Perovskite-type MgSiO₃: Single-crystal X-ray diffraction study

HIROYUKI HORIUCHI
Mineralogical Institute, Faculty of Science, University of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113, Japan

EIJI ITO
Institute for Study of the Earth's Interior, Okayama University,
Misasa, Tottori-ken 682-02, Japan

DONALD J. WEIDNER
Department of Earth and Space Science, State University of New York at Stony Brook,
Stony Brook, New York 11794, U.S.A.

ABSTRACT

The crystal structure of orthorhombic perovskite-type MgSiO₃ has been refined by means of X-ray diffraction analysis using a single crystal synthesized at 27 GPa and 1830°C. In the structure, SiO₆ is close to an ideal octahedron in which the Si-O distances and O-Si-O angles are nearly equal; their values range from 1.783 to 1.801 Å and from 88.49 to 91.51°, respectively. On the other hand, the position of the Mg atom deviates from the center of the MgO₆ polyhedron. As a result, the Mg-O distances and O-Mg-O angles range widely from 2.014 to 3.120 Å and from 50.05 to 70.89°, respectively. As a result, rotation and tilting of cation octahedra govern the structure, as suggested in other orthorhombic perovskite-structure compounds.

INTRODUCTION

High-pressure modifications of magnesium silicates are significant endmembers of the mantle mineral assemblage, so detailed knowledge of their structures is of great importance, not only for high-pressure crystal chemistry, but also for understanding the state of the deep mantle. Therefore, much effort has been made to define the crystal structures of high-pressure magnesium silicates by means of X-ray single-crystal diffraction techniques; e.g., β-Mg₂SiO₄ (Horiuchi and Sawamoto, 1981), γ-Mg₂SiO₄ (Sasaki and Prewitt, 1982), ilmenite-type MgSiO₃ (Horiuchi et al., 1982), 2Mg₂SiO₄·3Mg(OH)₂ (phase A) (Horiuchi et al., 1979). On the basis of detailed ultrahigh-pressure phase relations in the system MgO-FeO-SiO₂ (Ito and Yamada, 1981; Ito et al., 1984), it was demonstrated that perovskite-type MgSiO₃ could be the dominant phase in the lower mantle.

Because of the special importance of perovskite-type MgSiO₃, Ito and Matusi (1978) and Yagi et al. (1978) studied its structure by X-ray powder-diffraction analysis. Their results revealed that its structure belongs to the orthorhombic system with probable space group Pbnm and deviates significantly from the ideal cubic-perovskite structure through the tilting of the relatively regular SiO₆ octahedra and the large distortion of the MgO₆ dodecahedron (Sasaki et al., 1983). However, structural refinement using a single crystal has urgently been needed because the results could provide a firmer basis for discussion of the physical and chemical properties of the phase.

Ito and Weidner (1986) recently succeeded in growing single crystals of perovskite-type MgSiO₃ that are large enough for X-ray diffraction and spectroscopic studies. It is the purpose of the present paper to report the detailed crystal structure of perovskite-type MgSiO₃ obtained by means of a single-crystal X-ray diffraction analysis.

EXPERIMENTAL DETAILS

The specimen used in this work was synthesized at approximately 27 GPa and 1830°C with a run time of 8 min, by means of an uniaxial split-sphere-type high-pressure apparatus. Synthetic orthoenstatite powder was used as the starting material. The single-crystal specimen used in the crystal-structure analysis was approximately 125 × 85 × 60 μm³ in size. It was optically transparent and colorless.

X-ray photographs indicated systematic absences of reflections with k = 2n + 1 for 0kl and h + l = 2n + 1 for h0l, which are consistent with space group Pbn2₁ or Pbnm. Cell dimensions of a = 4.7754(3), b = 4.9292(4), and c = 6.8969(5) Å reported by Ito and Matusi (1978) were adopted throughout the analysis. The cell constants determined by means of a four-circle diffractometer, using 19 reflections of the 2θ range of 38 to 52° and employing the 0.71073-Å wavelength, were a = 4.7787(4), b = 4.9313(4) and c = 6.9083(8) Å. The constants are slightly larger than the results from the powder-diffraction technique. The reason why we adopted the former results in this work is that the results of the four-circle diffractometer may have a systematic error introduced by the uncertainty of the wavelength because of using a pyrolytic graphite monochromator. From these crystallographic data, the calculated density and linear absorption coefficient are 4.108 g/cm³ and 14.07 cm⁻¹ for MoKα radiation, respectively.

MoKα radiation monochromatized by pyrolytic graphite was
TABLE 1. Refined atomic coordinates and temperature factors \((x \times 10^3)\) for perovskite-type MgSiO,

<table>
<thead>
<tr>
<th></th>
<th>Coordinates</th>
<th>(B_{eq}^* (\text{Å}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>0.5141(1)</td>
<td>0.5560(1) 0.1 028(2) 0.5560(1) 0.94 0.46</td>
</tr>
<tr>
<td>Si</td>
<td>0.1028(2)</td>
<td>0.4660(2) 0.1961(1) 0.4660(2) 0.46 0.32</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.1961(1)</td>
<td>0.2014(2) 0.5531(1) 0.2014(2) 0.55 0.34</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.5281(1)</td>
<td>0.5531(1) 0.2014(2) 0.5531(1) 0.55 0.34</td>
</tr>
</tbody>
</table>

Anisotropic temperature factors†

\[
\begin{array}{cccccc}
\beta_{11} & \beta_{22} & \beta_{33} & \beta_{12} & \beta_{13} & \beta_{23} \\
\hline
\text{Mg} & 480(19) & 459(17) & 257(9) & 44(16) & 0 & 0 \\
\text{Si} & 296(19) & 298(10) & 100(6) & -4(11) & 28(8) & 9(7) \\
\text{O}(1) & 378(30) & 472(32) & 90(15) & 11(24) & 0 & 0 \\
\text{O}(2) & 372(20) & 365(20) & 179(11) & 70(17) & 48(13) & \\
\end{array}
\]

* \(B_{eq}^*\): Equivalent isotropic temperature factors according to the relation \(B_{eq}^* = \frac{1}{3} \sum \beta_{ij} a_i a_j\).
† Coefficients in the expression \(\exp[-(\beta_{11} h^2 + \beta_{22} k^2 + \beta_{33} l^2 + 2\beta_{12} hl + 2\beta_{13} hl + 2\beta_{23} hl)]\).

Refinement of the structure

The structure refinement was initiated with the atomic coordinates reported by Ito and Matsui (1978). The space group \(Pbnm\) was assumed for the structure and was confirmed by structure refinement. The scattering factor curves of neutral atoms were applied for Mg, Si, and O (International Tables for X-ray Crystallography, 1974). All 895 unique reflections were used in the structure refinement, applying the weight \(l/o_{\text{F}}(\text{F}_{\text{ref}}^2)^2\) for each reflection, where \(o_{\text{F}}(\text{F}_{\text{ref}}^2)\) is a standard deviation of each reflection obtained from counting statistics.

The value of weighted \(R\), roughly 0.15 for the initial atomic parameters, was reduced to 0.024 (\(R\) for unit weight; 0.035) for the final cycle of refinement with anisotropic temperature factors for all atoms. The final atomic parameters are given in Table I and interatomic distances and angles are shown in Table 2. Table 3, giving \(F_o^2\) and \(F_e^2\) values, has been deposited. All computations for the least-squares refinement of structure parameters and for crystal-structure plotting were carried out using the programs \textsc{refine} (Finger, 1969) and \textsc{ortep} II (Johnson, 1971), respectively, at the Computer Center of the University of Tokyo.

Description and Discussion of the Structure

The structure is fundamentally obtained by substituting Mg for Ca and Si for Ti in the perovskite structure. Both MgO\(_8\) and SiO\(_6\) polyhedra occur in the structure.

Fig. 1. A perspective view of the structure of perovskite-type MgSiO\(_3\), drawn using the program \textsc{ortep} (Johnson, 1971). Si and Mg atoms are labeled, and nonlabeled atoms are oxygens.

TABLE 2. Interatomic distances (Å) and angles (degrees) of perovskite-type MgSiO\(_3\)

<table>
<thead>
<tr>
<th>SiO(_6) octahedron</th>
<th>O–O distances</th>
<th>O–Si angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si–O(2)</td>
<td>1.7931*</td>
<td>O(1)–O(2) 2.577(1) [2] 91.34(5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1.7960(7)</td>
<td>O(2)–O(2) 2.543(1) [1] 90.34(5)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1.7873(7)</td>
<td>O(1)–O(2) 2.577(1) [2] 91.34(5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1.6005(3)</td>
<td>O(2)–O(2) 2.543(1) [1] 90.34(5)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1.6005(3)</td>
<td>O(1)–O(2) 2.577(1) [2] 91.34(5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1.7931*</td>
<td>O(2)–O(2) 2.543(1) [1] 90.34(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MgO(_8) polyhedron</th>
<th>O–O distances</th>
<th>O–Mg–O angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg–O(1)</td>
<td>2.014(1)</td>
<td>O(1)–O(2) 2.504(1) [2] 53.25(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2.052(1)</td>
<td>O(1)–O(2) 2.504(1) [2] 53.25(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>2.096(1)</td>
<td>O(2)–O(2) 2.518(1) [1] 59.01(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2.278(1)</td>
<td>O(1)–O(2) 2.509(1) [2] 59.01(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>2.427(1)</td>
<td>O(2)–O(2) 2.518(1) [1] 59.01(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2.646(1)</td>
<td>O(1)–O(2) 2.509(1) [2] 59.01(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>2.961(1)</td>
<td>O(2)–O(2) 2.518(1) [1] 59.01(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>3.120(1)</td>
<td>O(1)–O(2) 2.509(1) [2] 59.01(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>2.473*</td>
<td>O(2)–O(2) 2.518(1) [1] 59.01(3)</td>
</tr>
</tbody>
</table>

* Mean.
† Ideal.

1 To obtain a copy of Table 3, order Document AM-87-329 from the Business Office, Mineralogical Society of America, 1625 I Street, N.W., Suite 414, Washington, D.C. 20006, U.S.A. Please remit $5.00 in advance for the microfiche.
The ideal value are as much as +0.8 Å. These features calculation using the first-nearest-neighbor mean distance.

contrast with the oxygen arrangements in ilmenite-type rotation and tilting of SiO₆ octahedra are shown by arrows.

axis. SiO₆ octahedra are shown diagrammatically by real lines. The variation of O-O distances in the MgO, polyhedron. Geo-

tic, the deviations result in a wide range of Mg-O distances and O-Si-O angles (88.5 to 91.5°) show that the SiO₆ octa-
hedron is much more regular than those of stishovite and ilmenite-type MgSiO₃.

On the other hand, the position of the Mg atom de-
viant from the center of the MgO₆ polyhedron. Geom-
etically, the deviations result in a wide range of Mg-O distances and O-Mg-O angles: They range from 2.014 to 3.120 Å and from 52.19 to 70.89°, respectively. An ideal value of the O-Mg-O angle is 60° for a regular MgO₆ polyhedron. The variation of O-O distances in the MgO₆ polyhedra is the same as those in the SiO₆ octahedra because both polyhedra share all of their edges with each other.

The average value of the nearest-neighbor O-O dis-
tances in the structure, which shows face-centered cubic-closest-packing with Mg atoms, is 2.536 Å. Each deviation of the nearest-neighbor O-O distances is within about ±0.04 Å of the mean value. The second-nearest-neighbor O-O distance should ideally be 3.586 Å, from the calculation using the first-nearest-neighbor mean distance. However, some of the second-nearest-neighbor distances are very small (2.716 to 2.838 Å), whereas others are large (4.174 to 4.199 Å). Therefore, their deviations from the ideal value are as much as ±0.8 Å. These features contrast with the oxygen arrangements in ilmenite-type MgSiO₃, in which the first-nearest-neighbor O-O distances show a wide range of 2.331 to 3.076 Å.

The small range of the nearest-neighbor O-O distances and the large range of the second-nearest neighbors is due to a rotation and tilting of rigid and nearly regular SiO₆ octahedra in the structure, as suggested in similar structures (Sasaki et al., 1983). These features are illustrated in Figure 2. The rotation around the O-Si-O bond along the c axis is about 11.2°, and the angle of tilt measured against c, which is equivalent to the rotation around the b axis, is about 16.7°. The rotation and tilting greatly distort the MgO₆ polyhedra and result in a structure that somewhat resembles the rigid and nearly regular SiO₄ tetrahedral frameworks of silicate minerals under ambient pressures. In such structures, the oxygen configuration around large cations depends on how the SiO₄ tetrahedra are linked to each other. From this point of view, perovskite-type MgSiO₃ can be explained as one of SiO₆ octahedral framework structures.

The degree of rotation and tilting in the perovskite- type structure of MgSiO₃, depends on applied pressure and temperature conditions (O'Keeffe et al., 1979). If the SiO₆ configuration is rigid, smaller amounts of rotation and tilting will make the unit-cell volume larger, because the straighter -O-O-O- arrangements along the a and b axes and the straighter -O-Si-O-Si-O- arrangement along the c axis make the values for a, b, and c larger. This situation will be less advantageous at higher pressure, but will be more advantageous at higher temperature. However, too much rotation and tilting will also cause a stronger repulsive force between the oxygen atoms with the shortest distances. The observed structure represents a balance of the two opposite effects.

Acknowledgments

The authors would like to thank Dr. Yasuo Kanazawa for his kind offer to use a four-circle diffractometer (RIGAKU/ AFC-1) at the Geological Survey of Japan, Professor Yoshito Matsui of the Institute for Study of the Earth's Interior, Okayama University, for his stimulating discussions, and also Professors Masayasu Tokonami and Hiroshi Takada of the University of Tokyo for their encouragement of this work. Drs. Robert M. Hazen and Yasuhiro Kudo immensely contributed with critical reading of the manuscript. This research was partially supported by the grant from the Ministry of Education, Japanese Government.

References

Fig. 2. Projection of the perovskite-type MgSiO₃ along the c axis. SiO₆ octahedra are shown diagrammatically by real lines. Rotation and tilting of SiO₆ octahedra are shown by arrows.

and each polyhedron shares all edges with the others. SiO₆ octahedra share all corners. Mg and Si atoms are assumed to be completely ordered. Figure 1 shows a perspective view of the structure. The results of refinement are essentially the same as those given by Ito and Matsui (1978) and by Yagi et al. (1978).

The Si atom is located at the center of the SiO₆ octahedron and is the center of symmetry. The Si–O distances in the SiO₆ octahedron range from 1.783 to 1.801 Å with a mean distance of 1.793 Å, which is slightly larger than that of stishovite, 1.774 Å (Sinclair and Ringwood, 1978) and is similar to that of ilmenite-type MgSiO₃ (Horiuchi et al., 1982). The small variations in Si–O distances and O–Si–O angles (88.5 to 91.5°) show that the SiO₆ octahedron range from 1.783 to 1.801 Å with O-Si-O angles (88.5 to 91.5°) show that the SiO₆ octahedron range from 1.783 to 1.801 Å with

MANUSCRIPT RECEIVED June 23, 1986
MANUSCRIPT ACCEPTED November 17, 1986