Cation distribution in the octahedral sites of hornblendes

KUNIAKI MAKINO, KATSUTOSHI TOMITA
Department Geology and Mineralogy, Kyoto University, Kyoto 606, Japan

ABSTRACT

The structure refinements of five calcic amphiboles with \(^{14}Al > 0.5\) have been carried out in order to characterize the cation distributions in the octahedral sites in amphiboles formed at different temperatures. The location and atomic fractions of Al and Fe\(^{3+}\) in the octahedral M(1), M(2), and M(3) sites were determined together with other constituent cations on the basis of the site refinement and the relations between mean bond length and mean ionic radius.

The studied specimens are two metamorphic pargasites, a volcanic pargasite, a volcanic magnesio-hornblende, and a hastingsite from a skarn. In the metamorphic pargasites and the hastingsite, Al, Fe\(^{3+}\), and Ti occupy only the M(2) site, and Mg prefers the M(2) site to the M(1) and M(3) sites (Mg-Fe\(^{3+}\) partitioning; \(K_{\text{M(1)-M(2)}} = 0.30\) between the M(1) and M(2) sites). On the other hand, the volcanic pargasite and hornblende indicate a more disordered cation distribution among the octahedral sites than that from metamorphic rocks and skarn.

INTRODUCTION

Calcic amphibole is an important rock-forming mineral and occurs in extremely wide varieties of metamorphic, plutonic, and volcanic rocks. A chemical discontinuity in the calcic amphiboles exists between Al-rich and Al-poor phases (e.g., Shido and Miyashiro, 1959; Yamaguchi et al., 1983). The Al-rich phase with \(^{14}Al > 0.5\) is termed hornblende, subsuming the appropriate names for amphibole defined by Leake (1978), such as pargasite, tschermakite, and actinolitic hornblende.

The basic structural unit in calcic amphibole is a double chain of TO\(_2\) tetrahedra extending parallel to the c axis (Warren, 1929, 1930). The octahedral cation strips are sandwiched between the double chains. There are two distinct tetrahedral sites, T(1) and T(2), which contain Si and Al. The octahedral sites are subdivided into three crystallographically nonequivalent sites, M(1), M(2), and M(3), which accommodate various cations such as Mg, Fe\(^{2+}\), Mn, Fe\(^{3+}\), Al, and Ti. The M(4) site accommodates Ca, Na, Mg, and Fe\(^{2+}\). A large A site may be vacant or may contain Na and K cations.

Using data obtained from modern techniques, the geometry and chemistry of the cation sites in hornblende have been discussed in detail (Papike et al., 1969; Kitamura et al., 1975; Robinson et al., 1973; Hawthorne and Grundy, 1973; Hawthorne et al., 1980; Ungaretti et al., 1981). The stereochemistry of the tetrahedral double chains and the octahedral strips in the C2/m amphibole was summarized by Hawthorne (1981, 1983).

Papike et al. (1969) observed the preference of Al for the T(1) site relative to the T(2) site in hornblende based on the \(\langle T(1)-O\rangle\) and \(\langle T(2)-O\rangle\) lengths. The correlation between the Al content and the mean bond length of the tetrahedral sites in calcic amphiboles was demonstrated by Robinson et al. (1973) and Hawthorne and Grundy (1977).

Finding the ordering of trivalent cations at the smaller M(2) site in Bolivian crocidolite (magnesio-riebeckite) (Whittaker, 1949) and in glaucophane (Papicke and Clark, 1968) helped in understanding the crystal chemistry of the octahedral sites in hornblende; the smaller Al, Fe\(^{3+}\), and Ti cations are confined to the M(2) site in hornblende, because it is usually much smaller than the M(1) and M(3) sites. Robinson et al. (1973) demonstrated that the mean bond lengths of the octahedral sites were a linear function of the mean ionic radius of the constituent cations. This relationship was extended to the grand octahedral site, which combines the M(1) site with the M(2) and M(3) sites, and to individual M(1), M(2), and M(3) sites of the C2/m amphibole by Hawthorne (1978, 1981, 1983).

In the metamorphic cummingtonites, the Ca-poor amphiboles with space group C2/m or P2\(_1\)/m, the Mg-Fe\(^{2+}\) distribution between the M(4) site, and the M(1, 2, 3) site was discussed by Hafner and Ghose (1971). The temperature dependency of the Mg-Fe\(^{2+}\) distribution between the M(4) site and the M(1, 2, 3) site was suggested and discussed by Mueller (1962) and Ghose and Weidner (1972). The kinetics of the Mg-Fe\(^{2+}\) exchange reaction between the M(4) site and the M(1, 2, 3) site in an anthophyllite were discussed by Seifert and Virgo (1975).

On the contrary, the chemical complexity of hornblende has obscured the temperature dependency of its cation distribution. In particular, the site preference of Al (or other trivalent cations) in the octahedra at high temperature has not been studied. This study was undertaken to characterize the distribution of cations among the octa-
Table 1. Chemical composition of the hornblendes

<table>
<thead>
<tr>
<th></th>
<th>I-P</th>
<th>E-P</th>
<th>O-H</th>
<th>P-P</th>
<th>K-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>41.50</td>
<td>41.03</td>
<td>38.82</td>
<td>41.07</td>
<td>47.87</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.40</td>
<td>17.34</td>
<td>19.07</td>
<td>9.74</td>
<td>7.52</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.68</td>
<td>1.96</td>
<td>5.57</td>
<td>3.59</td>
<td>—</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>12.60</td>
<td>9.04</td>
<td>25.87</td>
<td>7.99</td>
<td>12.74</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.05</td>
<td>0.25</td>
<td>0.14</td>
<td>0.43</td>
</tr>
<tr>
<td>MgO</td>
<td>11.88</td>
<td>14.39</td>
<td>1.91</td>
<td>13.37</td>
<td>15.30</td>
</tr>
<tr>
<td>CaO</td>
<td>10.65</td>
<td>12.71</td>
<td>11.79</td>
<td>12.05</td>
<td>10.95</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.22</td>
<td>2.12</td>
<td>2.79</td>
<td>1.83</td>
<td>1.23</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.32</td>
<td>0.39</td>
<td>9.12</td>
<td>0.31</td>
<td>0.44</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.15</td>
<td>2.31</td>
<td>1.46</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cl</td>
<td>—</td>
<td>0.65</td>
<td>0.27</td>
<td>0.57</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>96.95</td>
<td>98.94</td>
<td>100.30</td>
<td>100.30</td>
<td>97.89</td>
</tr>
</tbody>
</table>

* The amount of Fe³⁺ per formula unit in amphibole was derived from the total occupancy of Na and K in the A site determined by refinement (after Hawthorne et al., 1980).

The following five specimens were examined. Chemical compositions are given in Table 1, along with the methods of analyses for each specimen.

Iratsu pargasite (I-P)

Iratsu pargasite is one of the constituent minerals of the basic granulite from the Iratsu epidote-amphibolite, emplaced in Sanbagawa schists, in Ehime Prefecture, Japan. The associated minerals are hypersthene, augite, and plagioclase. The pargasite crystallized in the granulite facies [750 °C and 5–10 kbar, as estimated by Yokoyama (1980)] and suffered Sanbagawa metamorphism [epidote amphibolite facies; about 600 °C and 8–13 kbar, as estimated by Yokoyama (1980) and Takasu (1984)]. The pargasite is slightly poorer in Mg and Al than the Einstöningen sample described below.

Einstöningen pargasite (E-P)

The pargasite occurs in a skarn intercalated with garnet biotite gneisses in an islet of Einstöningen, Lützow Holm Bay, East Antarctica (Matsubara and Motoyoshi, 1985). The studied specimen was supplied by Dr. Matsubara. The skarn consists of aluminous diopside, potassic pargasite, and phlogopite. The pargasite is the product of granulite-facies metamorphism. The metamorphic temperature and pressure were estimated to be about 800–850 °C and 8–10 kbar on the basis of the clinopyroxene-orthopyroxene geothermometer (Wood and Banno, 1973; Wells, 1977) and the garnet-orthopyroxene geobarometer (Harley and Green, 1982) by Matsubara and Motoyoshi (1985). The pargasite shows a high K content and Mg/(Mg + Fe³⁺). It contains high [⁶⁳]Al (0.97 pfu).

Obira hastingsite (O-H)

The hastingsite was from a skarn in the Obira mine, Oita Prefecture, Japan. Chemistry and occurrence of the hastingsite were described in detail by Matsumoto and Miyashita (1960). The hastingsite is fibrous. Associated minerals are datolite and stilpnomelane, which crystallized later than other skarn minerals (garnet, wollastonite, hedenbergite, actinolite). Judging from the assemblage of skarn and ore-forming minerals, the hastingsite crystallized during the hydrothermal stage (Matsumoto and Miyashita, 1960). The hastingsite has a high Fe³⁺/(Mg + Fe³⁺) and contains little Al in the octahedral sites.

Parau pargasite (P-P)

This pargasite was found in andesitic agglomerate belonging to the Babeldaob agglomerate in Gapson, Parau Island (Tayama, 1939). The Babeldaob agglomerate intercalates limestone, shale, sandstone, and tuff, suggesting submarine deposition. The andesitic agglomerate contains pargasite, clinopyroxene, and plagioclase. The crystallization temperature of the pargasite was estimated to

Table 2. Crystal data for the hornblendes, space group C2/m

<table>
<thead>
<tr>
<th></th>
<th>I-P</th>
<th>E-P</th>
<th>O-H</th>
<th>P-P</th>
<th>K-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>9.805(3)</td>
<td>9.900(2)</td>
<td>9.967(4)</td>
<td>9.834(4)</td>
<td>9.829(6)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>17.96(1)</td>
<td>17.95(2)</td>
<td>18.29(2)</td>
<td>18.01(3)</td>
<td>18.06(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>5.302(1)</td>
<td>5.311(2)</td>
<td>5.347(1)</td>
<td>5.297(2)</td>
<td>5.304(1)</td>
</tr>
<tr>
<td>β (°)</td>
<td>90.4(2)</td>
<td>90.5(9)</td>
<td>90.4(2)</td>
<td>90.4(2)</td>
<td>90.4(2)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>902.1(8)</td>
<td>910.1(8)</td>
<td>904.0(9)</td>
<td>906.0(4)</td>
<td>910.2(8)</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>0.15 x 0.10 x 0.25</td>
<td>0.15 x 0.10 x 0.30</td>
<td>0.15 x 0.10 x 0.50</td>
<td>0.30 x 0.20 x 0.50</td>
<td>0.20 x 0.10 x 0.30</td>
</tr>
<tr>
<td>R (weighted)</td>
<td>0.037</td>
<td>0.049</td>
<td>0.057</td>
<td>0.058</td>
<td>0.076</td>
</tr>
<tr>
<td>No. of F</td>
<td>2234</td>
<td>2967</td>
<td>1344</td>
<td>2701</td>
<td>2234</td>
</tr>
</tbody>
</table>
be about 900 °C, on the basis of the phase relations in
tonalite (Wyllie, 1977). The pargasite shows a high Mg/
(Mg + Fe2+) and is enriched in 8Al (0.96 pfu) (Tomita,
1965). Chemically, this pargasite and the Einstöningen
pargasite are very similar to each other (Table 1).

Kawanabe hornblende (K-H)
The magnesio-hornblende was from phenocrysts of an-
desitic agglomerate collected in the Kawanabe area of
Kagoshima Prefecture, Japan. The agglomerate contains
hornblende, clinopyroxene, and plagioclase. This mineral
assemblage gives about 900 °C as the crystallization tem-
perature of the hornblende (Wyllie, 1977). The horn-
blende has a similar Mg/(Mg + Fe2+) to Einstöningen
and Parau pargasites (Table 1). However the 8Al content
is very low.

Comparison of the five specimens
Neither exsolution texture nor chemical zoning was ob-
served in the five hornblendes by optical microscopy,
X-ray photographs, and electron-microprobe analyses.
The hornblendes show various Mg/(Fe2+ + Mg) ratios
and contain more than 0.70 Al, Fe3+, and Ti pfu in the
octahedral sites. They can be divided into two groups
based on their occurrences: One group consists of Obira
hastingsite, Iratsu pargasite, and Einstöningen pargasite;
the other group, Parau pargasite and Kawanabe horn-
blende. The three hornblendes in the former group, which
crystallized under metamorphic or hydrothermal condi-
tions, are considered to have cooled slowly. Thus, inter-
site cation migration may have continued somewhat be-
low the crystallization temperature. On the other hand,
the two hornblendes in the latter group, which crystal-
lized at much higher temperature and may have been
cooled rapidly after volcanic eruption, are expected to
preserve intracrystalline equilibrium frozen at a higher
temperature than the former three hornblendes. There-
fore, the former are considered to be "low-temperature"
hornblendes, and the latter "high-temperature" horn-
blende.

Experimental details
The crystals, usually (110) cleavage flakes elongated
along the c axis, were hand-picked. The crystal sizes are
shown in Table 2. The single-crystal X-ray photographs
showed diffraction symmetry of space group Cm, C2 or
C2/m. Since there was no indication of a noncentric na-
ture from the intensity distribution, the space group
C2/m was used in the structure refinements.
The intensity data were collected on a RIGAKU AFC-SUD
automatic 4-circle diffractometer. The unit-cell param-
eters were determined by the least-squares method from
20 reflections collected on a 4-circle single-crystal diffrac-
tometer. Intensity data were measured with the 2€-€ scan
equi-inclination technique using monochromatized MoKα
radiation and were gathered to 2€ = 80° for Obira has-
tingsite and to 2€ = 100° for the others. Absorption effects
were corrected by the semiempirical method of North et
al. (1968). Intensities less than three times the standard
deviation of the observed intensity were rejected in this
refinement.
The cell parameters, crystal sizes, number of intensity
measurements, and the final R = Σ ||Fobs|| - |Fc||/Σ |Fobs|| are presented in Table 2.

Refinement procedure
The full matrix least-squares refinements were carried out
by using the computer program RFINE IV (Finger and
Price, 1975) revised by Horiiuchi (personal communica-
tion, 1981). The initial positional parameters and iso-
otropic temperature factors for the present refinements were
taken from ferro-tschermakite (Hawthorne and Grundy,
1973).

Since the X-ray scattering power of Mg and Al atoms
is indistinguishable, Mg and Al were regarded as one group
with one scattering factor. Mg and Al atoms were summed
to form Mg* in atomic fraction. For the same reason,
Fe2+, Fe3+, and Ti were assumed to form a species, Fe*.
The small amount of Mn in the five hornblendes was
neglected in this refinement. Because of the chemical
complexity of hornblende, the following simplifying as-
sumptions were employed. Ca was constrained to the M(4)
site, excess cations (Fe* and Mg*) for the octahedral sites
in Iratsu pargasite, Parau pargasite, and Kawanabe horn-
blende were assigned to the M(4) site, and the rest of the
site was filled with Na. The M(4) sites of Einstöningen
pargasite and Obira hastingsite were filled with Ca and
Na. Residual Na and K were assigned to the A site.
Assuming random distribution of Al and Si in the tet-
rahedral sites and of Mg* and Fe* in the octahedral sites
and/or the M(4) site, initial site occupancies were deter-
mined from the chemical analyses.

During all cycles of refinements, the tetrahedral and
octahedral site chemistry were constrained to agree with
the chemical analyses. Positional disorder of the A site
on the mirror plane and/or along the twofold axis was
read from the Fourier and difference-Fourier sections.
Split-atom models (Papke et al., 1969; Hawthorne and
Grundy, 1973) were used, which reduced the R factor
more than 1.0%. The total amount of Na and K in the A
site of Iratsu pargasite and Kawanabe hornblende was
determined, assuming random distribution of Na and K
cations in the A site. The anisotropic temperature factors
were refined for Iratsu, Einstöningen, and Parau pargas-
ites, for which the final weighted R factors are 3.1, 4.1,
and 4.70%, respectively. In Iratsu pargasite, Parau pargas-
ite, and Kawanabe hornblende, Mg* and Fe* at the M(4)
site are Mg and Fe2+, respectively.

From the chemical analyses and X-ray refinements, Si
and Al occupancies in the tetrahedral sites and Mg* and
Fe* occupancies in the octahedral sites and/or the M(4)
site were determined. The final positional parameters,
isotropic temperature factors, and site occupancies are
listed in Tables 3 and 4, respectively.
TABLE 3. Positional parameters and isotropic temperature factors for the hornblende

<table>
<thead>
<tr>
<th></th>
<th>T(1)</th>
<th>T(2)</th>
<th>M(1)</th>
<th>M(2)</th>
<th>M(3)</th>
<th>M(4)</th>
<th>A(2)</th>
<th>O(1)</th>
<th>O(2)</th>
<th>O(3)</th>
<th>O(4)</th>
<th>O(5)</th>
<th>O(6)</th>
<th>O(7)</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.2809(1)</td>
<td>0.2919(1)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1070(2)</td>
<td>0.1204(2)</td>
<td>0.1101(3)</td>
<td>0.3684(2)</td>
<td>0.3500(2)</td>
<td>0.3427(2)</td>
<td>0.3380(3)</td>
<td>1.23(5)</td>
</tr>
<tr>
<td>y</td>
<td>0.0858(1)</td>
<td>0.1731(1)</td>
<td>0.0866(1)</td>
<td>0.78(2)</td>
<td>0.1772(1)</td>
<td>0.2789(1)</td>
<td>0.4774(2)</td>
<td>0.0986(1)</td>
<td>0.1742(1)</td>
<td>0.7140(7)</td>
<td>0.2501(1)</td>
<td>0.1404(1)</td>
<td>0.1181(1)</td>
<td>0.6072(5)</td>
<td>1.01(3)</td>
</tr>
<tr>
<td>z</td>
<td>0.3014(1)</td>
<td>0.8133(2)</td>
<td>0.0903(1)</td>
<td>0.0</td>
<td>0.1768(1)</td>
<td>0.2809(1)</td>
<td>0.0428(80)</td>
<td>0.3049(2)</td>
<td>0.1750(1)</td>
<td>0.7366(4)</td>
<td>0.2501(1)</td>
<td>0.1398(0)</td>
<td>0.1186(1)</td>
<td>0.6105(5)</td>
<td>0.92(3)</td>
</tr>
<tr>
<td>B</td>
<td>0.48(3)</td>
<td>0.48(2)</td>
<td>0.92(3)</td>
<td>0.83(4)</td>
<td>0.63(3)</td>
<td>0.87(2)</td>
<td>1.73(31)</td>
<td>0.83(5)</td>
<td>0.7375(5)</td>
<td>0.82(4)</td>
<td>0.82(4)</td>
<td>0.82(4)</td>
<td>0.82(4)</td>
<td>0.86(4)</td>
<td>1.20(6)</td>
</tr>
<tr>
<td>E-P</td>
<td>0.2776(1)</td>
<td>0.2961(1)</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1045(2)</td>
<td>0.1204(2)</td>
<td>0.1123(3)</td>
<td>0.3687(2)</td>
<td>0.3491(2)</td>
<td>0.3418(2)</td>
<td>0.3344(3)</td>
<td>1.20(6)</td>
</tr>
<tr>
<td>O-H</td>
<td>0.2774(3)</td>
<td>0.2958(7)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1048(7)</td>
<td>0.1227(7)</td>
<td>0.1235(1)</td>
<td>0.3661(8)</td>
<td>0.3442(8)</td>
<td>0.3397(8)</td>
<td>0.3299(10)</td>
<td>1.10(17)</td>
</tr>
<tr>
<td>P-P</td>
<td>0.2816(1)</td>
<td>0.2915(3)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1074(2)</td>
<td>0.1197(2)</td>
<td>0.1285(3)</td>
<td>0.3672(2)</td>
<td>0.3495(2)</td>
<td>0.3440(2)</td>
<td>0.3393(3)</td>
<td>1.08(5)</td>
</tr>
<tr>
<td>K-H</td>
<td>0.2819(2)</td>
<td>0.2908(2)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1074(2)</td>
<td>0.1197(2)</td>
<td>0.1285(3)</td>
<td>0.3672(2)</td>
<td>0.3495(2)</td>
<td>0.3440(2)</td>
<td>0.3393(3)</td>
<td>1.08(5)</td>
</tr>
</tbody>
</table>

Results

T(1) and T(2) tetrahedral sites

In the five hornblendes of this study, Al tends to occupy the T(1) site in preference to the T(2) site, as judged from the (T1-O) and (T2-O) bond lengths (Table 5). Iriatsu, Einsiedingen, and Parau pargasites and Obira hastingsite, rich in Al (about 1.8-2.0 atoms pfu), have similar (T1-O) and also (T2-O) lengths. The (T1-O)
length of Kawanabe hornblende containing 1.1 pfu of 31Al is shorter than those of the pargasites and hastingsite of this study.

The M(1), M(2), and M(3) octahedral sites

The site refinements (Table 4) of the Iratsu pargasite and Obira hastingsite indicate that the M(2) site is enriched in Mg$^+$ over the M(1) and M(3) sites. The M(1), M(2), and M(3) sites in Einstödigen and Parau pargasites as well as in Kawanabe hornblende contain almost randomly distributed Mg$^+$ and Fe$^2+$.

Similar to other hornblendes reported by previous authors, the (M(2)-O) length of these five hornblendes is less than the (M(1)-O) and (M(3)-O) lengths (Table 5). In particular, the differences between the (M(2)-O) length and the (M(1)-O) and (M(3)-O) lengths are large (more than 0.06 Å) in Iratsu pargasite, Einstödigen pargasite, and Obira hastingsite but not so large (less than 0.03 Å) in Parau pargasite and Kawanabe hornblende. Einstödigen and Parau pargasite with comparable Al and Fe$^{3+}$ in the octahedral sites are considerably different in the mean bond length of the M(2) site (2.020 and 2.051 Å, respectively).

The thermal ellipsoids of the octahedral sites in Iratsu, Einstödigen, and Parau pargasites are similar in the orientation and the magnitudes (0.6-1.1) of their principal axes.

The M(4) polyhedral site

The M(4) sites of Einstödigen pargasite and Obira hastingsite are filled with Ca and Na cations. In Iratsu and Parau pargasites, the M(4) sites prefer Fe$^{3+}$ over Mg. The M(4) site in Kawanabe hornblende contains equal proportions of Mg and Fe$^{3+}$.

The A site

The positional disorder of the A site occurs on the mirror plane in the five hornblendes and also along the twofold axis, except for Einstödigen pargasite and Kawanabe hornblende. The A(m) sites on the mirror plane shift less than about 0.3 Å from the center position (2/m position) in the five hornblendes. The displacement of the A(2) site along the twofold axis is also less than about 0.3 Å from the center position (2/m).

CATION OCCUPANCY IN THE OCTAHEDRAL SITES

Robinson et al. (1973) and Hawthorne (1978, 1981, 1983) developed a relationship between the mean bond length and mean ionic radius [which is the mean of the effective radius of the constituent cations (Shannon and Prewitt, 1969, 1970)] for the octahedral sites in clinoamphiboles. This relationship can be used to characterize unknown site occupancies or to test the obtained site occupancies.

Relation between the mean ionic radius and mean bond length for the grand octahedral site

The grand (M-O) length, which is the mean of the (M(1)-O), (M(2)-O), and (M(3)-O) lengths, increases...
Fig. 1. Plot of the grand mean bond length of the octahedral site versus the mean ionic radius of the constituent cations in the hornblendes. All data of the studied hornblendes are consistent with the relation shown by a solid line derived from other $C2/m$ amphiboles (Hawthorne, 1983).

Relation between the mean ionic radius and mean bond length for the individual octahedral sites

Whittaker (1949) suggested on account of the significantly short $\langle M(2)-O \rangle$ length compared to the $\langle M(1)-O \rangle$ and $\langle M(3)-O \rangle$ lengths that trivalent cations in magnesiowriebeckite are concentrated in the $M(2)$ site. Using the same reasoning, other workers (Papike and Clark, 1968; Robinson et al., 1973; Hawthorne, 1978) showed that Al, Fe$^{3+}$, and Ti may be concentrated in the $M(2)$ site in clinoamphiboles. Furthermore, Robinson et al. (1973) demonstrated a linear relationship between the mean bond length and the mean ionic radius in the octahedral sites of hornblendes. Such a correlation line was developed separately for individual octahedral sites by Hawthorne (1978, 1981, 1983), using a larger data set of the $C2/m$ amphiboles. He suggested that the relation holds good for the $M(2)$ site, but not for the $M(1)$ and $M(3)$ sites. The assignment of Al, Fe$^{3+}$, and Ti to the individual octahedral sites is examined here in the five hornblendes of this study, relying mainly on the correlation line for the $M(2)$ site.

Shortness of the $\langle M(2)-O \rangle$ length relative to the $\langle M(1)-O \rangle$ and $\langle M(3)-O \rangle$ lengths suggests that smaller Al, Fe$^{3+}$, and Ti cations are segregated into the $M(2)$ site in the five hornblendes. Thus, Al, Fe$^{3+}$, and Ti in the octahedral sites were assumed to occupy the $M(2)$ site, where the residual fractions of Mg$^+$ and Fe$^+$ are Mg and Fe$^{2+}$, respectively. The refined Mg$^+$ and Fe$^+$ occupancies in the $M(1)$ and $M(3)$ sites were converted to the Mg and Fe$^{2+}$ occupancies, respectively. The $\langle M(2)-O \rangle$ length was plotted against the mean ionic radius derived from the occupancy of the $M(2)$ site to be compared with the correlation line of the mean bond length versus the mean ionic radius (Fig. 2). Obira hastingsite and Iratsu and Einstödingen pargasites are consistent with the correlation line, whereas Parau pargasite and Kawanabe hornblende deviate from the line of the $M(2)$ site, i.e., the latter two hornblendes have observed $\langle M(2)-O \rangle$ lengths that are larger than the lengths calculated from the mean ionic radius by using the correlation line of the $M(2)$ site (Hawthorne, 1983). In the same manner, the observed mean bond lengths and those calculated by Hawthorne’s equations (Hawthorne, 1983) also disagree with each other for the $M(1)$ and $M(3)$ sites of the two hornblendes. The differences between the observed and calculated mean bond lengths of the $M(1)$, $M(3)$, and $M(2)$ sites are shown in Table 6 for Parau pargasite and Kawanabe hornblende. Their observed grand $\langle M-O \rangle$ lengths, however, are consistent with the calculated ones. Hence the positive value of $\langle M(2)-O \rangle_{obs} - \langle M(2)-O \rangle_{calc}$ tends to be compensated by the negative values of the differences for the $M(1)$ and $M(3)$ sites.

| TABLE 6. Observed and calculated mean bond lengths (Å) of the octahedral sites |
|--------------------------------------|-----------------|-----------------|-----------------|
| | Observed | Calculated* | Calculated** |
| M(1,3) Parau pargasite | 2.078 | 2.097 | 2.070 |
| | 2.051 | 1.998 | 2.041 |
| M(2) Kawanabe hornblende | 2.089 | 2.098 | 2.088 |
| | 2.072 | 2.052 | 2.068 |

Note: The calculated values were obtained by Hawthorne’s equations (Hawthorne, 1983). The $M(1,3)$ values are the average of the $M(1)$ and $M(3)$ sites.

* Al, Fe$^{3+}$, and Ti are assigned to the $M(2)$ site.

** After re-arrangement (see Table 7).
TABLE 7. Octahedral site occupancies of the hornblendes

<table>
<thead>
<tr>
<th></th>
<th>I-P</th>
<th>E-P</th>
<th>O-H</th>
<th>P-P</th>
<th>K-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(1)</td>
<td>Mg(0.615)</td>
<td>0.822</td>
<td>0.06</td>
<td>0.62</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Fe(0.385)</td>
<td>0.178</td>
<td>0.94</td>
<td>0.19</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>0.14</td>
<td>0.02</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>M(2)</td>
<td>Mg(0.456)</td>
<td>0.353</td>
<td>0.13</td>
<td>0.49</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>Fe(0.067)</td>
<td>0.027</td>
<td>0.45</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>0.380</td>
<td>0.485</td>
<td>0.02</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>0.024</td>
<td>0.110</td>
<td>0.36</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>0.093</td>
<td>0.025</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>M(3)</td>
<td>Mg(0.481)</td>
<td>0.780</td>
<td>0.13</td>
<td>0.62</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>Fe(0.519)</td>
<td>0.220</td>
<td>0.87</td>
<td>0.19</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>0.14</td>
<td>0.02</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>0.05</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Re-arrangements maintained refined occupancies (see Table 4).

M(3) sites (Table 6). It follows that the foregoing assignment of Al, Fe$^{3+}$, and Ti to the M(2) site is not adequate in Parau pargasite and Kawanabe hornblende. The disagreement in the calculated and observed mean bond lengths of the two hornblendes arises from overestimation of the amounts of smaller Al, Fe$^{3+}$, and Ti cations in the M(2) site and from underestimation of the amounts of smaller cations in the M(1) and M(3) sites.

Re-arrangement of cation occupancies in the octahedral sites

From the above discussion, Al, Fe$^{3+}$, and Ti appear to be located only at the M(2) site in Obira hastingsite and Iratsu and Einstötingen pargasites. Their site occupancies are listed in Table 7.

The optimum arrangements of Al, Fe$^{3+}$, and Ti cations within the octahedral sites for Parau pargasite and Kawanabe hornblende were estimated so that the mean ionic radius of each octahedral site was close to the calculated one from the observed mean bond length by Hawthorne's equations (Hawthorne, 1983) under the following constraints. The refined Mg* and Fe* fractions of every site were retained. Total contents of Al and Fe$^{3+}$ over the octahedral sites were constrained to agree with the chemical analyses. Every octahedral site was assumed to contain the same Al/Fe$^{3+}$ as the ratio obtained by chemical analyses. The M(1) and M(3) sites were treated as one set. Ti, which is small in amount in the octahedral site, was assigned to the M(2) site. The cation occupancies of the octahedral sites determined in this way are presented in Table 7.

Thermal ellipsoids of Iratsu, Einstötingen, and Parau pargasites show no evidence of positional disorder in the octahedral sites. Therefore, there is no problem in using the relations between the mean bond length and ionic radius for the examined hornblendes.

CATION ORDER-DISORDER AMONG THE OCTAHEDRAL SITES IN HORNBLende

On the basis of their occurrences, the five hornblendes can be divided into two groups: “high-temperature” hornblendes from volcanic rocks and “low-temperature” ones from metamorphic rocks and skarn. The nonconvergent cation order-disorder among the octahedral sites will be discussed here for the five hornblendes as well as for a ferro-tschermakite (Hawthorne and Grundy, 1973) and a pargasitic hornblende (Hawthorne et al., 1980). The ferro-tschermakite occurred in the Frood mine, Sudbury, Canada, and the pargasitic hornblende occurred in an amphibolite sequence at the margin of Tallan Lake sill, Peterborough County, Ontario. The two hornblendes are considered to belong to the “low-temperature” hornblendes because they are of metamorphic origin.

Mg-Fe$^{2+}$ order-disorder among the octahedral sites

Figure 3 is a plot of the Mg/(Mg + Fe$^{2+}$) of the M(1) site against that of the M(3) site. The Mg-Fe$^{2+}$ distribution between the M(2) and M(1) sites is shown in Figure 4. The distribution constant between the M(2) and M(1) sites is given by

$$K_{(2-1)}^{(M)} = \left(\frac{X_{Mg}}{X_{Fe^{2+}}} \right)_{M(2)} \left(\frac{X_{Mg}}{X_{Fe^{2+}}} \right)_{M(1)}$$

where X is the atomic fraction in the sites.

$K_{(2-1)}^{(M)}$ is about 0.6 for “low-temperature” hornblendes except for Obira hastingsite and is nearly unity for “high-temperature” hornblendes.

The Mg-Fe$^{2+}$ distribution between the M(2) and the M(1) sites is shown in Figure 4. The distribution constant between the M(2) and M(1) sites is given by

$$K_{(2-1)}^{(M)} = \left(\frac{X_{Mg}}{X_{Fe^{2+}}} \right)_{M(2)} \left(\frac{X_{Mg}}{X_{Fe^{2+}}} \right)_{M(1)}$$

where X is the atomic fraction in the sites.

“Low-temperature” hornblendes plot near the curve...
K$trup12; : 0.3. Symbols as in Figs. 1 and 3.

in the hornblendes. Solid line: $K_{M(1)-M(2)}^{M(1)+M(2)} = 1.0$. Broken line: $K_{M(1)-M(2)}^{M(1)+M(2)} = 0.3$. Symbols as in Figs. 1 and 3.

Fig. 4. Mg-Fe$^{2+}$ distribution between the M(2) and M(1) sites in the hornblendes. Solid line: $K_{M(1)-M(2)}^{M(1)+M(2)} = 1.0$. Broken line: $K_{M(1)-M(2)}^{M(1)+M(2)} = 0.3$. Symbols as in Figs. 1 and 3.

for $K_{M(1)-M(2)}^{M(1)+M(2)} = 0.3$. “High-temperature” hornblendes, especially Pargasite, plot near the curve for $K_{M(1)-M(2)}^{M(1)+M(2)} = 1.0$ and thus indicate little preference for ordering of Mg and Fe$^{2+}$ between the M(1) and M(2) sites. So “low-temperature” hornblendes show the Mg/Fe$^{2+}$ to be M(2) \gg M(1) $>$ M(3). At high temperature, the octahedral sites of hornblendes may become indistinguishable from each other for the Mg and Fe$^{2+}$ cations.

The Mg-Fe$^{2+}$ partitioning coefficient between the M(4) and M(1, 2, 3) of metamorphic cummingtonites is 0.02–0.08 (Ghose and Weidner, 1972). Geometrically the M(2), M(1), and M(3) sites of clinoamphibole are more or less similar sites, but the M(4) site differs much from the octahedral sites in size and coordination number. Accordingly, it is reasonable that the $K_{M(1)-M(2)}^{M(1)+M(2)} (0.3)$ between the M(1) and M(2) sites is larger than that between the M(4) and M(1, 2, 3) sites.

Al-Fe$^{3+}$ order-disorder among the octahedral sites

Concentration of Al, Fe$^{3+}$, and Ti into the M(2) site in the “low-temperature” hornblendes was discussed above. In “high-temperature” hornblendes, the observed mean bond lengths of the octahedral sites suggest that Al and Fe$^{3+}$ are located not only in the M(2) site but also the M(1) and M(3) sites with some preference for the M(2) site. In “high-temperature” hornblendes, Al and Fe$^{3+}$ tend to distribute over the octahedral sites along with random distribution of Mg and Fe$^{2+}$.

The cation distribution in cummingtonite from volcanic rocks indicates a temperature much lower than the crystallization temperature (Ghose and Weidner, 1972; Buckley and Wilkins, 1971). A similar phenomenon was expected for hornblendes, but the fact that “high-temperature” hornblendes in this study preserve disordered cation distribution suggests their rapid quenching from higher crystallization temperature. The cummingtonite studied by Buckley and Wilkins (1971) was from lavas, but the “high-temperature” hornblendes of this study are from agglomerate deposited on the sea floor. The rapid quenching in sea water may be responsible for the preservation of the random distribution of cations in “high-temperature” hornblendes.

Similar disordering of divalent and trivalent cations in the octahedral sites of experimentally oxidized tschermakitic hornblende and riebeckite was reported by Phillips et al. (1988). Al and Fe$^{3+}$ migrate from the M(2) site to the M(1) and M(3) sites of the riebeckite [O(3) = 0.10(OH) + 0.90(0)], heated in air. Pargasite [O(3) = 0.71(OH) + 0.29(O)], in which Al and Fe$^{3+}$ are distributed over the octahedral sites, is different from the riebeckite in the degree of oxidation. Thus, cation disordering in the octahedral site of amphibole is considered to depend on the crystallization temperature as well as on the oxidation degree of hornblende. Which is the most important factor in the cation disordering is not known. Further examinations will be needed to make it clear.

CONCLUSION

The structure refinements of the “high- and low-temperature” hornblendes have been carried out. The mean bond lengths and the calculated mean ionic radius of the octahedral sites in the “low-temperature” hornblendes are consistent with the equation proposed by Hawthorne (1983). However the “high-temperature” hornblendes are inconsistent with that relation. The inconsistency arises mainly from the assignment of Al and Fe$^{3+}$ only to the M(2) site, thereby suggesting that the conventional method of assignment is unsuitable for the “high-temperature” hornblendes. Therefore, cation distributions among the octahedral sites were estimated so as to be consistent with the refined mean bond lengths, on the basis of the relation between mean ionic radius and mean bond length.

At low temperature, such as metamorphic and hydrothermal conditions, Al, Fe$^{3+}$, and Ti are ordered on the M(2) site, and Mg exhibits a preference, M(2) \gg M(1) $>$ M(3), $K_{M(1)-M(2)}^{M(1)+M(2)} = 0.3$, for occupancy of the M(2) and M(1) sites. On the other hand, hornblendes from the volcanic rocks show more disordered cation distributions among the octahedral sites than hornblendes from metamorphic rocks and skarn.

ACKNOWLEDGMENTS

We are very grateful to Professor N. Morimoto of Kyoto University for helpful suggestions and critical reading of this manuscript. We are also much indebted to Dr. M. Kitamura of Kyoto University for his discussion of this manuscript. We are also much indebted to Dr. M. Kitamura of Kyoto University for his discussion of this manuscript. Thanks are due to Professor R. K. Popp of Texas A&M University for his critical review of the manuscript.

REFERENCES CITED

Ghose, S., and Weidner, J.R. (1972) Mg$^{2+}$-Fe$^{3+}$ order-disorder in cum-

— (1930) The crystal structure and chemical composition of the monoclinic amphiboles. Zeitschrift für Kristallographie, 72, 493-517.

Manuscript received August 18, 1988

Manuscript accepted May 15, 1989