NEW MINERAL NAMES*

JOHN L. JAMBOR
CANMET, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada

Belendorffite*


Ten electron microprobe analyses gave a mean (and range) of Hg 7.406 (7.289-7.514), Cu 5.61 (5.435-5.89), sum 99.67 (99.29-100.20) wt%, corresponding to HgCu2 for the mean and HgCu2+Cu for the range, ideally HgCu2. The mineral occurs as a globular, 6.1-g nodule also containing a small amount of native mercury. Metallic luster, silvery streak, silvery color rapidly tarnishing to matte yellow and ultimately to blackish brown. VHN25 : 125, but values were clustered near both ends of a range between 45 and 206. Dmeas = 13.2 (1), Dcalc = 13.15 g/cm³ with Z = 4. Difficult to polish well. In reflected light, bright white with a yellowish tint, very weak anisotropy, incomplete extinction. Reflectance percentages are given in 20-nm steps in air and oil (WTiC standard); representative values are 400 66.2, 57.8; 440 67.6, 58.6; 480 69.2, 59.6; 520 71.0, 61.2; 560 72.8, 63.0; 600 74.1, 64.2; 640 75.3, 65.5; 680 76.4, 66.5. Color values in air relative to CIE illuminant C are I : 72.5%, tro : 578 nm, P. : 41.0%. The X-ray powder pattern (Günierr camera, CuKa radiation) is in good agreement with data for synthetic pseudocubic CuHg (PDF 22-241) and has strongest lines (70 given) of 2.983(80,100), 2.966(85,130), 2.523(100,321), 2.227(100,330), 2.221(100,141), and 2.208 Å (100,141); calculated rhombohedral dimensions are a = 9.4082(4), α = 90.472(5); V = 832.67 Å³.

The mineral is named for mineral collector Klaus Belendorff of Münster, Hesse, Germany, who provided the original sample, which is from the Moschellandsberg silver-mercury deposit in Rhineland-Pfalz, Germany, and which was probably collected in the last century. Type material is preserved at the Institut für Mineralogie, Ruhr-Universität, Bochum, Germany. J.L.J.

Deloryite*


Electron microprobe analysis (ave. of three) gave CuO 33.36, UO2 31.78, MoO3 29.16, SO3 0.27, Al2O3 0.10, H2O (TGA) 5.8, sum 100.47 wt%, corresponding to Cu3(1-x)Al2+x(OH)2(2-x)(MoO4)x(SO4)x(OH)y(0.60-0.66) ideally Cu4(UO2)3MoO4(OH)2. Occurs as dark green to black rosettes to 6 mm, in which individual crystals are 3 x 1 x 0.3 mm, tabular (010), elongate [001], showing (010), (100), and with a rounded termination. Transparent to nearly opaque, vitreous to greasy luster, green streak, conchoidal fracture, cleavages perfect (010), (100), good (001), H = 4, Dmeas = 4.9(1), Dcalc = 4.84 g/cm³ with Z = 2, nonfluorescent, soluble in HCl. Optically yellowish green, nonpleochroic, biaxial positive, 2Vmeas = 90°, 2Vcalc = 91.3(1), β = 1.90(3), γ = 1.96(3), strong dispersion r > v, α ∧ c = 21.9°, β ∧ a = 36.2°, γ = b. X-ray single-crystal study indicated monoclinic symmetry, space group C2, Cm, or C2/m, a = 19.83(2), b = 6.112(9), c = 5.529(6) Å, β = 103.9(1)° as refined from a Guinier pattern (CuKa, radiation). Strongest lines of the powder pattern are 4.815(80,400), 4.425(40,310), 4.276(40,201), 4.100(100,401), 3.734(90,311), 3.254(40,510), 2.628(40,402), and 2.481(60,221,312).

The mineral occurs at the Cap Garonne mine near Pradet, Var, France, with metazeunerite, atacamite, paratacamite, malachite, tourmaline, and barite on a dendritic quartz gangue. The new name is for mineral collector Jean Claude Delory, who found the specimen, which is preserved in the Mineralogy Department of the Natural History Museum, Geneva, Switzerland. There is a crystallographic relationship to derriksite, which is orthorhombic, Cu4(UO2)(SeO3)2(OH)6. J.L.J.

Ferrilotharmeyerite*


Electron microprobe analysis gave CuO 33.36, UO2 31.78, MoO3 29.16, SO3 0.27, Al2O3 0.10, H2O (TGA) 5.8, sum 100.47 wt%, corresponding to Cu3(1-x)Al2+x(OH)2(2-x)(MoO4)x(SO4)x(OH)y(0.60-0.66) ideally Cu4(UO2)3MoO4(OH)2. Occurs as dark green to black rosettes to 6 mm, in which individual crystals are 3 x 1 x 0.3 mm, tabular (010), elongate [001], showing (010), (100), and with a rounded termination. Transparent to nearly opaque, vitreous to greasy luster, green streak, conchoidal fracture, cleavages perfect (010), (100), good (001), H = 4, Dmeas = 4.9(1), Dcalc = 4.84 g/cm³ with Z = 2, nonfluorescent, soluble in HCl. Optically yellowish green, nonpleochroic, biaxial positive, 2Vmeas = 90°, 2Vcalc = 91.3(1), β = 1.90(3), γ = 1.96(3), strong dispersion r > v, α ∧ c = 21.9°, β ∧ a = 36.2°, γ = b. X-ray single-crystal study indicated monoclinic symmetry, space group C2, Cm, or C2/m, a = 19.83(2), b = 6.112(9), c = 5.529(6) Å, β = 103.9(1)° as refined from a Guinier pattern (CuKa, radiation). Strongest lines of the powder pattern are 4.815(80,400), 4.425(40,310), 4.276(40,201), 4.100(100,401), 3.734(90,311), 3.254(40,510), 2.628(40,402), and 2.481(60,221,312).

The mineral occurs at the Cap Garonne mine near Pradet, Var, France, with metazeunerite, atacamite, paratacamite, malachite, tourmaline, and barite on a dendritic quartz gangue. The new name is for mineral collector Jean Claude Delory, who found the specimen, which is preserved in the Mineralogy Department of the Natural History Museum, Geneva, Switzerland. There is a crystallographic relationship to derriksite, which is orthorhombic, Cu4(UO2)(SeO3)2(OH)6. J.L.J.

* Before publication, minerals marked with an asterisk were approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association.
translucent to transluscent, pale yellow streak, uneven fracture, good \{001\} cleavage, H = 3, nonfluorescent, $D_{\text{calc}} = 4.25$, $D_{\text{meas}} = 4.25 \text{ g/cm}^3$ for the empirical formula above, and Z = 2. Optically biaxial positive, $\alpha = 1.811(5)$, $\beta = 1.844(5)$, $\gamma = 1.88(1)$, $2V_{\text{meas}} = 85(5)^\circ$, $2V_{\text{calc}} = 89^\circ$; $Y = b$, $X = a$, strongly pleochroic from X = olive green, Y = pale green, to Z = colorless; distinct inclined dispersion, $r > v$. X-ray single-crystal study indicated monoclinic symmetry, $a = 8.997(7)$, $b = 6.236(2)$, $c = 7.390(3)$ A, $\beta = 115.74(4)^\circ$ as refined from the Debye-Scherrer powder pattern (114.6 mm camera, CuKa radiation). Strongest lines are 4.95(70,110), 3.398(100,202), 3.175(100,112), and 2.924(83,021).

The mineral, which is the Fe$^{3+}$ analogue of lotharmeynite, occurs with tennantite, scorodite, conichalcite, bournonite, and schneiderhöhnite at the Tsumeb mine, Tsumeb, Namibia. Type material is in the National Mineral Collection, Geological Survey of Canada, Ottawa, and in the Museum of Victoria, Melbourne, Australia. J.L.J.

**Hejtnamite**


Electron microprobe analysis gave SiO$_2$ 32.52, TiO$_2$ 13.27, Nb$_2$O$_5$ 1.4, Al$_2$O$_3$ 0.37, FeO 11.29, MnO 14.12, MgO 0.13, BaO 30.20, Na$_2$O 0.06, K$_2$O 0.30, F 3.3, H$_2$O (calc.) 1.86, F = O 1.39, sum 98.43 wt%; for 10(OH,F)$^-$ the formula ratios are Ba$_{0.03}$K$_{0.03}$Na$_{0.01}$$(\text{Mn}_{0.86}\text{Fe}_{0.14})$$^-$\text{O}_{1.00}$\text{F}_{0.00}$\text{O}_{0.00}$\text{O}_{0.00}$\text{O}_{0.00}$. Occurs as lath-shaped crystals with large \{100\}, elongate [001] to 1 mm in length. Brownish to yellow color, brownish yellow streak, vitreous luster, translucent, H not determined, perfect \{100\} cleavage, poor \{010\} parting, irregular fracture, nonfluorescent, $D_{\text{meas}} = 4.016$ (range 3.975-4.060), $D_{\text{calc}} = 4.291 \text{ g/cm}^3$, with Z = 8. Absorption bands for H$_2$O-OH are present in the infrared spectrum. Optically biaxial positive, $\alpha = 1.814(1)$, $\beta = 1.846(1)$, $\gamma = 1.867(1)$, $2V_{\text{meas}} = 76.4(9)^\circ$, $2V_{\text{calc}} = 76.8^\circ$, pleochroism $X =$ light green-yellow, $Y =$ dark golden yellow, $Z =$ light yellow; absorption $Y > Z = X$, orientation $X = b$, $Z = a = 15.9^\circ$, $Y = c = 37.9^\circ$ in obtuse angle $\beta$. Single-crystal X-ray study indicated monoclinic symmetry, $a = 11.748(4)$, $b = 13.768(5)$, $c = 10.698(4)$ A, $\beta = 112.27(2)^\circ$, a subcell has $a' = a$, $b' = b/2$, $c' = c/2$, space group $P2_1/m$. Strongest lines of the powder pattern (diffractometer, CuKa radiation) are 7.625(78,001), 5.410(43,100), 5.200(52,200), 5.145(45,111), 5.040(100,310), 5.014(63,203), and 2.924(83,021).

The mineral occurs in a secondary assemblage derived by oxidation of mainly chalcopyrite and tetrahedrite at the former Reina mine, Lubietová, near Banská Bystrica, Slovakia. The new name is for Zdenek Mrázek (1952-1984), codiscoverer of the mineral. Type material is in the National Museum, Prague, Czechoslovakia, and in the Faculty of Science, Charles University, Prague. J.L.J.

**Mrázekite**


Electron microprobe analysis gave CuO 51.97, PO$_4$ 15.89, As$_2$O$_5$ 0.11, H$_2$O and OH$_{\text{calc}}$ 5.90, sum 100 wt%, corresponding to Bi$_{0.91}$Cu$_{3.96}$P$_{2.99}$As$_{0.00}$O$_{11.06}$·1.954H$_2$O, ideally Ba$_{13}$Cu$_3$(OH)$_2$O$_6$(PO$_4$)$_2$·2H$_2$O as determined by crystal-structure analysis ($R = 0.051$). Occurs as bright or cerulean blue needles up to 2 mm long, either isolated or loosely grouped as rosettes in a quartz matrix. Crystals are elongate [010], tabular [011], translucent, vitreous luster, H = 2-3, cleavage [011], $D_{\text{meas}} = 4.90(2)$, $D_{\text{calc}} = 5.013 \text{ g/cm}^3$, with Z = 2. The infrared spectrum shows absorption bands characteristic of H$_2$O, OH, and PO$_4$$. Optically biaxial negative, refractive indices are between 1.8 and 1.9, $2V_{\text{abs}}^\gamma = 68(2)^\circ$, $X = b$, $Y = a$, $Z = c$, $Z = c = 16^\circ$. Single-crystal X-ray structural study indicated monoclinic symmetry, space group $C2/m$, $a = 12.359(6)$, $b = 6.331(4)$, $c = 9.060(4)$ A, $\beta = 122.71(4)^\circ$. Strongest lines of the Guinier powder pattern (CuKa radiation) are 7.625(78,001), 5.410(43,100), 5.200(52,200), 5.145(45,111), 5.040(100,310), 5.014(63,203), and 2.924(83,021).

The mineral occurs in a secondary assemblage derived by oxidation of mainly chalcopyrite and tetrahedrite at the former Reina mine, Lubietová, near Banská Bystrica, Slovakia. The new name is for Zdenek Mrázek (1952-1984), codiscoverer of the mineral. Type material is in the National Museum, Prague, Czechoslovakia, and in the Faculty of Science, Charles University, Prague. J.L.J.

**Tooeleite**


Electron microprobe analysis gave Fe$_2$O$_3$ 43.56, As$_2$O$_5$ 38.61, SO$_3$ 7.26, H$_2$O (Penfield method) 9.80, sum 99.21 wt%, corresponding to (Fe$_{1.64}$Mn$_{0.36}$)$(\text{As}_{0.24}\text{S}_{0.76})$(OH)$_2$·0.4H$_2$O, with x about 0.2. Color and streak typically cadmium orange, H = 3, transparent with a greasy luster in crystals, nonfluorescent, $D_{\text{meas}} = 4.23(8)$, $D_{\text{calc}} = 4.15 \text{ g/cm}^3$, with Z = 2. Crystals are elongate [001] to 10 mm, bounded by \{010\}, \{304\}, and \{100\}.
One good cleavage normal to the shortest dimension of the crystals. Optically biaxial, straight extinction, \( \alpha = 1.94, \beta = 2.04, \gamma = 2.05, 2V_{\text{meas}} = 2-5^\circ \), pleochroism \( Y' = \text{orange}, X' = Z' = \text{lemon yellow}, \) weak dispersion \( r > v \). X-ray single-crystal study indicated orthorhombic symmetry, space group \( Pbcm \) or \( Pbc_2_1 \), \( a = 6.416(4), b = 19.45(17), c = 8.941(8) \AA. \) Strongest lines of the powder pattern (114 nm camera, CrK\( \alpha \) radiation) are 9.75(100,020), 4.476(40,002), 3.208(90,200,132), 3.047(50,061,220), and 2.680(40,240,113).

The mineral occurs on waste dumps of the U.S. mine at Gold Hill, Tooele County, Utah. The mine formerly produced gold and arsenic from pyrite-arsenopyrite replacement ores in thermally metamorphosed limestone. Oxidation of the quartz-diopside host rock produced massive scorodite containing voids, some lined with jarosite, and both minerals are locally coated with tooeleite crusts up to 10 mm thick. The new name is for the locality. Type material is in the École Nationale Supérieure des Mines, Paris, France.

**AgPd**


One of two similar microprobe analyses gave Pd 49.70, Ag 49.19, Cu 0.13, sum 99.02 wt%, corresponding to \( \text{Pd}_{0.04}\text{Ag}_{0.99}\text{Cu}_{0.03}, \) close to \( \text{PdAg}. \) The alloy occurs as two angular grains, 5 x 15 \( \mu \)m, in a void within an iron oxide nodule consisting mainly of goethite and hematite. The nodule is from near the top of a ferruginous zone, about 30 m thick, in laterite at the Bahia lateritic gold deposit, Serra dos Carajas, Brazil. The angular shape and occurrence in a void suggest growth of the alloy in a lateritic environment.

**Pd\(_2\)As\(_2\) and Pd\(_2\)(Sb,As)**


Three electron microprobe analyses are given for grains corresponding to unnamed Pd\(_2\)As\(_2\), and three for unnamed Pd\(_2\)(Sb,As).


**Pd\(_3\)Ag\(_5\) and (Rh,Pt)(As,S)\(_2\)**


Electron microprobe analysis, normalized to 100 wt% after correction for beam overlap onto surrounding minerals, gave Pd 52.9, Ag 27.0, Cu 2.7, S 17.5, corresponding to Pd\(_{1.72}\text{Ag}_{1.18}\text{Cu}_{0.28}\text{S}_{0.29}, \) possibly Pd\(_3\)Ag\(_5\). The grain is 0.8 \( \times 0.5 \) \( \mu \)m and occurs in a silicate groundmass.

Analysis of a grain, approximately 1 \( \times 1 \) \( \mu \)m and isolated in epidote, gave Rh 28.5, Pt 15.3, Fe 0.8, As 41.6, S 13.8 wt%, close to (Rh,Pt)(As,S)\(_2\).

**Discussion.** The composition of the Rh-Pt sulfarsenide corresponds to (Rh\(_{0.88}\)Pt\(_{0.12}\)Fe\(_{0.02}\)\text{As}_{0.04}\text{S}_{0.96}, close to (Rh,Pt)(As,S)\(_2\). RhAs\(_2\) has been synthesized. J.L.J.

**SrMn\(_3\)(Si\(_2\)O\(_7\))(OH)\(_2\) \cdot \text{H}_2\text{O}**


A hand specimen consisting of sugulite embedded in fibrous serandite-pectolite cut by serandite-pectolite veinlets, 2–5 mm wide, containing the unnamed strontium mineral in irregular aggregates up to 1 mm in diameter, less commonly as a feltlike matrix in sugilite-rich parts of the specimen. Electron microprobe analysis gave SiO\(_2\) 28.22, Mn\(_2\)O\(_3\) 37.82, FeO\(_2\) 0.53, SrO 24.32, BaO 0.46, CaO 0.02, sum 91.37 wt%, corresponding to (Sr\(_{0.98-\text{Ba}_{0.02}}\)\text{Mn}_{3.00}\text{Fe}_{0.03}\text{Ca}_{0.01}\text{Si}_{3.04}\text{P}_{0.97} \text{ for 5 cations}; the ideal formula given above requires 8.62 wt% H\(_2\)O, and absorption bands in the infrared spectrum appear at frequencies characteristic of H\(_2\)O-OH. Yellow-brown in thin section. Single-crystal X-ray structural study (\( R = 0.048 \)) indicated orthorhombic symmetry, space group \( \text{Cmcm}, a = 6.255(1), b = 9.034(2), c = 13.397(2) \) \( \AA, Z = 4. \) The structure is of the lawsonite type, with Al completely replaced by Mn\(^{3+}\), and Ca by Sr. The mineral, which is thought to be of hydrothermal origin, is from the Wessels mine, Kalahari manganese fields, South Africa. J.L.J.

**V-dominant pumpellyite**


Green mica schist from the main ore zone of the Hemlo gold deposit, Ontario, contains abundant V-bearing pumpellyite-(Mg) with up to 13.6 wt% V\(_2\)O\(_5\); as well, a second pumpellyite-group mineral occurs sparsely as grains < 15 \( \mu \)m in maximum dimension. V\(_2\)O\(_5\) in the seven reported electron-microprobe analyses of the second mineral ranges from 18.89 to 25.67 wt%; results for the most V-rich grain are SiO\(_2\) 33.23, TiO\(_2\) 1.13, Al\(_2\)O\(_3\) 4.55, Cr\(_2\)O\(_3\) 0.56, V\(_2\)O\(_5\) 25.67, total Fe as FeO 3.34, MgO 2.10, MnO 0.50, CaO 20.56, BaO 0.09, Na\(_2\)O 0.14, K\(_2\)O 0.09, sum 91.96, corresponding to (Ca\(_{7.91}\)Na\(_{0.10}\)K\(_{0.03}\)Ba\(_{0.01}\)\text{Fe}_{2.03}\text{Mg}_{1.13}\text{Ti}_{0.06}\text{Cr}_{0.06}\text{Mn}_{0.19}\text{Si}_{2.02}\text{Al}_{0.09})\text{V}_{12.00}. \) The mineral is greenish brown, vitreous, transparent, brittle. Optically biaxial negative, 2V\(_{\text{em}} = 50(5)^{5}, \) strongly pleochroic with \( \alpha = \) colorless, \( \beta = \) brown to deep brown, \( \gamma = \)
pale brown; strong dispersion, r < v. Closely associated with vanadian titanite and barian tomichite. The end-member composition is calculated as Ca(V,Mg,Fe)_{5}(V,Al)_{5}Si_{5}O_{16}·(OH)_{6}, with V dominant both in X and Y positions. J.L.J.

**New Data**

**Pseudoboleite**


X-ray crystal-structural study (R = 0.049) gave tetragonal symmetry, space group 14/mmm, a = 15.24(2), c = 30.74(5) Å, D_{calc} = 5.07 g/cm³ for Pb(Cu,CoCl,(OH),6)·6 H,2O, with Z = 2. The formula, notably the absence of structural H,2O, is new. J.L.J.

**Rhodesite**


X-ray structural study (R = 0.036) of rhodesite from Zeilberg, Unterfranken, Germany, gave orthorhombic symmetry, space group Pnam, a = 23.41(6), b = 6.555(1), c = 7.050(1) Å, D_{calc} = 2.268(1) g/cm³ for HKFNa,SiO,·(6-x)H,2O·xH,2O and Z = 2. Similar results were obtained for rhodesite from Trinity County, California (R = 0.055), and San Venanzo, Rieti, Italy (R = 0.045). Electron microprobe analyses of the specimens from Zeilberg and Trinity County, and of another from Kimberly, South Africa, gave maximum Na contents of 0.33 wt%, and structural study indicated that no specific cation position is fully or largely occupied by Na. The ideal formula is HKFNa,SiO,·(6-x)H,2O·xH,2O where x: 0.75-1.0. The structure is closely related to those of delhayelite, hydrodelhayelite, macdonaldite, and monteregianite. J.L.J.

**Stillwellite**


X-ray structural study (R = 0.015) of stillwellite-(Ce) gave trigonal symmetry, space group P3,1, a = 6.844, c = 6.700 Å, Z = 3. The common occurrence of [100] twins probably accounts for the space groups previously assigned to the mineral.

**Discussion.** Also reported as space group P3,1 by P.C. Burns et al., who refined the structure to R = 0.027 (Geol. Assoc. Can.—Mineral. Assoc. Can. Program Abstracts, 17, p. A14, 1992). J.L.J.

**Tinticite**


Electron microscope analysis gave Fe,O, 50.49, P,O, 29.57, V,O, 0.60, SO, 0.38, sum 81.04 wt%, corresponding to FeO,P, V,O, O, simplified as Fe,P,O. The original formula for tinticite, FeO(PO,)(OH),·3H,O, requires 19.16 wt% H,2O. Trial and error indexing of the powder diffractometer pattern (Cu radiation) gave an orthorhombic cell with a = 20.85, b = 13.51, c = 15.82 Å. Strongest lines of the pattern are 6.87(27,012), 6.17(28,021,310), 5.78(40,311,212), 4.62(30,411,321,222), 3.949(100,004), 3.310(70,041), 2.988(45,341), 2.365(25,525), and 1.948(25,164,118). The new cell and the original formula with Z = 16 give D_{calc} = 2.76 g/cm³, which is close to the original D_{calc} = 2.8 g/cm³.

**Discussion.** The formula, symmetry, and cell dimensions differ from those abstracted in Am. Mineral., 74, p. 1404, 1989. J.L.J.

**Tuperssuatsiaite**


The second occurrence of tuperssuatsiaite has permitted better definition of its properties and composition. The mineral is monoclinic, space group C2/c or Cc, a = 13.92(7), b = 17.73(5), c = 5.30(3) Å, β = 104.78(1)°; strongest lines of a (reindexed) Gandolfi powder pattern (CuKα radiation) are 10.78(vs,110), 4.12(m,221), 3.39(sb,221,400), 2.63(m,202,351), and 2.51(m,222,261,312). Optically biaxial positive, α = 1.5388(5), β = 1.5596(5), γ = 1.595(1), γ = 1.595(1), 2V_{meas} = 103.5(1.5)°, 2V_{calc} = 103.6(2.6)°, α + γ + β = 20–22° in the obtuse angle, β = b, γ = c = 5–7°, pleochroism α = colorless, β = pale yellowish brown, γ = dark reddish brown. The average of ten electron microprobe analyses gave Na 4.97, K 0.06, Mg 0.1, Ca 0.08, Fe 18.37, Mn 0.51, Zn 0.09, Si 26.02, Al 0.08, Ti 0.11, F 0.09, Cl 0.13, O (calc.) 39.62 wt%, corresponding to Na,Fe,Mn,Mg,Ca,Zn,Al,Cl,Cl,OH,OH,OH, where Na,Fe,Mg,Al,Cl,OH are ideally Na,Fe,Mg,Al,Cl,OH,OH,OH. The new empirical formula and cell give D_{calc} = 2.28 g/cm³. J.L.J.

**Discarded Minerals**

**Rezbányite**

A sample 5 × 3 × 2 cm of holotype or cotype rezbanyite from Vaskö, Rumania, is part of the original collection of S. Koch now housed in the Mineralogical Collection of the University of Szeged, Hungary. The material was used by Koch to redefine the composition of rezbanyite as Pb₃Cu₂Bi₁₀S₁₉. Electron microprobe analyses and Guinier X-ray powder patterns indicate that the material, which is homogeneous by optical microscopy, consists of a mixture of minerals in the bismuthinite-aikinite group (hammarite and krupkaite) and subordinate Cu-bearing cosalite. The results confirm previous studies (Mumme and Zák, Neues Jahrb. Mineral. Mon., 557-567, 1985) that indicate no mineral with the composition of rezbanyite is known.

**Discussion.** The authors conclude that rezbanyite should be discredited as a mineral name, but no application to do so was made to the CNMMN. J.L.J.

**Sulrhodite**


For the solid solution Rh₂S₃-Ir₂S₃, the Rh-dominant and Ir-dominant members are named bowieite and kashinite, respectively. The previously proposed name sulrhodite for Rh₂S₃ (Am. Mineral., 74, p. 1216, 1989) is discredited. J.L.J.