silver-base-metal vein deposits (e.g., Hayba, 1984; Robinson and Norman, 1984; Loucks, in prep.).

Although the hydrologic and chemical complexity of hydrothermal ore-forming processes present formidable challenges to quantitative interpretation of zoning trends in ore deposits, the zoning patterns may, on the other hand, be useful in discriminating the relative importance of a choice of operators. For example, thermochemical evaluation of model parameter c' for the case of a 2m NaCl solution at 260°C (see footnote 5), employing our value of 2.07 = 0.07 kcal for the tetrahedrite-sphalerite Zn–Fe exchange potential, Crerar et al. (1978) for stabilities of ferrous chloride complexes, Helgeson (1969) for zinc chloride complexes and solubility products of sphalerite and troilite, Fleet (1975) for the conversion of FeS standard state from troilitile to sphalerite structure, and using activity coefficients for aqueous complexes calculated according to Helgeson et al. (1981), predicts (Fe/Zn)$_{TD}^0$ (Fe/Zn)$_{TD}^0$ of 0.6, which is in good agreement with constraints (0.5–0.8) obtained independently by iterative empirical fitting of a, b, and c parameters in (25)–(27) to Hackbarth and Petersen’s (1984) trends of Ag–Cu, Zn–Fe, and Sb–As co-variation along nearly monomineralic tetrahedrite-tennantite parage-
netic stages of deep-seated veins in the Caspalca and Coeur d'Alene districts. According to Rye and Sawkins (1974), tetrahedrite-tennantite at Caspalca precipitated from fluids having 0.9–2.6 m NaCl-equivalent salinity, and Leach and Hofstra (1983) and Bijak and Norman (1983) report fluid salinities in the range 1.3–3.0 m NaCl-equivalent for tetrahedrite-tennantite bearing Coeur d'Alene veins. The crystal/fluid Fe/Zn partition ratio of ca. 0.6 calculated for a fluid of constant 2 m NaCl salinity (see footnote 5), considered together with the mutual interaction energies (equations 25–27), predicts the flat trend of downstream Zn–Fe zoning observed in these As–Ag-zoned deposits by Hackbarth and Petersen (1984) and Wu (1975). According to the Zn–Fe exchange reaction in footnote 5,

\[
\frac{\partial \log (X_{\text{Zn}}/X_{\text{Fe}})}{\partial \log \text{a}_{\text{CuCl}}^{2-}} = -3
\]

over moderate ranges of salinity variation, so failure to observe in those veins this rather dramatic downstream Zn/Fe zoning that should accompany substantial dilution or evaporation of ore fluids implies that downstream evolution of fluid salinity was not a significant factor in ore formation in those veins; rather, successive batches of fluid varied in salinity over the quoted range, but each batch retained its integrity downstream over the distance (>1 km) examined in the zoning studies. Such an inference from zoning trends with respect to operators inducing ore depositions would be in accord with the reported lack of evidence in fluid inclusions for H₂O evaporation during tetrahedrite-tennantite deposition at Caspalca or the Coeur d'Alene silver belt, and lack of evidence in fluid inclusion and quartz δD and δ¹⁸O data for significant mixing of compositionally contrasting fluids during tetrahedrite-tennantite precipitation at Caspalca (Rye and Sawkins, 1974) or the Coeur d'Alene silver belt (Yates and Ripley, 1983).

Despite the physico-chemical complexity of hydrothermal mineralization processes, the agreement between predicted tetrahedrite-tennantite composition zoning trends (Fig. 7) and spatial zoning trends exhibited by tetrahedrite-tennantites precipitated in mineralization stages dominated by tetrahedrite-tennantite precipitation suggests that the inferences about the extents of energetic coupling between the Ag(Cu)₁₋₁, As(Sb)₁₋₁, and Zn(Fe)₁₋₁ exchange reactions in tetrahedrite-tennantite are substantially correct, and that these effects are of sufficient magnitude that they exert a major control on tetrahedrite-tennantite fractionation trends.

Cu–Fe exchange equilibria

To this point we have explicitly assumed that most natural tetrahedrite-tennantites tend toward the "ideal" stoichiometry with 208 valence electrons per unit cell, a limiting stoichiometry consistent with both the requirements of an ionic model and the conditions for minimum energy suggested by a brillouin-zone model (e.g., Johnson and Jeanloz, 1983). Although this limiting stoichiometry may define an energy minimum, it does not represent a natural limit for the substitutions of Fe and Zn for Cu, because tetrahedrite-tennantites with both more and less than 208 valence electron per unit cell are found in nature (e.g., Charlat and Levý, 1974; Sandecki and Amcoff, 1981; Miller and Craig, 1983; Loucks, 1984) and are produced in the laboratory (e.g., Taksuka and Morimoto, 1977b; Sack and Loucks, 1983). Although both the ionic model and band theory predict that the vacancy-coupled substitutions \[\Delta \text{Fe}(\text{Cu})₁₋₁\] and \[\Delta \text{Zn}(\text{Cu})₁₋₁\] should govern deviations from the "ideal" stoichiometry, the experimental data suggest that large components of the Fe(Cu)₁₋₁ and Zn(Cu)₁₋₁ substitutions are required to explain deviations from the "ideal" stoichiometry with 208 valence electrons per unit cell, a limiting stoichiometry consistent with both the requirements of an ionic model and the conditions for minimum energy suggested by both the ionic model and band theory. In order to explain deviations from the "ideal" stoichiometry with 208 valence electrons per unit cell, a limiting stoichiometry consistent with both the requirements of an ionic model and the conditions for minimum energy suggested by both the ionic model and band theory, the following series of calculations and approximations are made:

Approximations and Calculations

1. **Band Theory Approximation for \(X_{\text{Zn}}/X_{\text{Fe}}\)**

 - Utilizing the \(\Delta a_{\text{Fe}}^{2-}/\Delta a_{\text{CuCl}}^{2-}\) data for significant mixing of compositionally contrasting fluids during tetrahedrite-tennantite precipitation at Caspalca (Rye and Sawkins, 1974) or the Coeur d'Alene silver belt (Yates and Ripley, 1983), we can make the following approximations:

 \[
 \frac{\partial \log (X_{\text{Zn}}/X_{\text{Fe}})}{\partial \log \text{a}_{\text{CuCl}}^{2-}} = -3
 \]

 This approximation is the result of making the substitutions

 \[
 d\mu_{\text{Fe}(\text{Cu})} = \left(\frac{X_{\text{Cu}}^{\text{SS}} \cdot X_{\text{Zn}}^{\text{SS}}}{X_{\text{Cu}}^{\text{SS}} \cdot X_{\text{Zn}}^{\text{SS}}} \right) d\mu_{\text{FeS}}
 \]

 into the Gibbs–Duhem equation for ISS, and neglecting the term

 \[
 [\frac{X_{\text{Cu}}^{\text{SS}} \cdot X_{\text{Zn}}^{\text{SS}}}{X_{\text{Cu}}^{\text{SS}} \cdot X_{\text{Zn}}^{\text{SS}}}] d\mu_{\text{FeS}}
 \]

 in the resulting expression.
the procedures and assumptions about site occupancies given above, we may write the following expressions for the distribution coefficients for Zn(Fe)-t and Fe(Cu)-r exchange between Ag-free tetrahedrite-tennantite and sphalerite, and between Ag-free tetrahedrite-tennantite and ISS:

\[
RT \ln K_D = \frac{\Delta G^0_{Zn(Fe)-t} + \frac{\Delta G^0_{Fe-Cu}}{2}}{X_3} + RT \ln \left(\frac{W_{FeZn}^{1/2}}{W_{FeCu}} \right) + \frac{1}{4} W_{FeZn}^{1/2}(X_3)
\]

and

\[
RT \ln K_c = RT \ln \left[\frac{X_{As}^{CuFe}}{X_{As}^{CuFe} + X_{As}^{FeSbS}} \right] = \Delta G_{c}^o + \Delta G_{35}^{0}(X_3) + W_{FeZn}^{1/2}(1 - 2X_3) + \frac{1}{2} W_{FeCu}^{1/2}
\]

where

\[
\Delta G_{c}^o = (G_{CuS}^{c} - G_{FeS}^{c}) + (G_{CuFeSbS}^{c} - G_{CuFeSbS}^{c}) + (W_{CuFe}^{FeSbS} - W_{CuCu}^{FeSbS})(X_{As}^{CuFe})
\]

and

\[
\Delta G_{35}^{0} = (G_{CuFeSbS}^{c} + G_{CuFeSbS}^{c}) - (G_{CuFeSbS}^{c} + G_{CuFeSbS}^{c})
\]

It may be readily shown that the inferences that \(W_{FeZn}^{1/2} < 0 \), \(W_{FeZn}^{1/2} \approx 0 \), and \(W_{FeZn}^{1/2} > 0 \) would be consistent with (35) and the observation that the experimental data suggest more negative values of the derivative \(RT(d \ln K_D/d X_3) \) with increasing \(X_3 \), because the derivatives \(dX_3/dX_{Fe} \) are about equal for tetrahedrites, tetrahedrite-tennantites and tennorites but \(dX_3/dX_{Fe} > dX_{3}/dX_{Cu} \). Similarly analysis of ISS + tetrahedrite-tennantite assemblages utilizing (34) suggests that \(\Delta G_{35}^{0} \) is slightly negative (Fig. 8). However, given the uncertainties in all of the above, we consider that the presently available data do not provide a compelling case for adoption of an assumption other than that

\[
\Delta G_{35}^{0} \approx W_{FeZn}^{1/2} \approx W_{FeCu}^{1/2} \approx W_{CuZn}^{1/2} \approx 0
\]

Discussion

From the preceding analysis, it is apparent that tetrahedrite-tennantite sulfosalts rank among the true “Caldillacs” of reciprocal solutions, have the potential to be among the most important of petrogenetic indicators of hydrothermal mineralization environments in polymetallic base-metal sulfide and bonanza precious metal deposits, and, despite their structural and chemical complexity, are remarkably well behaved energetically. It has been inferred that, to an excellent first approximation, the energetic coupling between the three principal substitutions on the metal and semimetal sites in tetrahedrite-tennantites—

mixing of Cu and Fe. The inferred stabilization of coupled Cu and Fe substitutions on adjacent sites in ISS is supported by the formation of several ordered compounds (e.g., chalcopirite and cubanite) on the FeS–CuS join; the deduction that \(W_{FeZn}^{1/2} > W_{FeCu}^{1/2} > 0 \), \(W_{FeZn}^{1/2} \approx 0 \), and \(W_{FeCu}^{1/2} > 0 \) would be consistent with the observed topology of sphalerite-ISS tielines on the CuS–FeS–ZnS composition plane (e.g., Kojima and Sugaki, 1984; Fig. 3) if it were assumed that the thermodynamic properties of such ISS's and sphalerites exhibit ternary regular solution behavior.

In addition, the upper bounds on relative values of \(\mu_{Fe(Cu)} \) provided by graphical integration of (34) suggest that tetrahedrites may exhibit slight negative deviations from ideality with respect to Fe(Cu)-t exchange. Following
(Ag±Cu)TRG, (Fe±Zn)TET, and (As±Sb)SMM, respectively—may be simply described in terms of an “ideal” reciprocal solution model (e.g., Wood and Nicholls, 1978; Sack, 1982) with values of 2.59 ± 0.14, 3.0 ± 1.5, and 16.8 ± 5.0 kcal/gfw for the standard state Gibbs energies of reciprocal reactions (7)—(9). The inferences that \(\Delta G_2^\text{23} \sim \Delta G_2^\text{32} \) and \(\Delta G_3^\text{24} \gtrsim \Delta G_3^\text{23} \) may be readily rationalized crystallographically. Structure refinements of tetrahedrite-tennantites (Wuench, 1964; Wuench et al., 1966; Kalbskopf, 1972; Johnson and Burnham, 1985; Petersen and Miller, 1985) indicate that both the Ag(Cu)\textsubscript{1} and As(Sb)\textsubscript{1} exchanges produce slight compression and increasing regularity in shape of the tetrahedral metal site (Cu(1)) and a decrease in the size of the pyramid defined by semimetal-sulfur linkages. However, these substitutions have opposing effects on the trigonal-planar metal sites containing Ag and Cu (Cu(2)); the Ag(Cu)\textsubscript{1} and As(Sb)\textsubscript{1} exchanges respectively increase and decrease the areas available for metal coordination and anisotropic thermal motion. Because the changes in metal-sulfur distances due to these exchanges are significantly large for Cu(2) metals than for Cu(1) metals, and Ag+ has a larger radius than Cu+ in trigonal coordination by sulfur (Shannon, 1981), a large value of \(\Delta G_3^\text{24} \) relative to \(\Delta G_3^\text{23} \) and \(\Delta G_3^\text{23} \) is consistent with these crystallographic data.

Although the data examined suggest that tetrahedrite-tennantites may be remarkably simple energetically, it is clear that many uncertainties in their thermodynamic properties need to be addressed before they may be used to place quantitative constraints on ore forming processes. In particular, it will be necessary to characterize the thermodynamic properties of at least one endmember tetrahedrite-tennantite before quantitative mass-transfer calculations may be attempted (e.g., Helgeson and Murphy, 1983). In addition, there are presently large uncertainties in \(\Delta G_2^\text{24} \) and \(\Delta G_2^\text{34} \) and the partial derivatives \(\partial \Delta G_2^\text{24} / \partial T \), \(\partial \Delta G_2^\text{34} / \partial T \), and \(\partial \Delta G_2^\text{34} / \partial T \). Even though the experimental results indicate that deviations from thermodynamic ideality due to the Fe=Zn substitution may be negligible, deviations from ideality due to the substitutions As=Zn and Ag=Cu in semimetal and trigonal-planar sites have yet to be quantified. Uncertainties in \(\Delta G_2^\text{24} \) and \(\Delta G_2^\text{34} \) derive, in part, from uncertainties in the structural role of silver in tetrahedrite-tennantites and the paucity of phase-petrologic studies on the appropriate natural assemblages. Although the analysis given here suggests that deviations from ideality due to the As=Zn and Ag=Cu substitutions may be small, this suspicion cannot be advanced with certainty until the appropriate experiments and/or phase petrologic studies of the critical natural assemblages are performed. Lastly, the bonding mechanisms in tetrahedrite-tennantites are poorly understood (e.g., Johnson and Jeanloz, 1983; Jeanloz and Johnson, 1984). It is anticipated that further characterization of the Gibbs energies of reciprocal reactions in Mn-, Cd-, Hg-, and Bi-bearing tetrahedrite-tennantites may provide additional insights into bonding mechanisms.

Despite present uncertainties in the analysis of the thermodynamic properties of tetrahedrite-tennantites, it is clear that they should be useful in refining the thermochemical interpretations of many ore-forming environments due to their capacity for a wide range of substitutions of semimetal and metals and adjustable stoichiometry. Given the thermodynamic properties of tetrahedrite-tennantites and ions in hydrothermal fluids, salinity and temperature data from fluid inclusions, and specification of the activities of one or more elements or ions through mineral-fluid equilibria, the composition of tetrahedrite-tennantites could be used to define the concentrations of many base metals and semimetal ions in the hydrothermal fluid. Combined with models for hydrothermal transport coupled with chemical reaction (e.g., Lichtner, 1985), such information would be invaluable in assessing precipitation mechanisms and mineralization potential in silver-bearing base-metal sulfide deposits of hydrothermal origin. Even in the absence of all the requisite information for this purpose, studies of compositional zoning in tetrahedrite-tennantites provide a basis for establishing spatial and temporal trends in metal and semimetal ratios of hydrothermal fluids and assessing models of ore deposition. Studies of metal ratios and compositional zoning in tetrahedrite-tennantite offer significant promise as guides to exploration and mine development, where variations in metal ratios in tetrahedrite-tennantites parallel those in bulk ore samples or tetrahedrite-tennantite is the principal ore phase (e.g., Goodell and Petersen, 1974; Petersen et al., 1977; Wu and Petersen, 1977; Hackbarth and Petersen, 1984). For example, in cases where silver mineralization is dominated by tetrahedrite-tennantite crystallization, fractionation calculations of the type illustrated in Figure 7 might be compared with metal ratio maps for bulk ore samples to predict grades as well as locations of undiscovered ore in a partially developed district.

Summary

Experimental constraints, petrologic studies, and theoretical analysis suggest that, energetically, tetrahedrite-tennantite sulfsalts are remarkably well behaved multisite reciprocal solutions. Fe-Zn exchange experiments (500°C) between tetrahedrite-tennantites and sphalerites yield values of 2.59 ± 0.14 and 2.07 ± 0.07 kcal/gfw for the Gibbs energies of the reciprocal reaction

\[
\text{Cu}_{10}\text{Zn}_{2}\text{Sb}_{4}\text{S}_{13} + \text{Cu}_{10}\text{Fe}_{2}\text{As}_{4}\text{S}_{13} = \text{Cu}_{10}\text{Fe}_{2}\text{Sb}_{4}\text{S}_{13} + \text{Cu}_{10}\text{Zn}_{2}\text{As}_{4}\text{S}_{13}
\]

and Fe-Zn exchange reaction

\[
\frac{1}{2}\text{Cu}_{10}\text{Fe}_{2}\text{Sb}_{4}\text{S}_{13} + \text{ZnS} = \frac{1}{2}\text{Cu}_{10}\text{Zn}_{2}\text{Sb}_{4}\text{S}_{13} + \text{FeS},
\]

respectively. These results, plus petrologic studies of tetrahedrite-tennantite + sphalerite assemblages, and preliminary experimental results at 435 and 365°C suggest that the above parameters are insensitive to temperature and permit estimates for the Gibbs energies of the remaining two reciprocal reactions of “ideal” tetrahedrite-tennantites ((Ag,Cu)\textsubscript{6}Cu\textsubscript{4}(Fe,Zn)\textsubscript{2}(As,Sb)\textsubscript{2}S\textsubscript{13});

\[
\text{Cu}_{10}\text{Zn}_{2}\text{Sb}_{4}\text{S}_{13} + \text{Ag}_{6}\text{Cu}_{4}\text{Fe}_{2}\text{Sb}_{4}\text{S}_{13} = \text{Cu}_{10}\text{Fe}_{2}\text{Sb}_{4}\text{S}_{13} + \text{Ag}_{6}\text{Cu}_{4}\text{Zn}_{2}\text{Sb}_{4}\text{S}_{13}
\]

and

\[
\text{Ag}_{6}\text{Cu}_{4}\text{Fe}_{2}\text{Sb}_{4}\text{S}_{13} + \text{Cu}_{10}\text{Fe}_{2}\text{As}_{4}\text{S}_{13} =
\]
Cu_{10}Fe_{2}Sb_{4}S_{13} + Ag_{5}Cu_{4}Fe_{2}As_{5}S_{13} of 3.0 + 1.5 and 17 + 5 kcal/gfw, respectively.

These considerations suggest that tetrahedrite-tennantites are the “Cadillac” of reciprocal solutions and of petrogenetic indicators of hydrothermal mineralizing environments; they are the sulfide analog of amphiboles, the “Rolls Royce” of reciprocal solutions and petrogenetic indicators. In addition to providing a means for deducing aspects of the chemistry of many hydrothermal mineralizing fluids, our results afford an improved basis for understanding downstream chemical zoning in polymetallic base-metal sulfide and bonanza precious metal deposits. In particular, they provide strong evidence that crystallochemical control coupled with As–Sb fractionation determines the distribution of silver in many zoned Pb–Zn–Cu–Ag deposits.

Acknowledgments

We thank the following individuals for their many and varied contributions to this study: P. B. Barton, Jr., G. Brimhall, J. K. Bohle, S. E. Bushnell, I. S. E. Carmichael, D. Ebel, V. G. Ewing, D. Foss, J. F. Hays, C. J. Hackbarth, H. C. Helgeson, M. L. Johnson, G. Kullerud, D. W. Levandowski, P. C. Lichtner, M. J. O’Leary, U. Petersen, K. C. Raabe, S. L. Rogal, J. B. Thompson, Jr., D. Walker, and B. J. Wood. In particular, we thank P. B. Barton, Jr., M. Johnson, G. Kullerud, and B. J. Wood for their helpful reviews, I. S. E. Carmichael for arranging access to the microprobe of the University of California, J. F. Hays for arranging for initial funding, M. Johnson for monitoring furnace temperatures and rescuing the experimental charges from a wastebasket in the Hoffman Laboratory of Experimental Geology, and U. Petersen for sharing data in advance of publication and stimulating our initial interest in the problem. R. O. Sack acknowledges the support of NSF grants EAR-82-18286 and EAR-84-19185, U.S. Bureau of Mines grant G114411, and a travel grant from the Department of Geosciences, Purdue University. R. R. Loucks acknowledges a COFRS grant from Florida State University.

References

Kane, F. J. and Petersen, Ulrich (1985) Tetrahedrite and bulk ore zoning in the Mimoso section of Julcani, Peru. Economic Geology.

Makovicky, Emil and Skinner, B. J. (1978) Studies of the sulfosalts of copper. VI. Low-temperature exsolution in synthetic-tetrahedrite solid solution; Cu125Sb4AsS33, Canadian Mineralogist, 16, 611-623.

Makovicky, Emil and Skinner, B. J. (1979) Studies of the sulfosalts of copper. VII. Crystal structures of the exsolution products Cu125Sb4AsS33 and Cu135Sb5S13 of unsubstituted synthetic tetrahedrite. Canadian Mineralogist, 17, 619-634.

Shannon, R. D. (1981) Bond distances in sulfides and a preliminary table of sulfide crystal radii. In Michael O’Keeffe and Alex-
SACK AND LOUCKS: THERMODYNAMIC PROPERTIES OF TETRAHEDRITE-TENNANTITES

23

Sack and Loucks: Thermodynamic Properties of Tetrahedrite-Tennantites

1289

Tatsuka, Kiyoshi and Morimoto, Nobuo (1973) Composition variation and polymorphism of tetrahedrite in the Cu–Sb–S system below 400°C. American Mineralogist, 58, 425–434.

Tatsuka, Kiyoshi and Morimoto, Nobuo (1977a) Tetrahedrite stability relations in the Cu–Sb–S system. Economic Geology, 72, 258–270.

Manuscript received, June 22, 1984; accepted for publication, July 22, 1985.