Dispersion $\rho < \nu$ strong; crossed dispersion likewise strong. The indices of refraction are approximately $\alpha = 1.625$, $\beta = 1.633$, $\gamma = 1.635$. Plates on edge show extinction inclined 4° to 9° to the trace of the cleavage. The thicker grains seen under the microscope are faintly colored and seem to show pleochroism in pale blue-green tints across the lamination and blue parallel to the elongation.

PROCEEDINGS OF SOCIETIES

NEW YORK MINERALOGICAL CLUB

Regular Monthly Meeting of March 12, 1924

A regular monthly meeting of the New York Mineralogical Club was held in the East Assembly Room of the American Museum of Natural History on the evening of Wednesday, March 12th, at 8:15 P.M. The President, Dr. George F. Kunz, presided and there was an attendance of 26 members.

The President read a letter from the secretary of the Museum of the City of New York asking for contributions of local minerals to be added to the Museum’s Collection. It was moved that the Club take action individually on this request and that donations of minerals be brought to the next meeting. The motion was carried.

The President then appointed a nominating committee consisting of Messrs. Manchester, Wintringham and Whitehouse to report at the next meeting on nominations for officers for the ensuing year. The recording secretary reported on behalf of the Gratacap Memorial Committee and read a tentative draft of the inscription for the tablet which was submitted to the members present for comment and discussion. On motion of Mr. Stanton, duly carried, the Gratacap Memorial Committee was requested: (1) to obtain information as to the size, position and character of the tablet; (2) that sketches be obtained and submitted for the joint approval of the Club and the Museum; and (3) that the club treasurer be authorized to solicit subscriptions toward defraying the cost of this memorial.

The President announced the death of Dr. Wallace Goold Levison, corresponding secretary and delegate to the council of the New York Academy from the Club, and read the following sketch of his life:

Dr. Wallace Goold Levison was born at his late residence, 1435 Pacific Street, Brooklyn, on the 27th of November, 1846. He graduated from the public schools of Brooklyn and from Cooper Union in 1865. He also obtained the degree of B.S. from Harvard in 1870. He was director of the Cooper Union Chemical Laboratories from 1871-1884; and a fellow and life member of the New York Academy of Sciences. He was one of the earliest members of the New York Mineralogical Club, and for years its secretary, 1903-1918, and corresponding secretary, 1918-1924. He was a member of the Brooklyn Institute and was connected with the Mineralogical section as long as that was in existence. He was a member of the Brooklyn Academy of Photography, and its President from 1887-1890.
After graduation he devoted his entire time to the study of chemical and
electric arc lamps, the patent for which he sold for $15,000. He was an expert in
photographing luminous objects, and was interested in the fluorescence and
phosphoresence of minerals. He undertook the classification of luminous
substances, and collected quite a mass of material, virtually enough to make a
volume, which was unfortunately never published. He prepared a paper on the
origin and sequence of the New Jersey traps. He was also chairman of the
committee for the standardization of trays for mineralogical specimens and
collections.

He constructed what is believed to be the first motion picture camera, and
aided in the invention of the portable camera. At the time he made his first
motion picture camera celluloid negatives had not been invented, but he
foresaw such a development and stipulated in his application for a patent that
such films could be used, if that type of negative were developed. He held
patents on many inventions, among them the spectropolariscope, which it was
claimed made possible the investigation of the mineral composition of planets
by means of polarized light. He was unusually orderly and systematic; he did
not believe it necessary to have all the apparatus about him, and kept them in a
dry cellar in boxes properly labeled, the only instrument at hand being the one
actually in use.

Dr. Levison had suffered from heart trouble for more than ten years, and
his death ultimately was caused by arterio-sclerosis. He never married and
lived at the home of his sister, Mrs. Josephine Grimwood and his brother
Chancellor Goold Levison. Funeral services were held on March 12th in St.
Bartholomew's Church.

Dr. Kunz spoke of the bibliography of Dr. Levison, which he had obtained
from Dr. Ralph W. Tower, librarian of the New York Academy of Sciences and
suggested that this bibliography be published by the Club. Motion by the recording
secretary to this effect was carried. A motion was then passed that the President
appoint a Committee to prepare a suitable resolution on the death of Dr. Levison.
Dr. Kunz appointed on this committee Messrs. Manchester, Ashby and Stanton.

The President then introduced Dr. T. A. Jaggar, Jr., Director of the Hawaiian
Volcano Observatory at Kilauea, who delivered an address on “Mineral Processes
on Hot Lava.” Dr. Jaggar spoke of the new science involving the processes taking
place in the earth and dwelt on the importance of such observations in the field
as are being conducted at the Kilauea Observatory. He discussed at length the
scoriaceous and fluid phases of lava and advanced some highly interesting and
suggestive theories regarding them. He compared, by means of lantern slides, some
typical volcanic mass formations with lunar landscapes and called attention to the
luster of certain lava masses on the moon's surface as suggesting the luster of the
scoriaceous phase of lava.

Throughout his address Dr. Jaggar used for illustration many beautifully
colored lantern slides of Hawaiian volcanic activity. In reply to questions he
explained the formation of Pele's hair and Pele's tears. A vote of thanks was
tendered to Dr. Jaggar for his most interesting and original address.

Mr. Manchester offered a correction to his statement made at a former meeting
that pyrope garnets of gem quality had been found at Bedford Quarries, West-
chester Co., N. Y. He stated that he had since discovered that the garnet material
which he had reported upon did not originate at this locality but had been brought
from elsewhere.

Herbert P. Whitlock, Recording Secretary.