Coupled substitution of H and minor elements in rutile and the implications of high OH contents in Nb- and Cr-rich rutile from the upper mantle

DIMITRIOS VLASSOPULOS
S. S. Papadopoulos and Associates, Inc., 7944 Wisconsin Avenue, Bethesda, Maryland 20814-3620, U.S.A.

GEORGE R. ROSSMAN
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.

STEPHEN E. HAGGERTY
Department of Geology, University of Massachusetts, Amherst, Massachusetts 01003, U.S.A.

ABSTRACT

Infrared absorption spectra of rutile crystals from a variety of geological environments (carbonatite, hydrothermal vein, kyanite + rutile + lazulite association, xenoliths that are kimberlite hosted and dominated by Nb- and Cr-rich rutile) exhibit strong absorption in the 3300-cm⁻¹ region due to interstitial protons bonded to structure O. In general the proton is located at sites slightly displaced from ½½ of the unit cell, although some samples show evidence of additional protons at tetrahedral interstitial sites. H contents of rutile range up to 0.8 wt% H₂O, the highest concentrations occurring in mantle-derived Nb- and Cr-rich rutile of metasomatic origin. The role of H in rutile was examined, particularly with respect to its relations to other impurities. Protons are present in the rutile structure to compensate for trivalent substitutional cations (Cr, Fe, V, Al), which are only partly compensated by pentavalent ions (Nb, Ta). The possibility of using the H content of rutile as a geohygrometer is illustrated for the case of coexisting hematite and rutile.

INTRODUCTION

Rutile is known to have a great affinity for H, and therefore presents a unique opportunity for a case study of H incorporation mechanisms in nominally anhydrous minerals. Because of its industrial importance, there has been much effort directed toward understanding the defect chemistry of rutile, motivated by its special dielectric and optical properties, which have found use in numerous applications. The existence of structurally bound OH in rutile was first recognized by Soffer (1961). Since then several studies bearing on H in rutile and its effect on electrical and optical properties of synthetic as well as natural rutile have appeared (vide infra). Because the structural site and speciation of H in synthetic rutile is rather well constrained, a thermodynamic treatment of H in rutile is feasible, provided realistic reactions for H incorporation can be inferred from compositional relations among the various minor components present. In this study, we analyzed rutile in xenoliths from the upper mantle, carbonatite, kyanite quartzite (kyanite + rutile + lazulite association), and other geological environments and infer from the compositional systematics in natural rutile, in light of previous studies of its defect chemistry, the controls of H incorporation in rutile.

Previous work on structural OH in rutile

Soffer (1961) assigned a narrow double band near 3300 cm⁻¹ in the infrared spectrum of pure Verneuil-grown crystals to an OH stretch mode. The study by von Hippel et al. (1962) suggested that there were two interstitial proton positions between O₅ and O₆, each with a fourfold degeneracy (Fig. 1). This was reinterpreted by Johnson et al. (1968), considering the dichroicity of the OH absorption, which constrained the OH dipole axis to be in the basal (001) plane of the rutile structure. Johnson et al. (1968) considered the two possible sites that satisfied this requirement, ½½ and ½00 (Fig. 1) and concluded that the ½00 site was energetically more favorable. The observed satellite peaks were reinterpreted as impurity-associated (Al, Ga, Ni, Mg) OH groups, suggesting that H plays a role as a charge compensator in trivalent cation doped rutile, in support of the suggestion of Hill (1968). Furthermore, Ohlsen and Shen (1974) and Andersson et al. (1973, 1974) found evidence from electron spin resonance and infrared spectra of Fe-doped rutile for Fe³⁺-OH defect association, consistent with Fe³⁺ at the ½½½ Ti⁴⁺ site and the proton near the ½00 interstitial site. Johnson et al. (1968) were not able to resolve impurity-associated OH peaks in the infrared spectra of rutiles doped with Fe, Cr, and V and concluded that either there was no association of OH groups with these cations or the resultant shifts in the OH stretch band were too small to be detected.

Beran and Zemann (1971) reported the occurrence of a sharp absorption band at 3270 cm⁻¹ due to OH groups in two rutile crystals. In a recent study, Hammer and
Beran (1991) presented IR spectra of rutile from pegmatitic veins in mafic intrusives, fissures in low- to medium-grade metamorphic terrains, as well as high-pressure environments (eclogite and blueschist). This study established the widespread occurrence of OH in rutile of crustal origin. The rutile samples all exhibit a sharp band at 3280 cm\(^{-1}\), and some show additional peaks at 3320 or 3360 cm\(^{-1}\). The OH contents of the samples, determined from calibrated spectra, ranged from 0.04 to 0.2 wt\% H\(_2\)O. The concentration of OH groups was found to be correlated with minor component concentration, and there was some indication that the environment of formation played a role in determining OH content.

Rossman and Smyth (1990) presented infrared spectra of Nb- and Cr-rich rutile from mantle eclogite xenoliths with surprisingly intense absorption peaks at 3300 and 3320 cm\(^{-1}\), interpreted as being due to an elevated content of structural OH. A neutron diffraction study of a rutile crystal from the same sample (Swope et al., 1992) contributed the first direct evidence for the location of H in rutile. In contrast to the earlier studies of synthetic rutile, it was found that the H position was much closer to \(\frac{1}{2}\) than to \(\frac{1}{2}\). Because of its implications, the discovery of elevated OH content in mantle rutile prompted the present study to examine additional mantle rutile from other associations in order to determine whether mantle rutile crystals are typically hydrous.

The eclogitic rutile studied by Rossman and Smyth (1990) contains an order of magnitude more OH (\(~0.7\) wt\% H\(_2\)O) than the eclogitic rutile of Hammer and Beran (1991) (0.08 wt\% H\(_2\)O), suggesting that rutile from the two eclogite samples (1) equilibrated in significantly different physiochemical environments (e.g., H\(_2\)O activity, pressure, or temperature), (2) did not record equilibrium, or (3) equilibrated under similar conditions, but different amounts of OH were incorporated due to different minor element concentrations. The first possibility is likely, given that the xenoliths in the Roberts Victor kimberlite were entrained from the upper mantle, whereas the Dora Maira eclogites were formed at shallower depths. The second possibility is not as likely, since H readily diffuses through the rutile structure (Johnson et al., 1975). The third possibility is given credence by the fact that the less impure crystal had the lower OH content. It thus appears that a combination of physicochemical environmental conditions and the availability of substitutional cations must be responsible for variations in the OH content of natural rutile.

Materials and Methods

Polarized infrared absorption spectra and chemical compositions of both natural and synthetic single crystals of rutile were measured. The natural samples include rutile from a variety of geological settings: chlorite schist, kyanite quartzite deposits (aluminum silicate + rutile + lazulite association), hydrothermal vein, carbonatite, and kimberlite-hosted rutile-silicate and rutile-ilmenite nodules of upper mantle origin (Table 1). The synthetic samples consist of nominally pure and impurity-doped (Fe or Al) crystals.

The larger crystals were cut and polished into plates 0.03–1 mm thick oriented such that they contained the c axis parallel to the polished surfaces. The finer grained samples (aggregates of grains <1 mm in greatest dimension) were mounted on glass slides with thermoplastic cement prior to polishing the second side, and crystals of suitable orientation were subsequently located with a polarizing microscope.

Polarized infrared absorption spectra were obtained with a Nicolet 60SX Fourier-transform spectrophotometer using a LiIO\(_3\) polarizer. Spectra were measured on regions of the samples that were free of fractures, inclu-
sions, and other visible defects through pinhole apertures between 100 and 1000 \(\mu \)m in diameter. For mounted samples, the spectra were corrected for the effects of the glass slide and mounting medium by subtraction. Sample thicknesses in the region where the infrared spectra were taken were measured with a digital micrometer to \(\pm 1 \) \(\mu \)m.

Selected samples were reacted with \(\text{D}_2\text{O} \) in a Teflon-lined pressure vessel (190 °C and saturated vapor pressure) or sealed in an Au capsule and placed in a rapid-quench cold-seal vessel (500 °C and 100 MPa) for 24 h. IR spectra were measured before and after deuteration to confirm that the peaks observed in unreacted samples were all due to OH vibrations.

Quantitative chemical analyses of the rutile samples were carried out with a Jeol 733 electron microprobe (15-kV accelerating voltage, 15-nA Faraday cup current) and on-line automated correction procedures. Prior to microprobe analysis the samples were screened on an X-ray guide in the selection of elements to be quantitatively analyzed.

RESULTS

IR spectroscopy

The polarized spectra confirm that the absorption features in the infrared region are intense and strongly pleochroic, the greatest absorption occurring when the electric vector (E) of the source radiation is polarized perpendicular to the crystallographic c axis of the sample.

The substitution of H by D in an OH harmonic oscillator results in the appearance of new absorption bands at \(v_{\text{D}} = v_{\text{OH}}/1.374 \). As expected, new peaks in the IR spectra of partially deuterated samples appeared at \(v_{\text{D}} \approx v_{\text{OH}}/1.35 \), confirming that all the features in the 3300-cm\(^{-1}\) region are due to OH.

The positions and relative intensities of the absorption bands in the region of 4000–2000 cm\(^{-1}\) are given in **Table 2**, and representative spectra are shown in Figure 2. The pure and Al-doped synthetic samples show a main peak at 3278 cm\(^{-1}\) and a satellite peak at 3324 cm\(^{-1}\). After annealing at 1450 °C in air for 60 h, the Al-doped crystal showed an overall increase in absorbance, and the relative intensity of the satellite peak doubled. The Fe-doped crystal shows only the main band at 3278 cm\(^{-1}\) (Fig. 2a).

The IR absorption spectra of natural rutile crystals are broadly similar to those of the synthetic crystals, although satellite peaks are generally not resolved in spectra of natural rutile. The spectra typically show a single intense but broader band, with the peak at 3290 cm\(^{-1}\). In two samples from Graves Mountain (R-1 and R-2), in addition to the peak at 3290 cm\(^{-1}\), another broad peak at 3365 cm\(^{-1}\), of subordinate intensity, was observed. Polarized spectra reveal that, in contrast to the dipole giving rise to the 3290-cm\(^{-1}\) peak, the orientation of the dipole causing this absorption is not confined to the basal plane (Fig. 2b).

The sample with the most intense absorption in the 3300-cm\(^{-1}\) region is JAG83-30, Nb- and Cr-rich rutile from a rutile-dominated xenolith from the Jagersfontein kyanite, South Africa.

Calculation of H concentration in rutile

Calibrations of the infrared absorption intensity of the OH groups for estimating the H content in rutile have been presented by Johnson et al. (1973) and Hammer and Beran (1991). Johnson et al. (1973) determined a value of \(v_{\text{OH}} = 15100 \pm 500 \) L/(mol·cm\(^{-2}\)) from D-H exchange experiments on synthetic rutile. Hammer and Beran

Table 1. Rutile samples studied

<table>
<thead>
<tr>
<th>Sample</th>
<th>Locality</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>Graves, GA</td>
<td>kyanite + rutile +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lazurite</td>
</tr>
<tr>
<td>R-2</td>
<td>Graves, GA</td>
<td>kyanite + rutile +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lazurite</td>
</tr>
<tr>
<td>R-4</td>
<td>Magnet Cove, AR</td>
<td>carnotaitine</td>
</tr>
<tr>
<td>R-5</td>
<td>Polk County, TN</td>
<td>isolated crystal</td>
</tr>
<tr>
<td>R-6</td>
<td>PA-MD border</td>
<td>magnetite + apatite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ chloride schist</td>
</tr>
<tr>
<td>R-7</td>
<td>Nambia, VT</td>
<td>hydrothermal vein</td>
</tr>
<tr>
<td>R-8</td>
<td>Pomfret, VT</td>
<td>hydrothermal vein</td>
</tr>
<tr>
<td>JAG83-30</td>
<td>Jagersfontein, South</td>
<td>kimberlite-hosted rutile</td>
</tr>
<tr>
<td>JAG85-2</td>
<td>Jagersfontein, South</td>
<td>ilmenite xenolith</td>
</tr>
</tbody>
</table>

Table 2. IR absorption in rutile in the 3300-cm\(^{-1}\) region

<table>
<thead>
<tr>
<th>Sample</th>
<th>(v_{\text{OH}}) (cm(^{-1}))</th>
<th>(\text{H}_2\text{O}) (wt%)</th>
<th>H (pfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>3290 32.9</td>
<td>4435.0 0.29 0.026</td>
<td></td>
</tr>
<tr>
<td>R-2</td>
<td>3365 22.9</td>
<td>4756.0 0.31 0.027</td>
<td></td>
</tr>
<tr>
<td>R-4</td>
<td>3290 27.6</td>
<td>4826.0 0.28 0.025</td>
<td></td>
</tr>
<tr>
<td>R-5</td>
<td>3365 24.0</td>
<td>7500.0 0.12 0.011</td>
<td></td>
</tr>
<tr>
<td>R-6</td>
<td>3365 24.0</td>
<td>1476.0 0.10 0.0085</td>
<td></td>
</tr>
<tr>
<td>R-7</td>
<td>3290 10.6</td>
<td>1841.0 0.12 0.011</td>
<td></td>
</tr>
<tr>
<td>R-8</td>
<td>3365 24.0</td>
<td>4760.0 0.31 0.027</td>
<td></td>
</tr>
<tr>
<td>JAG83-30</td>
<td>3290 133.3</td>
<td>8360.0 0.54 0.048</td>
<td></td>
</tr>
<tr>
<td>JAG83-30</td>
<td>3290 156.3</td>
<td>9233.0 0.60 0.053</td>
<td></td>
</tr>
<tr>
<td>JAG83-30</td>
<td>3290 185.3</td>
<td>12280.0 0.80 0.071</td>
<td></td>
</tr>
<tr>
<td>JAG85-2</td>
<td>3290 61.3</td>
<td>3844.0 0.25 0.022</td>
<td></td>
</tr>
</tbody>
</table>

Natural

- Absorption intensity per centimeter for indicated polarization.
- The (001) section.
(1991) determined $\varepsilon_{\text{OH}} = 3270 \, \text{L/(mol cm$^{-2}$)}$ for a natural rutile sample with 0.09 wt% H$_2$O as measured by coulometry. OH concentrations calculated with this value of ε_{OH} have an uncertainty of $\pm 20\%$.

The large disparity in the two values of ε_{OH} is unexplained. Although both experiments appear to have been carried out with care, we chose to use the molar absorption coefficient of Hammer and Beran (1991) because it was based on a natural sample with an OH absorbance similar to those reported here, and furthermore was based on the actual amount of H$_2$O released from the rutile on thermal decomposition, and is more in keeping with ε_{OH} values recently determined for other minerals (Rossman, 1987). The calculated OH contents of the rutile samples are given in Table 2.

The OH contents of the Nb- and Cr-rich mantle rutile samples are the highest and confirm the finding of similarly high OH content in rutile from a mantle eclogite xenolith (Rossman and Smyth, 1990).

Minor components in rutile

The compositions of the rutile samples studied are summarized in Table 3. Natural rutile invariably contains minor components. Minor substitutions in rutile are usually dominated by Fe and V, although Nb, Ta, and Cr may be found in high concentrations (Deer et al., 1962; Putnis and Wilson, 1978; Rumble, 1976; Waychunas, 1991). Rutile samples from xenoliths whose assemblages are believed to record metasomatic processes in the mantle are characterized by higher total impurity concentrations, dominated by Cr and Nb, with distinctly higher concentrations of Zr (Jones et al., 1982; Haggerty, 1983, 1987, 1991; Tollo and Haggerty, 1987).

Discussion of results

H speciation and location in rutile

The polarization of the OH vibration precludes the existence of fluid inclusion or interstitial H$_2$O in any of our samples. H in rutile therefore is present either as protons bound to structure O or interstitial OH$^-$. Because the O atoms of rutile are hexagonal closest-packed, the incorporation of interstitial anions is not considered likely; thus the dominant species must be protons bonded to structure oxide ions. The fundamental OH vibrational band in rutile is shifted to lower wavenumbers relative
et al. (1968) pointed out, either there is no association associated peak in Fe-doped rutile (Fig. 2a). As Johnson resolved.

between Fe and H or the resulting shift is too small to be confirmed by the study of Swope et al. (1992). This suggests that the $t/zr/zO$ site (Fig. 1b) is the more likely location for H, and this was confirmed by the study of Swope et al. (1992).

The Al-associated OH peak is present in both the pure and Al-doped synthetic crystals, but there is no impurity-associated peak in Fe-doped rutile (Fig. 2a). As Johnson et al. (1968) pointed out, either there is no association between Fe and H or the resulting shift is too small to be resolved.

Hammer and Beran (1991) regarded the presence of the satellite peak as an indication of formation at high temperature, since it was observed in rutile from mafic pegmatites (3360 cm$^{-1}$), as well as from eclogite and blueschist (3320 cm$^{-1}$), and was also observed by Rossman and Smyth (1990) in mantle eclogites. In light of the foregoing discussion, this interpretation is not necessarily correct. The peak at 3320 cm$^{-1}$ is ascribed to Al-associated OH groups, and this conclusion is supported by the relatively high concentration of Al,O, in the Dora Maira eclogitic rutile (0.21 wt%) of Hammer and Beran (1991) and the eclogite xenolith rutile (0.68 wt%) of Rossman and Smyth (1990). The satellite peak at 3360 cm$^{-1}$ found in rutile from mafic pegmatites is also likely to be due to minor element-associated OH, possibly with Mg for which $\nu_{OH} = 3350$ cm$^{-1}$ in synthetic rutile (Johnson et al., 1968). Unfortunately this cannot be confirmed because Mg concentrations were not reported in Hammer and Beran's (1991) study.

The satellite peak at 3360 cm$^{-1}$ in the spectra of R-1 and R-2 (Fig. 2b) is not likely to be due to Mg-associated OH, as the Mg content of these samples is too low (Table 3). The polarization dependence of the absorption bands, however, suggest that part of the H in this sample may be located at the $z/\alpha/O$ site, which is a distorted tetrahedral site in the channels of the rutile structure (Johnson et al., 1968). This is to our knowledge the first report of OH vibrations not in the (001) plane of rutile and may reflect specific physicochemical conditions encountered in the formation of the aluminum silicate + rutile + lazulite association (Geijer, 1963).

In attempting to understand the crystal chemistry of H in rutile, important constraints are placed on possible H incorporation reactions by the requirement of electroneutrality. Point defects that may be compensated by interstitial protons include Ti vacancies and trivalent or divalent cation substitution. On the other hand, there may also be defects that compete with interstitial H in charge compensation. These include pentavalent cation substitutions, interstitial cations, including Ti$^{4+}$, and anion vacancies. For the purposes of the present discussion, we will not consider intrinsic defects in assessing charge-coupled compensation mechanisms of H incorporation be-

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>Mg</th>
<th>Al</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Fe</th>
<th>Zr</th>
<th>Nb</th>
<th>Ta</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>3</td>
<td>—</td>
<td>0.9873</td>
<td>0.0049</td>
<td>0.0110</td>
<td>0.0100</td>
<td>—</td>
<td>—</td>
<td>0.0004</td>
<td>—</td>
<td>1.0136</td>
</tr>
<tr>
<td>R-2</td>
<td>3</td>
<td>—</td>
<td>0.9893</td>
<td>0.0049</td>
<td>0.0004</td>
<td>0.0088</td>
<td>—</td>
<td>—</td>
<td>0.0005</td>
<td>—</td>
<td>1.0030</td>
</tr>
<tr>
<td>R-3</td>
<td>3</td>
<td>0.0002</td>
<td>0.9773</td>
<td>0.0017</td>
<td>—</td>
<td>0.0087</td>
<td>—</td>
<td>0.0110</td>
<td>0.9991</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R-4</td>
<td>3</td>
<td>0.0002</td>
<td>0.9873</td>
<td>0.0002</td>
<td>—</td>
<td>—</td>
<td>0.0018</td>
<td>0.0041</td>
<td>0.0135</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R-5</td>
<td>3</td>
<td>0.0003</td>
<td>0.9853</td>
<td>0.0036</td>
<td>0.0004</td>
<td>0.0107</td>
<td>—</td>
<td>0.0025</td>
<td>0.0128</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R-6</td>
<td>3</td>
<td>—</td>
<td>0.9808</td>
<td>0.0008</td>
<td>—</td>
<td>0.0085</td>
<td>—</td>
<td>0.0008</td>
<td>0.0010</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R-7</td>
<td>3</td>
<td>0.0002</td>
<td>0.9813</td>
<td>0.0023</td>
<td>0.0030</td>
<td>0.0157</td>
<td>—</td>
<td>0.0022</td>
<td>0.0046</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R-8</td>
<td>3</td>
<td>—</td>
<td>0.9930</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0003</td>
<td>—</td>
<td>0.0004</td>
<td>0.0021</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>JAG83-30-1</td>
<td>1</td>
<td>0.0024</td>
<td>0.0008</td>
<td>0.9110</td>
<td>0.0020</td>
<td>0.0669</td>
<td>0.0046</td>
<td>0.0043</td>
<td>0.0200</td>
<td>0.0021</td>
<td>1.0140</td>
</tr>
<tr>
<td>JAG83-30-2</td>
<td>1</td>
<td>0.0012</td>
<td>0.9170</td>
<td>0.0022</td>
<td>0.0623</td>
<td>0.0018</td>
<td>0.0042</td>
<td>0.0020</td>
<td>0.0019</td>
<td>0.1009</td>
<td></td>
</tr>
<tr>
<td>JAG83-30-3</td>
<td>1</td>
<td>0.0022</td>
<td>0.0036</td>
<td>0.8630</td>
<td>0.0021</td>
<td>0.0242</td>
<td>0.0148</td>
<td>0.0044</td>
<td>0.0194</td>
<td>0.0021</td>
<td>1.0240</td>
</tr>
<tr>
<td>JAG85-2</td>
<td>4</td>
<td>0.0012</td>
<td>0.0008</td>
<td>0.9155</td>
<td>0.0022</td>
<td>0.0572</td>
<td>0.0116</td>
<td>0.0040</td>
<td>0.0195</td>
<td>0.0010</td>
<td>1.0130</td>
</tr>
</tbody>
</table>

Note: compositions calculated from electron microprobe analyses; — below detection limit; Na, Ca, Mn, and Si were also analyzed for but not detected. Second rows indicate standard deviation for replicate analyses of the same crystal.

to the isolated OH$^-$ stretch (~3735 cm$^{-1}$), due to H bonding, and the shift corresponds to an OH⋯O distance of ~0.28 nm (Nakamoto et al., 1955). The constraint placed on the OH dipole orientation by the polarized spectra limits the possible location of H to only two nonequivalent sites, $t/zr/zO$ and, $y00$. The O-O distances across these sites are 0.2533 and 0.3328 nm, respectively. There are also points in the orientation by the polarized spectra limits the possible location of H to only two nonequivalent sites, $t/zr/zO$ and, $y00$. The O-O distances across these sites are 0.2533 and 0.3328 nm, respectively. There are also points in the orientation by the polarized spectra limits the possible location of H to only two nonequivalent sites, $t/zr/zO$ and, $y00$. The O-O distances across these sites are 0.2533 and 0.3328 nm, respectively.
cause the minor component concentrations in natural rutile are much higher than intrinsic point defect (i.e., Ti and/or O vacancy, Ti interstitial) concentrations.

Oxidation states and sites occupied by minor components in rutile

In deducing plausible reactions for H incorporation based on the electroneutrality condition, constraints regarding the valence states and sites occupied by minor components in rutile are required.

Al. Stebbins et al. (1989), in an \(^{27}\)Al NMR study of Al-doped rutile, concluded that only substitutional \(\text{Al}^{3+}\) was present. Infrared spectra and electron microprobe analysis of a slice from the same boule of Al-doped rutile used by Stebbins et al. (Al-doped, their Table 5) indicates that OH groups compensate the substitutional Al ions.

V. ESR signals of synthetic V-doped rutile have been interpreted as being due to substitutional \(\text{V}^{4+}\) (Gerritsen and Lewis, 1960) as well as interstitial \(\text{V}^{4+}\) (Kubec and \Śróbek, 1972), depending on the quenching conditions. Although \(\text{V}^{4+}\) possesses two unpaired electrons, it is usually difficult to detect by ESR. Therefore, the absence of a \(\text{V}^{4+}\) ESR signal does not necessarily imply the absence of this cation. H insertion compounds of VO, (rutile structure), with the general stoichiometry \(\text{H}_x\text{VO}_y\), have recently been synthesized by Chippindale et al. (1991). For compounds with \(x < 0.08\), no change in XRD-based structure is observed, implying partial reduction of \(\text{V}^{4+}\) to \(\text{V}^{3+}\), concomitant with H insertion. Furthermore, Chavenas et al. (1973) have synthesized VOOOH in an orthorhombic modification of the rutile structure, with H ions at displaced \(\frac{1}{2}\)00 sites of the unit cell. V in rutile-type structures may therefore occur in the trivalent or tetravalent state.

Cr. Gerritsen et al. (1959, 1960) attributed the ESR spectrum of Cr-doped rutile to substitutional \(\text{Cr}^{3+}\) ions. Ishida et al. (1990) combined ESCA, ESR, and diffuse reflectance spectroscopies to study the oxidation states of Cr in rutile and found predominantly \(\text{Cr}^{3+}\), as well as minor \(\text{Cr}^{2+}\), incorporated in the structure, the latter only at higher Cr concentrations. Chavenas et al. (1973), in addition to VOOOH, synthesized CrOOOH with the modified rutile structure. In light of these studies, the trivalent substituting cation is expected to be the dominant form of Cr in natural rutile.

Fe. There are numerous studies dealing with the oxidation state of Fe in synthetic rutile. As with the VOOOH and CrOOOH, Chavenas et al. (1973) synthesized FeOOOH in the modified rutile structure. ESR (Carter and Okaya, 1960; Andersson et al., 1973; Ohsien and Shen, 1974) and Mössbauer (Nicholson and Burns, 1963; Alam et al., 1966; Stampfl et al., 1973; Sandin et al., 1976; Yamarkin et al., 1978) spectra of synthetic Fe-doped rutile consistently indicate that the dopant is predominantly \(\text{Fe}^{3+}\) and occupies normal Ti sites. In contrast, wet chemical analyses of Fe-bearing rutile reported by Henriques (1963) indicate that \(\text{Fe}^{2+}\) predominates in some natural samples.

UV-visible spectra of the samples in Table 1 show no evidence of \(\text{Fe}^{2+}\). Preliminary X-ray absorption studies of samples R-1 and R-7 indicate that Fe in these samples is predominantly trivalent, but in JAG85-2, near-edge features indicate both trivalent and divalent Fe (Waychunas, personal communication).

\(\text{Nb}\) and \(\text{Ta}\). Khodos et al. (1988) synthesized rutile solid solutions at 1400 °C with up to 25 mol% \(\text{Nb}_2\text{O}_5\), but concluded on the basis of inversion voltammetric studies that above \(\sim 3\) mol% \(\text{Nb}_2\text{O}_5\) \(\text{Nb}^{5+}\) is partly reduced to \(\text{Nb}^{4+}\) and the more Nb-rich compositions should be regarded as \(\text{Nb}_2\text{O}_5\text{-TiO}_2\) solutions with the rutile structure. These results are in agreement with results from ESR studies (Chester, 1961) and recent X-ray absorption spectroscopic investigations of \(\text{Ti}_2\text{O}_5\)-\(\text{Nb}_2\text{O}_5\) solid solutions, which indicate that with decreasing mole fraction of \(\text{Nb}_2\text{O}_5\), the \(\text{Nb}^{5+}/\text{Nb}^{4+}\) ratio increases (Antonio et al., 1991). An EXAFS analysis carried out by the latter further indicates that the average Nb-O distance decreases approximately linearly with decreasing Nb concentration and suggests that an increasing fraction of Nb ions occupy tetrahedral interstitial sites with decreasing Nb/(Nb + Ti). The conclusion that may be drawn from studies concerning Nb coordination and oxidation state in rutile is that Nb predominantly occupies normal Ti sites, although it can be tetravalent or pentavalent. Because of a paucity of information about Ta in rutile, however, it is assumed that, like Nb, Ta\(^{4+}\) occupies substitutional sites.

Extent of substitution by minor components in rutile

The applicability of a charge compensation model in linking the H content of rutile to the thermodynamic conditions of H trapping requires that the minor components be in homogeneous solid solution in rutile and not in extended defects such as crystallographic shear (CS) structures or exsolved phases.

CS structures occur in synthetic reduced rutile \(\text{TiO}_2-x\) (Hyde, 1976, and references therein), rutile with high concentrations of trivalent impurities such as Fe, Cr, V, Ga, and in natural rutile (Banfield and Veblen, 1991). The normal rutile structure consists of strings of edge-shared \([\text{TiO}_6]\) octahedra (parallel to \(c\)) in two mutually perpendicular orientations and joined by corner sharing. Progressive reduction of \(\text{Ti}^{4+}\) or the introduction of trivalent impurities induces the formation of oriented planar defects with the hematite structure and results in a homologous series of related structures, termed Magnéli phases, \((\text{Ti,M})\text{O}_{2n-1}\), with \(n\) depending on the CS plane density.

Experimental phase equilibria at 0.1 MPa in the systems \(\text{AlO}_x\text{-TiO}_2\), \(\text{CrO}_y\text{-TiO}_2\), \(\text{VO}_z\text{-TiO}_2\), \(\text{NbO}_y\text{-TiO}_2\), \(\text{TaO}_z\text{-TiO}_2\), and \(\text{FeO}-\text{FeO}_x\text{-TiO}_2\) indicate that the compositions of our rutile samples are generally within the rutile single-phase field (Brach et al., 1977; Bursill and Jun, 1984; Khodos et al., 1988; MacChesney and Muan, 1959; Mertin et al., 1970; O’Keefe and Ribble, 1972; Roth and Coughanour, 1955; Slepetys and Vaughan, 1969; Taylor, 1964; Webster and Bright, 1961; Wittke, 1967;
Following the arguments and evidence presented in the preceding sections, it would seem reasonable to assign the minor components to substitutional sites, with oxidation states of 3+ for Cr, Fe, V, and Al, 2+ for Mg, and 5+ for Nb and Ta. Coupled substitutions of the type \(M^{3+} + M^{5+} - 2T^{4+} \) and \(M^{2+} + 2M^{3+} - 3T^{4+} \) are required to maintain electroneutrality. There is evidence for such charge-coupled substitution in rutile, and there are several Ti-free oxide end-members that have been synthesized or found in nature. In the absence of H interstitials, the charge balance in rutile is

\[
\left[[Cr^{3+}]_n + [Fe^{3+}]_n + [V^{3+}]_n + [Al^{3+}]_n + 2[Mg^{2+}]_n \right] = [Nb^{5+}]_n + [Ta^{5+}]_n
\]

where \([M]_n\) represents the mole fraction of M at Ti sites.

Figure 3 illustrates the covariation of minor element concentrations in natural rutile from a wide variety of environments, including samples analyzed in the present work and analyses found in the literature. There is generally an excess of trivalent impurities over pentavalent per formula unit, which is presumably compensated by H⁺ interstitials (Fig. 3). If this is the dominant incorporation mechanism for H in rutile, a one-to-one correlation between the calculated charge deficit per formula unit and the concentration of H per formula unit is expected:

\[
[H^+] = \Sigma[M^{3+}]_n + 2\Sigma[M^{2+}]_n - \Sigma[M^{5+}]_n
\]

Figure 4 supports this hypothesis, although there is considerable scatter in the correlation. The scatter may result partly from substitutional cations in multiple oxidation states (Fe, and possibly V, Nb). Calculation of a unique distribution of cation oxidation states is not possible, however, from the microprobe data alone. The effect of the assumed oxidation state of an impurity on the calculated charge deficit, however, is obvious. For example, if any Fe is present as Fe²⁺ or any Nb is tetravalent, then the charge deficit per formula unit will be underestimated by Equation 2. On the other hand, if any V is tetravalent, the charge deficit per formula unit will be overestimated. The result of assuming all Fe to be Fe³⁺ vs. Fe²⁺ is shown in Figure 4. It is interesting to note that for sample R-4 (Magnet Cove), the charge balance is satisfied only if all Fe is taken as divalent (Table 3). This is in agreement with wet chemical analyses of Magnet Cove rutile reported by Henriquez (1963).

Despite the scatter in Figure 4, an assessment of the validity of our choice of \(\epsilon \) in rutile can be made. The H contents calculated using \(\epsilon_{OH} \) of Johnson et al. (1973) would be approximately one-fifth of the values reported in Table 2. The H contents calculated with Hammer and
drous vapor phase. At 0.1 MPa the two phases coexist stably below \(\sim 585^\circ C \) and \(f_{O_2} \) at or above that defined by hematite-magnetite coexistence (Anovitz et al., 1985). At a given pressure, temperature, and \(f_{O_2} \), where the two phases are in equilibrium, a nonstoichiometric solid solution of the hematite component in rutile \((Fe_{2x}\text{Ti}_{1-2x})O_{2-x}\) will exist. The substitution of \(Ti^{4+} \) by \(Fe^{3+} \) requires compensation, in this case by an intrinsic point defect. Although the intrinsic point defect structure of rutile is by no means well understood, \(O \) vacancies are believed to predominate under relatively oxidizing conditions (Millot et al., 1987, and references therein), although local reconstruction of the structure in the vicinity of the anion vacancy may occur (Bursill and Blanchin, 1984). The solid solution of \(Fe_{2}O_{3} \) in rutile in the absence of \(H_2O \) may thus be described by

\[
Fe_{2}O_{3(hem)} \leftrightarrow 2Fe^{3+}_{\text{rut}} + 3O^{2-}_{\text{rut}} + V_{O}
\]

(a) Charge deficiency calculated assuming all Fe is Fe\(^{3+}\). (b) Charge deficiency calculated assuming all Fe is Fe\(^{2+}\). Within the range of uncertainty in oxidation state of Fe, most of the samples fall around a 1:1 relation between H content and calculated charge deficiency.

Beran’s (1991) \(\epsilon_{OH} \) are clearly in better accord with the expected correlation with minor elements.

Application of the H content in rutile as a geohygrometer

Because of its affinity for H incorporation, rutile may be of use as an indicator of the fugacity or activity of \(H_2O \) accompanying geologic processes. In principle, this requires the formulation of a thermodynamic model based on the relations found between H content and minor component concentrations, taking into account the various reactions and electroneutrality constraints. To make such a geohygrometer useful, experimental calibration of the effects of pressure, temperature, O-H species fugacity, and composition would then be necessary.

Consider a simple hypothetical situation, the coexistence of rutile with hematite, at equilibrium with a hy-

![Diagram of H content vs. calculated charge deficiency](image)

Fig. 4. H content vs. calculated charge deficiency. Symbols as in Fig. 3a. Solid line represents expected trend for 1:1 compensation of calculated charge deficiency by interstitial protons. (a) Charge deficiency calculated assuming all Fe is Fe\(^{3+}\). (b) Charge deficiency calculated assuming all Fe is Fe\(^{2+}\). Within the range of uncertainty in oxidation state of Fe, most of the samples fall around a 1:1 relation between H content and calculated charge deficiency.

Keeping in mind that \(X[HFeO_{2 rutil}] \) is equal to the H content per formula unit as determined from IR measurements, Equation 7 can be rearranged to give

\[
H \text{ (pfu)} = \frac{[K_a(P, T, f_{O_2}) \cdot f_{H_2O}]}{f_{H_2O}^{1/2}}.
\]

Therefore, the H content of rutile is proportional to the square root of \(f_{H_2O} \) in the vapor phase with which it is equilibrated. At high \(f_{H_2O} \), rutile may eventually reach
saturation with respect to the FeOOH component, thus reaching an upper limit to both the H and Fe concentrations in rutile.

Applicability of such a geohygrometer to real systems, however, is complicated, requiring a more elaborate treatment taking into account the various minor components. For a given rutile-bearing assemblage, \(f_{H_2O} \) could in principle be estimated if independent constraints on \(T, P, \) and \(f_o \), are available and the \(T, P, \) and composition dependence of \(K_i \) is known.

Potential problems in applying this geohygrometer to natural systems may arise in establishing whether the \(P \) and \(T \) determined by thermobarometry are the same as that under which rutile last equilibrated with a hydrous phase. In light of the fact that protons diffuse much faster through rutile than any of the minor cations present (Kingsbury et al., 1968; Hoshino et al., 1985; Sasaki et al., 1985), the H content will essentially be fixed below temperatures at which minor component diffusion becomes negligible. The temperatures at which H becomes fixed depend on the cation in question, but for most transition metals diffusion becomes insignificant below \(\sim 500 \) °C. Complications may also arise from postentrapment modification of the H content caused by reduction or oxidation of Fe, V, or Nb, but this problem may be overcome by examination of the compositional systematics in a suite of samples from the same occurrence.

Some qualitative conclusions can nevertheless be drawn from a comparison of H content and the calculated charge deficiency in specific samples. At relatively low values of \(f_{H_2O} \), intrinsic species are the dominant charge-compensating defects, and this should result in H contents that are less than those predicted by Equation 2. At relatively high values of \(f_{H_2O} \), the other hand, H contents should be closely predicted by Equation 2.

H in Nb- and Cr-rich rutile from upper mantle xenoliths

A rigorous thermodynamic treatment of H in rutile is beyond our present scope, particularly as regards the essentially unknown effects of pressure on H and minor element incorporation. The systematics among the upper mantle rutile values plotted in Figure 4 allow some inferences to be made. The H contents of JAG83-30 and the Roberts Victor eclogite rutile of Rossman and Smyth (1990) closely match the calculated charge deficiency per formula unit, whereas the H content of JAG85-2 is significantly less than required for charge balance. From the foregoing model of H incorporation in rutile, the limited data presented here strongly suggest the presence of a hydrous fluid phase and perhaps local variability in \(f_{H_2O} \) in the upper mantle during or after the formation of Nb- and Cr-rich rutile. This is consistent with and supports the interpretations of Haggerty (1987) for the origin of Nb- and Cr-rich rutile and other incompatible element enriched titanates in upper mantle xenoliths as the product of metasomatism by a fluid phase or melt rich in hydrous incompatible elements.

The storage of small amounts of H in the mantle in nominally anhydrous minerals was proposed by Martin and Donnay (1972), and our present state of knowledge is summarized by Bell and Rossman (1992). The relative importance of a given mineral as regards the H budget of the mantle will obviously depend on the amount of H that can be accommodated in the phase and its distribution and concentration in the mantle.

The H contents in mantle-derived rutile (Table 2) are among the highest reported for nominally anhydrous minerals (Rossman, 1987; Bell and Rossman, 1992). Rutile, although a common phase, is believed to be present in the mantle only at accessory levels (Haggerty, 1983, 1987, 1991; Tollo and Haggerty, 1987; Rossman and Smyth, 1990). Therefore, despite the fact that rutile has a very great affinity for H incorporation, it is not expected to be a significant mantle H2O reservoir, except possibly on a very small scale, in regions of rutile-dominated assemblages such as the rutile-ilmenite and rutile-silicate nodules reported from Jagersfontein, Orapa, and other localities (Ottenburgs and Fieremans, 1979; Haggerty, 1983, 1987; Tollo and Haggerty, 1987; Schulze, 1990).

The high H content of mantle-derived rutile may also have implications for mantle silicate mineral relations, on the grounds that stishovite, the SiO2 modification isomorphic with rutile, may occur in the mantle transition zone as the result of incongruent pressure-induced phase transformations of orthopyroxene to \(\beta \) spinel or \(\gamma \) spinel structures that require the stoichiometric release of SiO2 as stishovite (Fei et al., 1990; Gasparik, 1990).

Acknowledgments

We would like to extend our appreciation to Ulrich Klabunde (E.I. du Pont de Nemours and Company, Inc.) for providing the synthetic samples and stimulating discussions and to J.L. Rosenfeld for a natural sample (R-8). We also thank Jill Banfield (University of Wisconsin, Madison) for her interest in this study and for access to data prior to publication, Glenn Waychunas (Stanford University) for contributions from XAS that significantly constrained our interpretations, and David Bell for performing the microprobe analyses and discussions. Helpful comments were provided by Harry Green and Alison Pawley. The research was funded in part by NSF grants EAR-91-04059 to G.R.R. and EAR-91-16551 to S.E.H. Division contribution no. 5284.

References Cited

Baur, W.H. (1956) Über die Verfeinerung der Kristallstrukturbestimmung
Taylor, R.W. (1964) Phase equilibria in the system FeO-Fe₂O₃-TiO₂ at 1300°C. American Mineralogist, 49, 1016-1030.

MANUSCRIPT RECEIVED NOVEMBER 2, 1992
MANUSCRIPT ACCEPTED JULY 18, 1993