An equation of state for carbon dioxide to high pressure and temperature

URS K. MÄDER*
Department of Geological Sciences, University of British Columbia, Vancouver V6T 2B4, Canada

ROBERT G. BERNAN
Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada

ABSTRACT
An equation of state for fluid CO₂ is presented that yields thermodynamic properties for mineral equilibrium calculations reliably in the range 400–1800 K and 1 bar to 42 kbar with good extrapolation properties to higher pressure and temperature:

\[
P = \frac{RT}{V} \left(B_1 + B_2 T - \frac{B_3}{V^2 + C} \right) - \frac{A_1}{TV^2} + \frac{A_2}{V^4}
\]

with \(C = B_4/(B_1 + B_2 T) \) and five adjustable parameters, \(B_1 = 28.06474 \), \(B_2 = 1.728712 \times 10^4 \), \(B_3 = 8.365341 \times 10^4 \), \(A_1 = 1.094802 \times 10^4 \), and \(A_2 = 3.374749 \times 10^4 \) in units of cm³/mol, K, and bar.

Equation-of-state parameters were optimized simultaneously to \(P-V-T \) data up to 8 kbar and phase equilibrium data up to 42 kbar by a mathematical programming approach using the Berman (1988) data base for mineral properties. Agreement with phase equilibrium experiments is excellent. Computed volumes compare well with measurements, although they are not within uncertainties for several data sets. The enthalpy of magnesite is adjusted to -1112.505 kJ/mol to achieve consistency with phase equilibrium constraints at low pressures. New experimental brackets at 12.1 kbar (1173–1183 °C) and 21.5 kbar (1375–1435 °C) constrain the location of the equilibrium magnesite = periclase + CO₂ at high pressures. Comparisons are made with existing equations of state by Kerrick and Jacobs (1981), Bottinga and Richet (1981), Saxena and Fei (1987a), and Holloway (1977).

Approximate thermophysical properties of the calcite polymorphs and aragonite were derived by mathematical programming. Results show that it is necessary to consider the high-temperature polymorphs, calcite-IV and calcite-V, to assess the validity of an equation of state for CO₂ on the basis of phase equilibrium data at high temperature.

INTRODUCTION
Volumetric properties of CO₂ at high pressures are needed for the solution of a number of problems in petrology, one of the most important being the computation of phase equilibria. Because volumes have been measured up to only 8 kbar (Shmonov and Shmulovich, 1974), extrapolation using an equation of state is required.

Equations of state for CO₂ suitable for computation of geological phase equilibria include those by Holloway (1977, 1981a, 1981b), Touret and Bottinga (1979), Bottinga and Richet (1981), Kerrick and Jacobs (1981), Powell and Holland (1985), Holland and Powell (1990), Saxena and Fei (1987a, 1987b), Shmulovich and Shmonov (1975), Mel'nik (1972), and Ryzhenko and Volkov (1971). These equations are based on a variety of theories and incorporate adjustable parameters to fit experimentally measured volumes (see Ferry and Baumgartner, 1987, and Holloway, 1987, for reviews and Prausnitz et al., 1986, for theory). Although most equations fit \(P-V-T \) data adequately, it has been pointed out that all are inconsistent with phase equilibrium data at pressures above 10–20 kbar (Fig. 1) (Haselton et al., 1978; Berman, 1988; Chernosky and Berman, 1989). Equations that use empirically combined parameters, polynomial equations in particular, may achieve excellent agreement with observed data, commonly at the expense of reasonable extrapolation. Even equations based on theory may show unconstrained behavior if they contain some empirical element. For example, Kerrick and Jacob's (1981) modified Redlich-Kwong equation (Redlich and Kwong, 1949) has no positive volume defined at progressively higher temperatures with rising pressure, because of the mathematical form of the \(a(P,T) \) parameter. The equation proposed by Bottinga and Richet (1981) shows the best extrapolation properties to 42 kbar (Chernosky and Berman, 1989, and below), but it contains discontinuities that re-
result from separate parameter fitting for different volume intervals. Powell and Holland (1985) and Holland and Powell (1990) fitted a simple polynomial function directly to the logarithm of fugacities derived from the equation of state of Shmonov and Shmulovich (1974) and Bottinga and Richet (1981). The function is computationally efficient but limited in its applications, i.e., volumes cannot be derived reliably and extrapolation is not recommended.

To circumvent the problem of inadequate P-V-T data at high pressures, alternate approaches utilize shock wave data. Because measurements on pure fluid CO$_2$ do not seem to exist, one must rely on approximations based on data for similar fluids related through corresponding state systematics (Saxena and Fei, 1987a; Helffrich and Wood, 1989). The equations chosen by these authors to fit the data are based on formulations of the intermolecular potential (e.g., Lennard-Jones). They have the disadvantage of incorporating discontinuities that require a different function for pressures below several kilobars. Saxena and Fei (1987a) fitted a modified virial equation to shock wave data valid at pressures above 5 kbar.

The purpose of the present paper is to provide petrologists with an equation of state for CO$_2$ that is compatible with existing experimental data, that extrapolates reliably to upper mantle conditions, and that is mathematically tractable. Preliminary results were reported by Mäder et al. (1988). A Fortran-77 coded subroutine that computes fugacity and volume at specified pressure and temperature is available from the senior author. [Requests will be answered if they are accompanied by a formatted floppy disk (IBM-compatible) and a self-addressed envelope.]

Method

Provided a reliable data base of thermophysical properties of minerals is available, thermodynamic properties of CO$_2$ may be tested by comparing calculated and experimentally determined phase equilibria (Haselton et al., 1978; Ferry and Baumgartner, 1987; Berman, 1988; Chernosky and Berman, 1989). Figure 1 indicates that existing equations of state for CO$_2$, calibrated on P-V-T measurements only do not extrapolate well to high pressures. An alternate approach incorporates phase equilibrium experiments as constraints rather than merely as tests of thermodynamic parameters. This is especially important in the present context because phase equilibrium data for CO$_2$ extend to much higher pressures (42 kbar) than P-V-T data (8 kbar).

It is important to demonstrate that the inconsistencies illustrated in Figure 1 result from inadequate equations of state for CO$_2$ rather than from errors in the thermodynamic properties of the minerals. This point is addressed in the section on magnesite properties below.

Mathematical programming is an appropriate tool (see Wasil et al., 1989, for a survey of computer codes) to handle this constrained optimization problem (see also Berman et al., 1986; Berman, 1988). Phase equilibrium constraints are written to separate the unknown contributions of CO$_2$ to the Gibbs potential from the known contributions of all other phases involved:

\[
\Delta_u G_{\text{P},T} = \sum_{\text{solids,CO}_2} \nu \Delta A_u G_{\text{P},T} = \sum_{\text{solids,CO}_2} \nu \left[\Delta H_{\text{P},T_i} - T \cdot S_{\text{P},T_i} \right]
+ \int_{r_i}^{r_f} C_{\nu_i} \, dT - T \cdot \int_{r_i}^{r_f} \left(\frac{C_{\nu_i}}{T} \right) \, dT
+ \sum_{\text{solids}} \nu_i \int_{r_i}^{r_f} V_{\nu_i} \, dP + \nu_{\text{CO}_2} \int_{r_i}^{r_f} V_{\text{CO}_2} \, dP. \tag{1}
\]

In Equation 1 $\Delta_u G_{\text{P},T}$ denotes the change in the Gibbs free energy of a reaction; $\Delta A_u G_{\text{P},T}$ is the apparent free energy of a pure phase as defined in Berman (1988); $\Delta H_{\text{P},T_i}$ is the
TABLE 1. Phase equilibrium studies including pure CO₂

<table>
<thead>
<tr>
<th>Reference</th>
<th>Equilibrium</th>
<th>P (kbar)</th>
<th>T (℃)</th>
<th>M</th>
<th>F</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&A (1923)</td>
<td>Cc = Lm + CO₂</td>
<td>0.00-0.03</td>
<td>890-1210</td>
<td>Ga, DT</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>H&T (1955)</td>
<td>Mst = Pe + CO₂</td>
<td>0.01-2.7</td>
<td>650-900</td>
<td>CS</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H&T (1956)</td>
<td>Mst = Pe + CO₂</td>
<td>0.01-0.02</td>
<td>980-1070</td>
<td>CS</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>G&H (1961)</td>
<td>Cc = Lm + CO₂</td>
<td>0.03-3.1</td>
<td>590-800</td>
<td>CS</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>H (1978)</td>
<td>Mst = Pe + CO₂</td>
<td>1.0-5.0</td>
<td>810-1010</td>
<td>GA</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>N&S (1975)</td>
<td>Mst = Pe + CO₂</td>
<td>1.0-10</td>
<td>650-1090</td>
<td>GA</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>W (1963a)</td>
<td>Cc = Lm + CO₂</td>
<td>0.00-0.03</td>
<td>900-1210</td>
<td>GA</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>J&M (1968)</td>
<td>Cc = Lm + CO₂</td>
<td>0.07-0.54</td>
<td>710-890</td>
<td>CS</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>S (1974)</td>
<td>Cc + An = Wo + Ge + CO₂</td>
<td>0.5-0.7</td>
<td>900-930</td>
<td>CS</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>L&W (1975)</td>
<td>Cc + An = Wo + Ge + CO₂</td>
<td>0.5-0.7</td>
<td>790-860</td>
<td>PC</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H (1962)</td>
<td>Cc + An = Wo + Ge + CO₂</td>
<td>0.5-0.7</td>
<td>840-890</td>
<td>PC</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>W (1963b)</td>
<td>Cc + An = Wo + Ge + CO₂</td>
<td>0.5-0.7</td>
<td>790-860</td>
<td>PC</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>J&M (1968)</td>
<td>Cc + An = Wo + Ge + CO₂</td>
<td>0.5-0.7</td>
<td>840-890</td>
<td>PC</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>S (1974)</td>
<td>Cc + An = Wo + Ge + CO₂</td>
<td>0.5-0.7</td>
<td>790-860</td>
<td>PC</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>L&W (1975)</td>
<td>Cc + An = Wo + Ge + CO₂</td>
<td>0.5-0.7</td>
<td>840-890</td>
<td>PC</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>E (1979)</td>
<td>Mst + Pe + CO₂</td>
<td>10-19</td>
<td>1200-1300</td>
<td>PC</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>P (1988)</td>
<td>Mst + Pe + CO₂</td>
<td>0.4-1.2</td>
<td>700-760</td>
<td>CS, PA</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>M (1990)</td>
<td>Mst + Pe + CO₂</td>
<td>12-21</td>
<td>1170-1435</td>
<td>PC</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

For this study, the internally consistent thermodynamic database of Berman (1988), including compressibility and expansivity terms, is used to compute \(\Delta_h G_{\text{known}}^T \) for about 120 phase-equilibrium half brackets (Table 1). Adjustments were made to the thermodynamic properties of magnesite and calcite (see below). About 440 measured volumes were used to optimize agreement between computed and observed volumes (Table 2). The nonlinear optimization problem is solved with a general reduced-gradient strategy (GRG2, Lasden and Waren, 1982). Stability problems do not occur if the mathematical form of the equation of state is chosen carefully.

Equation of State

There are essentially four types of equations of state from which to choose: (1) van der Waals type (Redlich and Kwong, 1949; Holloway, 1977; Touret and Bottinga, 1979; Bottinga and Richet, 1981; Kerrick and Jacobs, 1981), (2) virial type (Saxena and Fei, 1987a, 1987b), (3) molecular potential formulations (Helfrich and Wood, 1989), and (4) empirical functions to fit directly the logarithm of the fugacity (Powell and Holland, 1985; Holland and Powell, 1990). A van der Waals type of equation was chosen for the following reasons: simple mathematical form, favorable behavior in the limits (\(P \rightarrow \infty, P \rightarrow 0 \)), potentially small number of adjustable parameters, and the simplest imitation of subcritical behavior. Juza (1961) presented a successfully modified van der Waals equation for H₂O applicable to pressures up to 100 kbar.
An equation discussed but not adopted by Bottinga and Richet (1981) served as a starting point for our development:

$$P = \frac{RT}{V - b} - \frac{A_1}{V^2} + \frac{A_2}{V^4}$$

(4)

where \(b\), \(A_1\), and \(A_2\) are adjustable parameters, and \(R\) is the gas constant. The last term of Equation 4 becomes important at small volumes because of increased compressibility at high pressures. The \(b\) parameter, a measure of the “incompressible volume,” is commonly assumed to be a constant, an approximation valid up to 50 kbar according to Holloway (1987). Corresponding states theory applied to the van der Waals equation predicts a \(b\) parameter of 43 cm³/mol. De Santis et al. (1974) derived a value for \(b\) of 29.7 cm³/mol for their modified Redlich-Kwong equation based on \(P-V-T\) data up to 1400 bar; the same value was adopted by Holloway (1977). The smallest measured volume is 31 cm³/mol at 7.1 kbar and 100 °C (Tsiklis et al., 1971), and shock wave data (Zubarev and Telegin, 1962) on solid CO₂ indicate a volume of 18 cm³/mol (with large uncertainties) at 180 kbar and 900 °C (as revised by Ross and Ree, 1980). It seems obvious that an equation successful at high pressures requires a compressible “incompressible volume,” which may be achieved mathematically by making \(b\) dependent on volume (see also Kerrick and Jacobs, 1981; Bottinga and Richet, 1981). An inverse power of the volume dependency of the \(b\)-term was determined empirically subject to the restriction of obtaining an integrable equation. A small temperature dependence of \(b\) also proved to be advantageous, resulting in the final equation:

$$P = \frac{RT}{V - b} - \left(\frac{B_1}{B_3} + B_2T\right) - \frac{A_1}{TV^2} + \frac{A_2}{V^4}$$

(5)

with \(C = B_2/(B_1 + B_2T)\) and five independently adjustable parameters: \(B_1\), \(B_2\), \(B_3\), \(A_1\), \(A_2\). The \(A_1/TV^2\) term yielded a better fit to the data than the Redlich-Kwong term \(a/\sqrt{TV(V + b)}\). The function approximates the ideal gas law at very low pressures, and at infinite pressure it has a limiting volume that is dependent on temperature and parameter values (Fig. 2). The volume at specified pressure and temperature is determined iteratively, and the integration \(\int V \, dP\) may be performed analytically (Appendix 1). At subcritical pressures and temperatures, Equation 5 behaves like the van der Waals equation (Fig. 2, inset). The equation is continuous between 0 bar and

TABLE 2. Experimentally measured P-V-T properties of CO₂

<table>
<thead>
<tr>
<th>Reference</th>
<th>F</th>
<th>T (°C)</th>
<th>P (kbar)</th>
<th>No.</th>
<th>Average percent deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shmonov and Shmulovich (1974)</td>
<td>y</td>
<td>400-700</td>
<td>1.0-8.0</td>
<td>56</td>
<td>2.07</td>
</tr>
<tr>
<td>Tsiklis et al. (1971)</td>
<td>y</td>
<td>100-400</td>
<td>2.0-7.0</td>
<td>44</td>
<td>0.95</td>
</tr>
<tr>
<td>Juza et al. (1965)</td>
<td>y</td>
<td>150-475</td>
<td>0.7-4.0</td>
<td>40</td>
<td>1.17</td>
</tr>
<tr>
<td>Michels et al. (1935)</td>
<td>y</td>
<td>125-150</td>
<td>0.07-3.1</td>
<td>48</td>
<td>2.14</td>
</tr>
<tr>
<td>Kennedy (1954)</td>
<td>y</td>
<td>200-1000</td>
<td>0.01-1.0</td>
<td>60</td>
<td>0.79</td>
</tr>
<tr>
<td>Amagat (1891)</td>
<td>y</td>
<td>197-258</td>
<td>0.01-1.0</td>
<td>60</td>
<td>2.20</td>
</tr>
<tr>
<td>Vukalovich et al. (1962)</td>
<td>n</td>
<td>125-150</td>
<td>0.01-0.6</td>
<td>104</td>
<td>0.66</td>
</tr>
<tr>
<td>Vukalovich et al. (1963a)</td>
<td>n</td>
<td>200-750</td>
<td>0.01-0.6</td>
<td>104</td>
<td>1.54</td>
</tr>
<tr>
<td>Vukalovich et al. (1963b)</td>
<td>n</td>
<td>850-800</td>
<td>0.02-0.2</td>
<td>43</td>
<td>0.10</td>
</tr>
<tr>
<td>Michels and Michels (1935)</td>
<td>n</td>
<td>100-150</td>
<td>0.03-0.07</td>
<td>35</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Note: Average percent deviations of calculated volumes from measured volumes are quoted for several equations of state: M&B = Equation 5 of this study, PVT = Equation 5 with parameters based on \(P-V-T\) data only (see text); K&J = Kerrick and Jacobs (1981), B&R = Bottinga and Richet (1981). F indicates data sets that were used to constrain Equation 5 (y) and data that were used for comparison only (n). No. indicates the number of data points.

Fig. 2. Mathematical behavior of Equation 5 at 1200 K. The volume at infinite pressure is labeled \(V_{\text{inf}}\). Inset figure depicts van der Waals behavior near the critical point with volumes of the liquid, \(V_{\text{lq}}\), and the vapor, \(V_{\text{vp}}\), connected by tie lines.
infinite pressure and at temperatures above 0 K for volumes larger than the discontinuity at \(V_{\text{crit}} \) in Figure 2.

P-V-T DATA

Experimentally measured volumes (Table 2) were used to minimize the difference between computed and measured volumes during optimization. The accuracy of the \(P-V-T \) data is almost impossible to establish. Precision at pressures below 1 kbar is generally better than 0.2\%, and at higher pressures it is about 0.5\% depending on the type of equipment used. A complete review of equipment and quality of data through 1972 is provided by Angus et al. (1973). At lower pressures and high temperatures problems may arise from the presence of species other than \(\text{CO}_2 \) such as \(\text{CO}, \text{O}_2 \), from the precipitation of graphite, or from oxidation of the pressure vessel walls. Graphite coatings were reported by Vukalovich et al. (1963b) at temperatures above 800 °C. High-pressure equipment is prone to uncertainties because of sealing problems, calibration, thermal gradients, pressure and temperature measurement, and deformation under pressure. The non-existent or small areas of overlap between individual high-pressure data sets make the detection of inconsistencies difficult. If, however, one extrapolates measurements from one data set into an adjacent one by some conservative method such as isobaric sections, inconsistencies of the order of 2\% or more are common (Fig. 3). One of the most disturbing discrepancies is found between the 1-kbar data of Shmonov and Shmulovich (1974) and those of Kennedy (1954) (Fig. 4). This suggests that parts of entire data sets are systematically in error by more than 2\%.

PHASE EQUILIBRIUM DATA

About 120 phase equilibrium experiments from 25 data sets of 16 laboratory studies (Table 1) were used to put bounds on \(\int V_{\text{CO}_2} \, dP \) according to Equation 2. All phase equilibria used include magnesite or calcite as \(\text{CO}_2 \)-bearing phases and only stoichiometric phases. High-pressure data sets (\(>25 \) kbar) involve magnesite only. Studies including dolomite were avoided because of uncertainties stemming from its ordering state (see also Berman, 1988). Similarly, phase equilibria including geikielite, meionite, spurrite, and tilleyite were not considered. A thermodynamic analysis of the system CaO-SiO\(_2\)-\(\text{CO}_2 \) at high temperatures is provided by Treiman and Essene (1983) including larnite, rankinite, spurrite, and tilleyite. Reactions
including calcite were only used below the transition of calcite-I to calcite-IV (ca. 790 °C) because of poorly constrained properties of calcite-IV and calcite-V (see section below). The equilibrium En + Mst = Fo + CO₂, constrained between 19 and 41 kbar by three studies (Newton and Sharp, 1975; Haselton et al., 1978; Eggler et al., 1979), forms one of the cornerstones of the present work. Equally important are tight constraints on the equilibrium magnesite = periclase + CO₂ at low pressures (Philip, 1988) and at high pressures (new experiments, this study).

Experimental uncertainties were accounted for by displacing positions of the half brackets away from the equilibrium based on best estimates of uncertainties in pressure and temperature. Table 3 shows an example of how one data set (Newton and Sharp, 1975) is treated to impose constraints on the CO₂ between 19 and 41 kbar and 1373 and 1773 K. Many of the experimental studies used as constraints in this paper do not properly demonstrate reversibility of the phase equilibria studied. This is accounted for by increasing the range of uncertainty on the side of the equilibrium boundary approximated by stability or synthesis experiments rather than reversals. This is in most cases the reactant-stable side.

New Experiments on Magnesite = Periclase + CO₂

Existing experiments by Irving and Wyllie (1975) on the equilibrium magnesite = periclase + CO₂ do not constrain the equilibrium position at high pressure. The equilibrium was therefore reversed at 12.1 kbar between 1173 and 1183 °C and at 21.5 kbar between 1375 and 1435 °C in a piston-cylinder apparatus using ¼-in. talcpyrex assemblies. Friction corrections were calibrated against the melting curve of Au and Ag (Mirwald et al., 1975); they amounted to 2.9 kbar at 15 kbar and 3.5 kbar at 25 kbar nominal pressure. Thermal gradients and the effect of pressure on the electromotive force of the Pt-Pt10%Rh thermocouples (Getting and Kennedy, 1970) were accounted for. Uncertainties are estimated at ±1.0 kbar and ±10 K. Details are reported elsewhere (Mäder, 1990, and in preparation).

Magnesite Properties

The standard state properties, ΔHₚₚ, Sm, and Vₚₚ, of all minerals involved in the equilibria of Table 1 are tightly constrained by calorimetry and low-pressure phase equilibrium data (see Berman, 1988, for details). The most poorly constrained properties are those for magnesite, particularly the heat capacity and thermal expansivity, for which the data extend only to 750 K (Kelly, 1960) and 773 K (Markgraf and Reeder, 1985), respectively. The sensitivity of the calculated phase equilibria to possible errors in extrapolation of these magnesite properties can be examined by adjusting the functions given by Berman (1988) and Chernosky and Berman (1989) within experimental uncertainties so that the inconsistencies between existing equations of state and phase equilibrium data are minimized. The heat capacity function of Berman (1988), adjusted from Berman and Brown (1985), is already aimed at minimizing inconsistencies with the Kerrick and Jacobs (1981) equation of state at high pressure, i.e., to render magnesite less stable. To decrease the stability of magnesite, the thermal expansion was maximized while maintaining average percent deviations from measured values within 100% of those computed with the best fit of Berman (1988). This results in an increase of 25% of the v₄ term and a decrease of 21% of the v₃ term (to adjust for increased curvature) compared to Berman (1988) using his Equation 5, $V_{p} - V_{T} = 1 + v_{3}(T - T_{0}) + v_{4}(T - T_{0})^{2}$. Phase equilibria computed with this perturbed volume function for magnesite are still consistent with all equations of state for CO₂ (Fig. 1). It is concluded that inconsistencies cannot be attributed entirely to errors in the properties of minerals and that, instead, phase equilibrium data may be used to constrain the high-pressure properties of CO₂.

At pressures below 10 kbar and temperatures below 800 °C, magnesite properties are well constrained and any consistent set analysis (e.g., Berman, 1988) is not hampered by uncertainties in CO₂ properties because existing equations of state do not differ significantly at pressures below 10 kbar. It is therefore possible to derive standard state thermodynamic properties of magnesite prior to the optimization of CO₂ properties at higher pressures. Cher-
tribution to the uncertainty of the CO₂ properties derived from experimental constraints in systems including magnesite + forsterite + H₂O + CO₂, Greenwood (1967). Any estimate of state compared with experimental data by Newton and Connolly (1990) present an increase of the Gibbs free energy of formation for magnesite (an enthalpy of about -1111 kJ/mol) based on field evidence of phase diagram topologies (CaO-MgO-SiO₂-CO₂-H₂O) and new phase equilibrium experiments by Philipp (1988) on the equilibrium magnesite = periclase + CO₂.

A value of -1112.505 kJ/mol for the enthalpy of formation from the elements for magnesite was derived in this study by linear programming analysis. This value is consistent with Philipp’s (1988) accurate pressure analysis experiments and with the brackets on the same equilibrium determined by Harker and Tuttle (1955) and Johannes and Metz (1968) using conventional cold-seal techniques. This value used in conjunction with the data base of Berman (1988) produces the essential features of the phase diagram topologies suggested from natural mineral assemblages as outlined by Trommsdorff and Connolly (1990). The destabilization of magnesite was minimized in order not to deviate more than necessary from experimental constraints in systems including magnesite and an H₂O-CO₂ fluid mixture (e.g., magnesite + talc = forsterite + H₂O + CO₂, Greenwood, 1967). Any such discrepancy has to be counterbalanced by more non-ideal mixing of H₂O-CO₂ (larger excess volume on mixing) compared with the mixing model of Kerrick and Jacobs (1981) if all other thermodynamic parameters are well constrained.

The uncertainty on extrapolating heat capacity and thermal expansion of magnesite is the largest single contribution to the uncertainty of the CO₂ properties derived in this study. The preferred thermophysical properties of magnesite are summarized in Table 4.

RESULTS

The ability of Equation 5 to fit P-V-T data in the absence of additional constraints from phase equilibrium experiments is demonstrated in Figure 4. The following equation-of-state parameters are derived: B₁ = 29.5713, B₂ = 3.16418·10⁻⁴, A₁ = 10.2554·10⁶, A₂ = 2.54456·10⁶; in units of cm³/mol, K, and bar. The results are difficult to compare with other equations of state because each was calibrated with different weights given to various sets of data. Figure 4 shows only the high-pressure subset of all constraining P-V-T measurements, with the overall quality of fit of the three equations being comparable (Table 2). The equations share one feature: volumes extrapolated toward high pressures are larger than those inferred from the high-pressure P-V-T data of Shmonov and Shmulovich (1974).

Phase equilibrium constraints at pressures below 8 kbar are fully compatible with P-V-T data and the equation of state. The high-pressure phase equilibrium constraints (Table 1), however, are not compatible. The prominent feature observed is, as would be expected from Figures 1 and 4, that the RT ln fᵣ CO₂ terms and thus the volumes are forced to become smaller (more stable CO₂) compared with predictions based on P-V-T data alone (Fig. 5). The final equation-of-state parameters, incorporating phase equilibrium constraints, are given in Table 5. Table 3 lists the magnitudes of mismatch for several equations of state compared with experimental data by Newton and Sharp (1975).

Table 1 summarizes the consistency of Equation 5 with phase equilibrium experiments involving pure CO₂ and
stoichiometric phases. The two data sets that are inconsistent with the equation include some experiments by Goldsmith and Heard (1961) with P_{CO_2} likely less than P_{sat}, and one set by Walter (1963b) that is inconsistent (>100 K) with any other data. Berman (1988) attributes the latter inconsistency to Walter’s failure to recognize periclase in any experimental products. Figure 6 compares computed high-pressure phase equilibria including magnesite with experimental data. Reactions, including high-temperature polymorphs of calcite, calcite-IV, and calcite-V, are discussed in a separate section below. The equation of state thus performs reliably up to at least 42 kbar.

Figure 5 and Table 2 document the comparison of measured and calculated volumes. Agreement at low pressures and supercritical temperatures is excellent because the equation approximates the ideal gas law. The equation was not constrained by data below 373 K, and therefore the shape of the subcritical area is only approximate and solely a result of its van der Waals mathematical form. Between 100 °C and −10 °C the volumes of the fluid, liquid, or vapor deviate not more than 0.5% from measurements except very close to the critical point. At −50 °C (5–300 bar), computed volumes are too small by 2.5% compared with measurements. The critical curve cannot be adequately represented with only five parameters because of the severe mathematical constraints imposed by equating f_{liquid} to f_{vapor}. The calculated critical point is at 332.74 (±0.01) K, 88.754 (±0.001) bar, and 115.3 (±0.3) cm3/mol. Experimentally determined values (Angus et al., 1973) are 304.20 (±0.05) K, 73.858 (±0.05) bar, and 94.07 (±0.1) cm3/mol.

Rigorous comparisons of computed CO$_2$ properties with experimental phase equilibria have previously been hampered by insufficient thermophysical data of solid phases, magnesite in particular (Haselton et al., 1978; Bottina and Richet, 1981). The properties of solids chosen by Saxena and Fei (1987a) lead to good agreement with CO$_2$ properties obtained with their equation of state and ren-

| Table 5. Parameter values for Equation 5 |
| B$_1$ | B$_2$ | B$_3$ | A$_1$ | A$_2$ |
| 28.0647 | 1.72871 × 10$^{-4}$ | 8.36534 × 10$^{-6}$ | 1.09480 × 10$^{-8}$ | 3.37475 × 10$^{-10}$ |

Note: Units are cm3/mol, K, and bar. R = 83.147.
under the Bottinga and Richet (1981) equation grossly inconsistent at 40 kbar pressure. This is in contrast with our computations (cf. Fig. 1), which render CO₂ far too stable with the Saxena and Fei (1987a) equation. This discrepancy results, at least in part, from Saxena and Fei’s choice of heat capacity function (Robie et al., 1979) not suitable for extrapolation beyond the highest temperature data for magnesite (750 K).

Equation 5 is able to fit measured volumes significantly better without the additional constraints from phase equilibria (Fig. 5); the notable exceptions are volumes measured at the highest pressures, which show excellent agreement. This may indicate too little flexibility of the equation, some systematic problems with high-pressure experimental P-V-T equipment, or inaccurate mineral properties used to constrain the parameters. It seems that a more complex equation is not justified with the amount, extent, and quality of P-V-T data available.

Additional volumetric constraints imposed by shock wave data could possibly improve the extrapolation properties of Equation 5 toward pressures above 100 kbar. Shock wave measurements (Zubarev and Telegin, 1962) on solid CO₂ (or more likely a mixture of solid and liquid at initial conditions) are difficult to apply, and shock measurements on liquid CO₂ appear to be nonexistent. The equation of state based on shock data of similar fluids and corresponding state systematics of Saxena and Fei (1987a) is inconsistent with phase equilibrium experiments (Table 3, Fig. 1). A new approach taken by Helffrich and Wood (1989) appears to bridge shock wave data and phase equilibrium data more successfully.

In summary, the region where our proposed equation performs reliably spans 400–1773 K and 1 bar to 42 kbar. Extrapolation to higher pressures and temperatures is expected to yield useful results, possibly to 80 kbar and 2300 K.

Calcite (I-IV-V)—aragonite

In calibrating the equation of state, inconsistencies became evident between constraints on f\textsubscript{CO₂} imposed by magnesite phase equilibria and those by calcite reactions. The well-constrained high-pressure brackets on En + Mst = Fo + CO₂ and those on Mst = Pe + CO₂ (Fig. 6) demand smaller f\textsubscript{CO₂} (more stable CO₂) than high-pressure brackets on Cc + βQz = Wo + CO₂ (Fig. 7). One likely explanation is the presence of the more stable calcite polymorphs calcite-IV and calcite-V (e.g., Mirwald, 1976, for nomenclature and summary) at high temperatures, which would tend to shift the above equilibrium to higher temperatures.

As a first step, all experimental brackets including calcite at high temperatures were not considered as constraints on the properties of CO₂ in order to remove the possibly significant effects of calcite-IV and calcite-V. To test the above hypothesis, thermophysical properties of the calcite polymorphs were derived from constraints imposed by the aragonite–calcite-I–calcite-IV–calcite-V phase diagram.

Unfortunately, few quantitative data are available on the unquenchable polymorphs calcite-IV and calcite-V. The transition boundaries have been the subject of numerous studies (Boeke, 1912; Eitel, 1923; Clark, 1957; Bell and England, 1964; Crawford and Fyfe, 1964; Boettcher and Wyllie, 1968; Johannes and Puhan, 1971; Crawford and Hoersch, 1972; Cohen and Klement, 1973; Irving and Wyllie, 1975; Mirwald, 1976, 1979a, 1979b). The phase transitions between calcite-I-IV-V are most likely related to order-disorder within the anion sublattice (Lander, 1949; Salje and Viswanathan, 1976; Mirwald, 1979a, 1979b; Dove and Powell, 1989). There is, however, still some debate about the existence and exact nature of discrete phase transitions in calcite (Markgraf and Reeder, 1985). To minimize the number of thermophysical parameters to be derived, all polymorphic transitions were treated as first-order phase transitions with small volume discontinuities at the phase boundaries. This should lead to a reasonable first approximation of the energetics of these phase transitions in the
absence of sufficient constraints on the order-disorder processes.

In view of the lack of data on thermal and expansivity properties, the following assumptions were made: (1) All polymorphs share the same seismic velocity function. Experimental data by Kobayashi (1950b) suggest a lower heat capacity for aragonite than calcite were disregarded because his aragonite and calcite (Kobayashi, 1950a) data are imprecise and inconsistent with data of other studies (Stavely and Linford, 1969; Jacobs et al., 1981; Kelly, 1960). (2) Calcite-Iv and calcite-V share the same expansivity and compressibility as calcite-I. X-ray data by Mirwald (1979a) suggest a larger thermal expansion for Cc-Iv than for Cc-I, which is however not observed in Markgraf and Reeder’s (1985) measurements. The extremely large thermal expansion of aragonite relative to calcite suggested by measurements up to 450 °C (Salje and Viswanathan, 1976; Kozu and Kani, 1934) was reduced by 15% during fitting in order to constrain the curvature of the Cc = Ar equilibrium to the phase equilibrium data. The difference in compressibility between calcite and aragonite was derived from studies that include measurements on both minerals by the same technique (Salje and Viswanathan, 1976; Madelung and Fuchs, 1921). All other thermodynamic properties were fitted to measurements as summarized in Table 4. Calcite-I properties are nearly identical to those in Berman (1988) and are compatible with the phase equilibrium experiments of Table 2.

The standard state properties ($\Delta_{r}H_{298}^r$, S_{298}^r, V_{298}^r, P_{298}^r) of Cc-Iv and Cc-V were refined by mathematical programming analysis using phase equilibrium constraints (Cc-I = Ar, Cc-Iv = Ar, Cc-V = Ar, Cc-I = Cc-Iv, Cc-Iv = Cc-V; Fig. 7). The derived thermophysical properties are consistent with most phase equilibrium studies with the exception of the Ar = Cc-I transition at low temperatures (<200 °C) and the Ar = Cc-V transition. At 100 °C, the computed Arag = Cc-I boundary is located 0.5 kbar too low compared with experiments by Crawford and Fyfe (1964). Data of Mirwald (1979a) on the Ar = Cc-V equilibrium are inconsistent and not compatible with the brackets obtained by Irving and Wyllie (1975) (Fig. 7). This boundary is therefore poorly constrained and allows some latitude in the properties of Cc-V.

Computed phase equilibria involving Cc-I, Cc-Iv, and Cc-V (Fig. 7) are consistent with all phase equilibrium experiments (Table 1) with the exception of small inconsistencies (<4 K) with one half bracket on the reaction Ak + Cc-Iv + Fo = Mtc + Cc-Iv (Walter, 1963a) and Ak + Cc-Iv = Wo + Ge + Cc-Iv (Shmulovich, 1974). Most importantly, however, the computed equilibria are compatible with the high-pressure brackets on the reaction Cc-Iv + BQz = Wo + Cc-Iv (Haselton et al., 1978) and the high-temperature brackets on the equilibrium Cc-Iv/V = Lime + CO₂ (Smith and Adams, 1923; Baker, 1962).

It appears that only the experimental data of Smith and Adams (1923) and Baker (1962) for the calcite decarbonation can be reconciled with the calorimetric data of lime and the above treatment. The data of Harker and Tuttle (1955) and Goldsmith and Heard (1961) are inconsistent. Smith and Adams’ (1923) differential thermal analysis experiments are, however, not reversed and constrain only the product-stable assemblage.

Conclusions

The following points are emphasized: (1) phase equilibrium brackets put important constraints on the f_{CO_2} at pressures not accessible by conventional $P-V-T$ measurements, (2) mathematical programming analysis of $P-V-T$ and phase equilibrium data allows significant improvements of the equation of state for CO₂, and (3) some experimentally measured volumes of CO₂ at high pressures may have much larger uncertainties than previously estimated.

The data needed for further improvements include (1) more high-quality phase equilibrium brackets at high pressures on reactions involving CO₂, (2) a set of carefully measured CO₂ volumes up to 12 kbar, (3) shock wave data on fluid CO₂, (4) measurements on the expansivity of magnesite to high temperatures under pressure, and (5) quantitative evaluation of the complex phase transitions undergone by calcite. Progress is required in providing mathematically practical equations of state with a theoretical basis.

Acknowledgments

The senior author is indebted to H.J. Greenwood for support and advice during U.M.’s Ph.D. thesis research. The manuscript was improved by H.J. Greenwood and T.H. Brown. Helpful reviews were provided by N. Chatterjee, M. Ghiorso, and an anonymous reviewer. J.R. Holloway kindly supplied computer codes for the evaluation of his equation of state. We gratefully acknowledge financial support by NSERC to R.G.B. (OGP 0037234) and H.J. Greenwood (U.M.) (67-4222) and funds to H.J. Greenwood (U.M.) administered by the British Columbia Ministry of Energy, Mines and Petroleum Resources under the Canada–British Columbia Mineral Development Agreement.

References cited

Huang, W., and Wyllie, P.J. (1975) Melting reactions in the system NaAlSi₃O₈-KAlSi₃O₈-SiO₂ to 35 kilobars, dry and with excess water. Journal of Geology, 83, 737–748.

Jouza, J. (1961) An equation of state for water and steam, and steam tables in the critical region and in the range from 1000 to 100 000 bars. Rada Technickyh VED, Pra, 76, 3–121.

Kobayashi, K. (1950a) The heat capacity of inorganic substances at high temperatures, part III. The heat capacity of synthetic calcite (calcium carbonate). Science Reports, University of Tokyo, 34, 103–110.

— (1950b) The heat capacity of inorganic substances at high temperatures, part IV. The heat capacity of synthetic aragonite (calcium carbonate). Science Reports, University of Tokyo, 34, 111–118.

Mel’nik, Y.P. (1972) Thermodynamic parameters of compressed gases and metamorphic reactions involving water and carbon dioxide. Geo-

— (1963a) Experimental determination of the specific volume of CO₂ at temperatures 40–150 °C and pressures up to 600 kg/cm². Teplomechanika, 10, 85–88 (in Russian).

MANUSCRIPT RECEIVED SEPTEMBER 24, 1990
MANUSCRIPT ACCEPTED MARCH 14, 1991

APPENDIX 1. INTEGRATION OF THE EQUATION OF STATE

The quantity ∫₀₀ V dP is most easily obtained from the relationship

$$\int_{p_0}^{p} V \, dP = \int_{V_0}^{V_0} P \, dV + V_r (P - p_0) - P_0 (V_0 - V_r)$$

$$= \int_{V_0}^{V_0} P \, dV + \int_{V_0}^{V_0} \frac{RT}{V - \left(\frac{B}{V^3} + C\right)} \, dV$$

$$- \int_{V_0}^{V_0} \frac{A_1}{V^2} \, dV + \int_{V_0}^{V_0} \frac{A_2}{V^4} \, dV$$

$$+ \frac{V_r (P - p_0) - P_0 (V_0 - V_r)}{V_r}$$

(A1)

with

$$B = B_1 + B_2 T$$

and

$$C = B_3 / B_1$$

The attractive terms (A₁ and A₂ terms) become upon integration

$$\frac{A_1}{T} \left(\frac{1}{V_0} - \frac{1}{V_r} \right) - \frac{A_2}{3} \left(\frac{1}{V_0^3} - \frac{1}{V_r^3} \right).$$

(A2)
The repulsive term (RT term) requires integration of a rational function of the form

\[\int_{V_p}^{V_0} \frac{m V^3 + n}{V(\alpha V^3 + b V^2 + c V + d)} dV \]

with \(m = RT, \ n = RTC, \ a = 1, \ b = -B, \ c = 0, \ d = C = B_1/B, \) and \(B = B_1 + B_2 T. \)

Integral A3 may be solved after splitting into partial fractions provided the real roots of the polynomial \(\alpha V^3 + b V^2 + c V + d \) are known.

Case 1. Polynomial \(\alpha V^3 + b V^2 + c V + d \) yields three real roots \(X_1, X_2, X_3. \) Integral A3 may be split into partial fractions by solving

\[\frac{m V^3 + n}{V(\alpha V^3 + b V^2 + c V + d)} = \frac{I}{V - X_1} + \frac{J}{V - X_2} + \frac{K}{V - X_3}, \]

(A3)

Cross multiplication and collecting terms in powers of \(V \) yield four equations in four unknowns \((I, J, K, L) \) by comparing coefficients:

\[n = I(-X_1 X_2 X_3), \]

(A5)

\[0 = I(X_1 X_2 + X_1 X_3 + X_2 X_3) \]
\[+ J(X_1 X_3) + K(X_1 X_2) + L(X_1 + X_2 + X_3), \]

(A6)

\[0 = I(X_1 + X_2 + X_3) + J(X_2 + X_3) \]
\[+ K(X_1 + X_3) + L(X_1 + X_2 + X_3), \]

(A7)

\[m = I + J + K + L. \]

(A8)

Equations A5 through A8 are solved simultaneously to obtain

\[I = -\frac{n}{X_1 X_2 X_3}, \]

(A9)

\[J = -\frac{m X_1^3 + n}{X_1(-X_1^2 + X_1 X_2 + X_1 X_3 + X_2 X_3)}, \]

(A10)

\[K = \frac{m X_1^3 + n}{X_1 X_3^2 - X_1 X_2 X_3 + X_2 X_3}, \]

(A11)

\[L = \frac{m X_1^3 + n}{X_1^2 X_2^2 - X_1 X_2 X_3 + X_1 X_3}. \]

(A12)

Integral A3 may now be integrated by parts to obtain

\[I \ln \left(\frac{V_o}{V_p} \right) + J \ln \left(\frac{V_o - X_1}{V_p - X_1} \right) \]
\[+ K \ln \left(\frac{V_o - X_2}{V_p - X_2} \right) + L \ln \left(\frac{V_o - X_3}{V_p - X_3} \right), \]

(A13)

Case 2. Polynomial \(\alpha V^3 + b V^2 + c V + d \) yields one real root \(X_r \). Integral A3 may be split into partial fractions by solving

\[\frac{m V^3 + n}{V(\alpha V^3 + b V^2 + c V + d)} \]
\[= \frac{I}{V - X_r} + \frac{J}{V^2 + \alpha V + \beta} \]

(A14)

with \(\alpha = b/a + X_r, \beta = c/a + \alpha X_r, \) which yields four equations in four unknowns \((I, J, K, L) \):

\[n = -I \beta X_r, \]

(A15)

\[0 = I(\beta - \alpha X_r) + J(\beta - \alpha X_r), \]

(A16)

\[0 = I(\alpha - X_r) + J(\alpha - X_r), \]

(A17)

\[m = I + J + K. \]

(A18)

Equations A15 through A18 are solved simultaneously to obtain

\[I = \frac{n}{\beta X_r}, \]

(A19)

\[J = -\frac{m X_r^3 + n}{X_r(\alpha X_r + \beta + X_r^2)}, \]

(A20)

\[K = \frac{a \beta m X_r + an + \beta^2 m + n X_r}{\beta(\alpha X_r + \beta + X_r^2)}, \]

(A21)

\[L = \frac{a^2 n + an X_r + \beta^2 m X_r - \beta n}{\beta(\alpha X_r + \beta + X_r^2)}. \]

(A22)

The last term of Equation A14 is expanded to standard integrals by appropriate substitutions:

\[\int \frac{K V + L}{V^2 + \alpha V + \beta} dV \]
\[= \int \frac{Kz}{z^2 + t^2} dz + \int \frac{L - K s}{z^2 + t^2} dz \]

(A23)

with \(z = V + s, \ s = \alpha/2, \ t = \sqrt{\beta - s^2}, \) and \(dV = dz. \)

Integration of A3 yields

\[I \ln \left(\frac{V_o}{V_p} \right) + J \ln \left(\frac{V_o - X_r}{V_p - X_r} \right) \]
\[+ \frac{K}{2} \ln \left(\frac{(V_o + s)^2 + t^2}{(V_p + s)^2 + t^2} \right) \]
\[+ \frac{L - K s}{t} \left[\arctan \left(\frac{V_o + s}{t} \right) \right. \]
\[\left. - \arctan \left(\frac{V_p + s}{t} \right) \right], \]

(A24)

with \(\alpha = b/a + X_r, \beta = c/a + \alpha X_r, \) \(s = \alpha/2, \) and \(t = \sqrt{\beta - s^2}. \)