Experimental Determination of Solubility Constant of Kurnakovite, MgB₃O₃(OH)₅•5H₂O Yongliang Xiong¹ Nuclear Waste Disposal Research & Analysis Sandia National Laboratories 1515 Eubank Boulevard SE, Albuquerque, NM 87123, USA

¹ Corresponding author, e-mail: yxiong@sandia.gov.

10	
11	ABSTRACT
12	In this study, I present experimental results on the equilibrium between boracite
13	[Mg ₃ B ₇ O ₁₃ Cl(cr)] and kurnakovite [chemical formula, Mg ₂ B ₆ O ₁₁ •15H ₂ O(cr); structural
14	formula, MgB ₃ O ₃ (OH) ₅ •5H ₂ O(cr);] at $22.5 \pm 0.5^{\circ}$ C from a long-term experiment up to
15	1,629 days, approaching equilibrium from the direction of supersaturation,
16	
17	$Mg_{3}B_{7}O_{13}Cl(cr) + H^{+} + 2B(OH)_{4}^{-} + 18H_{2}O(l) = 3MgB_{3}O_{3}(OH)_{5} \cdot 5H_{2}O(cr) + Cl^{-}$
18	
19	Based on solubility measurements, the 10-based logarithm of the equilibrium constant for
20	the above reaction at 25°C is determined to be 12.83 ± 0.08 (2 σ).
21	Based on the equilibrium constant for dissolution of boracite,
22	
23	$Mg_{3}B_{7}O_{13}Cl(cr) + 15H_{2}O(l) = 3Mg^{2+} + 7B(OH)_{4}^{-} + Cl^{-} + 2H^{+}$
24	
25	at 25°C measured previously (Xiong et al., 2018) and that for the reaction between
26	boracite and kurnakovite determined here, the equilibrium constant for dissolution of
27	kurnakovite,
28	
29	$MgB_3O_3(OH)_5 \cdot 5H_2O(cr) = Mg^{2+} + 3B(OH)_4^- + H^+ + H_2O(1)$
30	
31	is derived as $-14.11 \pm 0.40 \ (2\sigma)$.

32	Using the equilibrium constant for dissolution of kurnakovite obtained in this
33	study and the experimental enthalpy of formation for kurnakovite from the literature, a
34	set of thermodynamic properties for kurnakovite at 25°C and 1 bar is recommended as
35	follows: $\Delta H_f^0 = -4813.24 \pm 4.92 \text{ kJ-mol}^{-1}$, $\Delta G_f^0 = -4232.0 \pm 2.3 \text{ kJ-mol}^{-1}$, and $S^0 =$
36	$414.3 \pm 0.9 \text{ J-mol}^{-1} \cdot \text{K}^{-1}$. Among them, the Gibbs energy of formation is based on the
37	equilibrium constant for kurnakovite determined in this study; the enthalpy of formation
38	is from the literature, and the standard entropy is calculated internally with the Gibbs-
39	Helmholtz equation in this work. The thermodynamic properties of kurnakovite
40	estimated using the group contribution method for borate minerals based on the sum of
41	contributions from the cations, the borate polyanions, and the structural water to the
42	thermodynamic properties from the literature, are consistent, within its uncertainty, with
43	the values listed above.
44	Since kurnakovite usually forms in salt lakes rich in sulfate, studying the
45	interactions of borate with sulfate is important to modeling kurnakovite in salt lakes. For
46	this purpose, I have re-calibrated our previous model (Xiong et al., 2013) describing the
47	interactions of borate with sulfate based on the new solubility data for borate in Na_2SO_4
48	solutions presented here.
49	
50	INTRODUCTION

51 Kurnakovite, which has a structural formula of MgB₃O₃(OH)₅•5H₂O(cr)("cr" 52 refers to "crystalline", thereafter), is a magnesium borate mineral of triclinic symmetry 53 in the space group of $P\bar{1}$. In kurnakovite, there are the following structural units:

54 triangularly-coordinated [BO₂(OH)]-groups, tetrahedrally-coordinated [BO₂(OH)₂]-

55	groups, and $Mg(OH)_2(H_2O)_4$ octahedra, connected into neutral $Mg(H_2O)_4B_3O_3(OH)_5$
56	units forming chains along the [001] direction (Gatta et al., 2019). The mineral that has
57	the same chemical composition but is of monoclinic symmetry is called inderite.
58	Kurnakovite was discovered by Godlevsky (1940) in the borate deposits of west
59	Kazakhstan. Rumanova and Ashirov (1964) determined its densities and refractive
60	indices. Then, Yeh (1965) did some crystal structure determinations for kurnakovite.
61	Razmanova et al. (1970) solved its structure, and Corazza (1974) made a refinement for
62	the structure. Zhou et al. (2012a) refined the hydrogen positions using nuclear magnetic
63	resonance (NMR). Most recently, Gatta et al. (2019) studied the crystal structure and
64	chemistry of a natural kurnakovite from Kramer Deposit, California, using single-crystal
65	neutron diffraction. Kurnakovite was synthesized by Spiryagina (1949) and Yuan et al.
66	(1983). Heinrich (1946) also synthesized kurnakovite, corresponding to the occurrence
67	in USA, but it seems that he mislabeled it as inderite, as Frondel et al. (1956) did
68	(Schaller and Mrose, 1960) (see below).
69	The currently available thermodynamic properties of kurnakovite are inconsistent.
70	Li et al. (1997) measured its enthalpy of formation, and Li et al. (2000) estimated its
71	Gibbs energy of formation as -4249.79 kJ•mol ⁻¹ . By contrast, Anovitz and Hemingway
72	(2002) estimated its Gibbs energy of formation as -4272 kJ·mol ⁻¹ , differing the estimated
73	value from Li et al. (2000) by ~23 kJ·mol ⁻¹ . Therefore, its Gibbs free energy of
74	formation is not well known, leading to the inexact knowledge of its solubility constant.
75	In this work, the solubility constant of kurnakovite is determined to provide a set of its
76	thermodynamic properties.

77	Given the occurrence of kurnakovite in sulfate-enriched salt lakes in nature,
78	Xiong et al. (2013) developed a model to describe the interactions between sulfate and
79	borate based on literature data on the solubility of sodium tetraborate (borax) in Na_2SO_4
80	solutions without any pH measurements. In the present work, the previous model has
81	been recalibrated to describe the important interactions between sulfate and borate for
82	modeling the formation of kurnakovite in sulfate-enriched salt lakes in nature, based on
83	our own borax solubility data together with pH measurements in Na ₂ SO ₄ solutions up to
84	$1.8 \text{ mol} \cdot \text{kg}^{-1}$.
85	
86	OCCURRENCE OF KURNAKOVITE
87	Kurnakovite has been reported from about 12 localities worldwide, including the
88	type locality in the gypsum cap of the Inder salt dome, Kazakhstan. In USA, it is present
89	in the Jennifer Mine of the Kramer borate deposit, Kern County (Frondel et al., 1956;
90	Schaller and Mrose, 1960; Pemberton, 1983) (however, Frondel et al. mislabeled
91	kurnakovite as inderite, according to Schaller and Mrose, 1960 and Baysal, 1973), and in
92	the Furnace Creek district, Inyo County (Erd et al., 1970), California. In Turkey, it is
93	present in the Kirka borate deposit (Baysal, 1973; Inan et al., 1973; Helvaci, 1978). In
94	China, it occurs in Da Qaidam Lake and Xiao Qaidam Lake (Qian and Xuan, 1985;
95	Zheng et al., 2005; Li et al., 2012; Li et al., 2013), the Yashatu deposit (Jiang et al.,
96	1996), Qinghai Province; in Zhacang Chaka Salt Lake (Zheng and Liu, 1982; Yang and
97	Zheng, 1985), Nie'er Cuo Salt Lake (Yang and Zheng, 1985; Liu and Zheng, 2010),
98	Chala Ka Salt Lake (Yang and Zheng, 1985), Qag Caca Salt Lake (Yang, 1991), and Jibu

00	$O_{1} T_{1} T_{1$	2004) X ²	$(\mathbf{T}^{1}) \wedge \mathbf{A}$	р '	т л /	•,
yy	Nait Lake LL1 et al	/////// X179	ησιιηρετή Διμτοή	n_{0}	In $\Delta roenting$	IT OCCUIPS
	Dan Lake (Li Ci ai	$\dots \Delta U U T I, M Z a$		iomous Region.	III / II ZUIIIIIIa	. It occurs

- 100 in the Tincalayu borax mine, Salta (Hurlbut and Erd, 1974).
- 101 At several of these localities, kurnakovite commonly forms in current salt lakes
- 102 that are rich in sulfate (Sun et al., 1984; Yang, 1989; Yuan et al., 1993; Liu et al., 2003;
- 103 Zheng and Liu, 2009), and formed in ancient or extinct salt lakes that were also rich in
- 104 sulfate such as those Neogene salt lakes in the western Turkey (Kistler and Helvacı,
- 105 1994) and those Miocene-Pliocene salt lakes in the Death Valley, California, USA (Erd et
- al., 1970; Tanner, 2002), as evidenced by the occurrence of both kurnakovite and gypsum
- 107 in those Neogene and Miocene-Pliocene deposits such as the Kirka borate deposit
- 108 (Helvaci et al, 1993) and the borate deposits in the Furnace Creek Formation in the Death
- 109 Valley (Erd et al., 1970; Tanner, 2002).
- 110

111 PRACTICAL APPLICATIONS OF KURNAKOVITE

112 Kurnakovite has several practical applications. In the oil and gas industry,

113 kurnakovite is one of the borate minerals used in the hydrofracturing fluids as cross-

114 linkers for extraction of shale gas (Dobson et al., 2005). This usage is based on the fact

115 that kurnakovite is a sparingly soluble borate mineral. Kurnakovite is used for neutron

shielding (Senberber et al., 2017; Gatta et al., 2019), as kurnakovite has the lowest

117 neutron radiation permeability among the common borate minerals (Derun and Kipcak,

118 2011). Kurnakovite also has interesting luminescence properties with its excitation

spectrum at 360 nm and emission spectrum at 420 nm (Yuan et al., 1993). In the field of

- 120 nuclear waste management, sparingly soluble borate minerals may impact the near-field
- 121 chemistry of geological repositories, because sparingly soluble borate minerals may have

122	an impact on aqueous geochemistry of near-field environments as solubility-controlling
123	phase(s) for borate in geological repositories. This is especially true with geological
124	repositories in salt formations. Salt formations are considered to be ideal for nuclear
125	waste isolation (National Academy of Science's Committee on Waste Disposal, 1957),
126	and there are relatively high concentrations of borate present in brines associated with
127	salt formations (e.g., up to 0.18 mol•kg ⁻¹ , Xiong and Lord, 2008). As borate could
128	potentially form an aqueous complex with Am(III) (Borkowski et al., 2010; Xiong,
129	2017), the formation of sparingly soluble borate minerals in the near-field of a geological
130	repository could keep borate concentrations low, minimizing the contributions of the
131	aqueous Am(III)-borate complex to the solubility of Am(III).
132	
133	EXPERIMENTAL METHODS
134	Solubility measurements were performed from the direction of supersaturation,
136	similar to the approach we used before for the determination of solubility constants of
137	boracite $[Mg_3B_7O_{13}Cl(cr)]$ and aksaite $[MgB_6O_7(OH)_6 \cdot 2H_2O(cr)]$ (Xiong et al., 2018).
138	The experimental products were not sampled until after the experiment had run for at
139	least 957 days. All chemicals used in our experiment were ACS reagent grade. The
140	solutions used in the experiments were prepared from the degassed deionized (DI) water
141	with resistivity \geq 18.2 megohm in which any dissolved CO ₂ was removed, according to
142	the procedure of Wood et al. (2002).
143	Our experiments with regard to solubility measurements for borax in Na ₂ SO ₄
144	solutions from undersaturation are similar to our previous work in NaCl solutions
145	(Xiong et al., 2013).

146	The pH readings were measured with an Orion-Ross combination pH glass
147	electrode, coupled with an Orion Research EA 940 pH meter that was calibrated with
148	three pH buffers (pH values: 4, 7, and 10). Negative logarithms of hydrogen-ion
149	concentrations on molar scale (pcH) were determined from pH readings by using
150	correction factors (Hansen, 2001). Based on the equation in Xiong et al. (2010), pcHs are
151	converted to negative logarithms of hydrogen-ion concentrations on molal scale, pH_m , a
152	notation from Oak Ridge National Laboratory/University of Idaho (e.g., Wood et al.,
153	2002).
154	Solution samples were periodically withdrawn from experimental runs. Before
155	solution samples were taken, pH readings of experimental runs were first measured. The
156	sample size was usually 3 mL. After a solution sample was withdrawn from an
157	experiment and filtered with a 0.2 μ m syringe filter, the filtered solution was then
158	weighed, acidified with 0.5 mL of concentrated TraceMetal [®] grade HNO ₃ from Fisher
159	Scientific, and finally diluted to a volume of 10 mL with DI water. If subsequent
160	dilutions were needed, aliquots were taken from the first dilution samples for the second
161	dilution, and aliquots of the second dilution were then taken for the further dilution.
162	Boron, sodium and magnesium concentrations of solutions were analyzed with a
163	Perkin Elmer dual-view inductively coupled plasma-atomic emission spectrometer (ICP-
164	AES) (Perkin Elmer DV 8300). Calibration blanks and standards were precisely matched
165	with experimental matrices. The linear correlation coefficients of calibration curves in all
166	measurements were better than 0.9995. The analytical precision for ICP-AES is better
167	than 1.00% in terms of the relative standard deviation (RSD) based on replicate analyses.

168	Chloride concentrations were analyzed with a DIONEX ion chromatograph (IC)
169	(DIONEX IC 3000).
170	The solid phase identification was performed using a Bruker AXS, Inc., D8
171	Advance X-ray diffractometer (XRD) with a Sol-X detector. XRD patterns were
172	collected using CuK α radiation at a scanning rate of 1.33°/min for a 2 θ range of 10–90°.
173	
174	EXPERIMENTAL RESULTS
175	
176	Figure 1 shows the XRD patterns of solid phases from my supersaturation
177	experiment with an initial concentration of 1.0 mol \cdot kg ⁻¹ MgCl ₂ solution. Figure 1 shows
178	that kurnakovite along with boracite and aksaite crystallized from the solution. Notice
179	that the peaks characteristic of kurnakovite and boracite, are present in the XRD patterns
180	(Figure 1). In our previous work, we determined the thermodynamic properties of
181	boracite and aksaite (Xiong et al., 2018).
182	Experimental results from the direction of precipitation of kurnakovite are
183	tabulated in Table 1. In Figure 2, total boron, chloride, magnesium and sodium
184	concentrations as a function of experimental time are displayed. As shown in Figure 2,
185	the equilibrium was established after about 900 days. The duration of the experiment
186	was up to 1,642 days (Table 1, Figure 2).
187	In Table 2, solubility data of borax in Na ₂ SO ₄ solutions at 25 °C are presented.
188	The experimental time was up to 762 days. The experimental duration for these
189	experiments is similar to that for our previous solubility measurements of borax in NaCl
190	solutions, which was 567 days (Xiong et al., 2013), and to that for our previous solubility

191	study of borax in a 0.01 mol \cdot kg ⁻¹ MgCl ₂ solutions (Xiong et al., 2017). In our previous
192	studies, we demonstrated that the equilibrium for solubility of borax was attained after
193	\sim 130 days. Therefore, based on our previous studies, it is assumed that the equilibrium
194	was attained for solubility of borax in Na ₂ SO ₄ solutions in this study.
195	
196	THERMODYNAMIC CALCULATIONS AND DISCUSSION
197	
198	In our previous work, we determined the thermodynamic properties of boracite
199	and aksaite (Xiong et al., 2018).
200	The equilibrium between boracite and kurnakovite can be represented by the
201	following reactions,
202	
203	$Mg_{3}B_{7}O_{13}Cl(cr) + H^{+} + 2B(OH)_{4}^{-} + 18H_{2}O(l) \Rightarrow 3MgB_{3}O_{3}(OH)_{5} \bullet 5H_{2}O(cr) + Cl^{-}(1)$
204	
205	Regarding Reaction (1), its equilibrium constant at infinite dilution can be
206	expressed as follows,
207	

208
$$K_1^0 = \frac{(a_{CI^-})}{(a_{H^+}) \times (a_{B(OH)_4})^2 \times (a_{H_2O})^{18}}$$
(2)

209

210 In Equation (1), a_i is an activity of the *i*-th species calculated with a thermodynamic

211 model; a_{H_2O} is the activity of water.

212	Activities of $B(OH)_4^-$, CI^- , H^+ and water in the experimental system are calculated
213	using the computer code EQ3/6 Version 8.0a (Wolery et al., 2010; Xiong, 2011a). The
214	database used for calculations was DATA0.FM2 (Domski, 2015;
215	Xiong and Domski, 2016).
216	Based on the activities calculated using EQ3/6 Version 8.0a, the $\log_{10} K_1^0$ at
217	infinite dilution is calculated in accordance with Equation (2) (Table 3). The equilibrium
218	constant for $\log_{10} K_1^0$ obtained in this study is 12.83 ± 0.08 (2 σ).
219	The dissolution reaction for kurnakovite can be expressed as follows,
220	
221	$MgB_{3}O_{3}(OH)_{5} \bullet 5H_{2}O(cr) = Mg^{2+} + 3B(OH)_{4}^{-} + H^{+} + H_{2}O(1) $ (3)
222	
223	The equilibrium constant for Reaction (3) can be derived from $\log_{10} K_1^0$ for
224	Reaction (1) and $\log_{10} K_4^0$ for Reaction (4) regarding dissolution of boracite,
225	
226	$Mg_{3}B_{7}O_{13}Cl(cr) + 15H_{2}O(l) = 3Mg^{2+} + 7B(OH)_{4}^{-} + Cl^{-} + 2H^{+} $ (4)
227	
228	The equilibrium constant for Reaction (4) $(\log_{10} K_4^0)$ has been determined as
229	-29.50 ± 0.39 (2 σ) by solubility measurements (Xiong et al., 2018). That value is in
230	excellent agreement with a value calculated from the ΔG_f^0 for boracite from the literature
231	(Khodakovsky, Semenov and Aksaenova, unpublished, see citation in Anovitz and
232	Hemingway, 2002, and discussion in Xiong et al., 2018).

233	According to $\log_{10} K_1^0$ for Reaction (1) determined in this study and $\log_{10} K_4^0$ for
234	Reaction (4) from Xiong et al. (2018), the equilibrium constant for Reaction (3)
235	$(\log_{10} K_3^0)$ is derived as $-14.11 \pm 0.40 (2\sigma)$ (Table 3).
236	The equilibrium constant for kurnakovite determined by this study provides an
237	opportunity in evaluating the Gibbs free energies of this phase from the estimates in the
238	literature. In the group contribution method, the thermodynamic properties for a borate
239	phase are sum of contributions from the cations in aqueous solution, the borate
240	polyanions, and the structural water to the corresponding thermodynamic properties
241	(Li et al., 2000). Li et al. (2000) calculated the ΔG_f^0 of kurnakovite as -4249.79 kJ·mol ⁻
242	¹ , according to the group contribution method. Based on this value, $\log_{10} K_3^0$ for
243	Reaction (3) is calculated to be -17.23 (Table 4). Anovitz and Hemingway (2002)
244	estimated the ΔG_f^0 of kurnakovite as -4272 kJ·mol ⁻¹ , leading to a value of -21.16 for
245	$\log_{10} K_3^0$ for Reaction (3) (Table 4). In comparison with the value determined in this
246	study $[-14.11 \pm 0.40 (2\sigma)]$, the value (-17.23) calculated based on the group contribution
247	method (Li et al., 2000) is off by about three orders of magnitude. This is reasonable
248	considering the accuracy of the group contribution method in estimation of ΔH_f^0 and
249	ΔG_f^0 (see below). In contrast, the value (-21.16) estimated from the method of Anovitz
250	and Hemingway (2002) is off by about seven orders of magnitude. The estimation
251	method of Anovitz and Hemingway (2002) is similar to the methods proposed by
252	Robinson and Haas (1983) and Chermak and Rimstidt (1989) for silicate minerals.
253	Therefore, the group contribution method of Li et al. (2000) performs better than the

254	estimation method of Anovitz and Hemingway (2002). This finding is similar to our
255	previous observation with regard to aksaite (Xiong et al., 2018).
256	According to $\log_{10} K_3^0$ for Reaction (3) from this work, the ΔG_f^0 for kurnakovite
257	is derived as $-4231.95 \pm 2.29 \text{ kJ} \cdot \text{mol}^{-1}$ (Table 5). Li et al. (2000) calculated the ΔG_f^0 for
258	kurnakovite as $-4249.79 \text{ kJ} \cdot \text{mol}^{-1}$, which deviates from my ΔG_f^0 by $-17.84 \text{ kJ} \cdot \text{mol}^{-1}$,
259	indicating that the error associated with the calculation of Li et al. (2000) is 0.42% in
260	terms of ΔG_f^0 . This error is within the error range, 0.01-0.60%, for the group
261	contribution method (Li et al., 2000). They also calculated the ΔH_f^0 of kurnakovite as
262	-4831.81 kJ·mol ⁻¹ . The experimentally determined ΔH_f^0 of kurnakovite is -4813.24
263	kJ·mol ⁻¹ . Therefore, the calculated ΔH_f^0 deviates from the experimental value by -18.57
264	kJ•mol ⁻¹ , almost identical to the difference between the calculated and experimental
265	$\Delta G_{\!f}^0$'s.
266	If we use the calculated values as the benchmarks, the above identical differences
267	in comparing the calculated and experimental values demonstrate that our experimentally
268	derived ΔG_f^0 is highly consistent with the experimental ΔH_f^0 from Li et al. (1997). To
269	state in a different way, the difference between the calculated ΔH_f^0 and ΔG_f^0 is -582.02
270	kJ·mol ⁻¹ . Interestingly, the difference between the experimental ΔH_f^0 of Li et al. (1997)
271	and my experimentally derived ΔG_f^0 is -581.29 kJ·mol ⁻¹ , which is almost identical to the
272	above difference for the calculated ΔH_f^0 and ΔG_f^0 .

273	Regarding the entropy of kurnakovite, the value derived by this study from the
274	experimental ΔG_f^0 and ΔH_f^0 is 414.31 J•mol ⁻¹ •K ⁻¹ , which carries an uncertainty of ~1
275	$J \cdot mol^{-1} \cdot K^{-1}$. The entropy calculated internally with the Gibbs-Helmholtz equation by this
276	study based on the estimated ΔG_f^0 and ΔH_f^0 from Li et al. (2000) is 411.85 J•mol ⁻¹ •K ⁻¹ .
277	As the calculated ΔG_f^0 and ΔH_f^0 from Li et al. (2000) do not have error estimates, there
278	is no error estimate on the entropy calculated here. Taking into consideration the
279	uncertainties associated with the experimentally-derived entropy, and with the estimated
280	entropy, the difference between these two entropies would be similar to those between
281	experimentally-derived and estimated ΔG_f^0 , and between experimentally-derived and
282	estimated ΔH_f^0 , and be within the error range for the group contribution method (i.e., to
283	0.6%).
284	It is noted that Birsoy and Özbas (2012) used a value of $-4366.90 \text{ kJ} \cdot \text{mol}^{-1}$ for the
285	Gibbs free energy of formation for kurnakovite in their calculations of activity diagrams
286	of borates. They cited Anovitz and Hemingway (2002) as the source. In fact, the
287	primary source for that value is from Huang et al. (1988). However, the enthalpy value
288	$(-4856 \text{ kJ} \cdot \text{mol}^{-1})$ measured by Huang et al. (1988) is more negative than the valued
289	$(-4813.24 \text{ kJ} \cdot \text{mol}^{-1})$ determined by Li et al. (1997). In addition, the entropy value (361.7)
290	J-mol ^{-1} •K ^{-1}) obtained by Huang et al. (1988) seems too low in comparison with the recent
291	values (e.g., 405 J•mol ⁻¹ •K ⁻¹ from Anovitz and Hemingway, 2002; and 414.31 J•mol ⁻¹ •K ⁻
292	¹ from this work).

In natural salt lakes such as those in the Qinghai-Xizhang (Tibet) Plateau, China,
kurnakovite occurs in those lakes which are rich in borate and sulfate. Therefore, the

295 interactions of borate with sulfate are important to modeling the formation of kurnakovite 296 in salt lakes in nature. In our previous work (Xiong et al., 2013), we developed a model 297 to describe the interactions between sulfate and borate based on the solubility data of 298 borax in Na₂SO₄ solutions from the literature. However, the solubility data from the 299 literature, used for development of our model, lacked pH measurements. In this work, we 300 re-calibrate our model based on our solubility measurements on borax in Na₂SO₄ 301 solutions with pH_m measurements (Table 2). 302 The parameters for the re-calibrated model are tabulated in Table 6. As indicated 303 in Table 6, there are changes in the Pitzer parameters for the interactions of $B(OH)_4$ — SO_4^{2-} and $B_4O_5(OH)_4^{2-}$ — SO_4^{2-} — Na^+ in the re-calibrated model. The $log_{10} K_{sp}^0$ for borax 304 305 (sodium tetraborate decahydrate) from the re-calibrated model agrees with the previous 306 value within the quoted uncertainties (Table 6). 307 In Figure 3, our experimental data in Na₂SO₄ solutions are compared with the 308 values predicted by the re-calibrated model, by our previous model (Xiong et al., 2013), 309 and by the model of Felmy and Weare (1986). Figure 3 indicates that our re-calibrated 310 model performs well. Our previous model based on the literature data without pH 311 measurements performs reasonably well. The model of Felmy and Weare (1986) seems 312 to overpredict total boron concentrations as a function of ionic strength. In Table 7, the predicted values for elemental concentrations using the previous 313 314 model of Xiong et al. (2013), the recalibrated model presented in this work, and the 315 Felmy and Weare (1986) model are compared with the experimental values for borax 316 solubilities in the assemblage of halite+borax+nahcolite. Table 7 shows that the values 317 predicted by the model of Xiong et al. (2013) and the re-calibrated model are in better

318	agreement with the experimental values taken from Teeple (1929) than the Felmy and
319	Weare (1986) model. Notice that the B(III) elemental concentration changes by using the
320	re-calibrated model in this work with respect to the previous model by Xiong et al.
321	(2013). The B(III) concentration predicted by the re-calibrated model is in excellent
322	agreement with the experimental value.
323	Similarly, in Table 8, the values predicted by the previous model of Xiong et al.
324	(2013), the recalibrated model presented in this work and the Felmy and Weare (1986)
325	model are compared with the experimental values with the experimental values from
326	Teeple (1929) for borax solubilities in the assemblage of borax+sodium pentaborate.
327	Table 8 shows that the values predicted by the model of Xiong et al. (2013) and the re-
328	calibrated model are in excellent agreement with the experimental values, whereas those
329	predicted by the Felmy and Weare (1986) model are off.
330	In our model developed in 2013 (Xiong et al., 2013), we first introduced
331	NaB(OH) ₄ (aq) into the borate model to accurately describe the interaction between borate
332	and sodium, as various techniques including the vapor pressure method, conductivity
333	measurements, and dielectric spectroscopy indicate the presence of NaB(OH) ₄ (aq)
334	(Rowe and Atkinson, 1990; Weres, 1995; Buchner et al., 1999). The advances in borate
335	chemistry since then have further supported our addition of NaB(OH) ₄ (aq) into the borate
336	chemistry model. First, Zhou et al. (2012b) provided the clear structural evidence for the
337	existence of NaB(OH) ₄ (aq). Zhou et al. (2012b) used a rapid liquid X-ray diffractometry
338	with a highly effective X 'celerator \mathbb{R} detector to investigate the diffusion structure of
339	aqueous sodium borate solutions at 25 °C. They found out that the free Na^+ and $B(OH)_4^-$
340	ions combine to form contact ion pair (CIP), NaB(OH) ₄ (aq). Zhou et al. (2017) further

341	studied the association of $B(OH)_4^-$ with Na^+ via the X-ray diffraction technique with the
342	empirical potential structure refinement (EPSR) modeling. In addition, Zhou et al.
343	(2017) performed Density Function Theory (DFT) calculations for the structure and
344	stability of $NaB(OH)_4(aq)$. Their work further demonstrates that Na^+ and B forms
345	contact ion pair. Second, the most recent conductivity measurements by Arcis et al.
346	(2016) also confirm the existence of $NaB(OH)_4(aq)$.
347	The contributions of NaB(OH) ₄ (aq) to total borate concentrations are expected to
348	be significant in Na-rich solutions. As illustrated by Table 9, the predicted
349	concentrations of $NaB(OH)_4(aq)$ to the total borate concentrations for the assemblage of
350	borax and mirabilite (Na ₂ SO ₄ \cdot 10H ₂ O) at 25°C are 16 % (based on the model of

351 Xiong et al., 2013) or 11% (based on the recalibrated model in this work).

352

354 IMPLICATIONS

355	As borate can form an aqueous complex with actinides(III), an immediate
356	implication is that the formation of magnesium-bearing borates such as kurnakovite will
357	minimize the concentrations of the aqueous actinides(III)-borate complex to the solubility
358	of actinides(III), by sequestrating soluble borate. This is because the brines in salt
359	formations commonly contain high concentrations of magnesium. For instance, the
360	magnesium concentration in the Generic Weep Brine (GWB) at the Waste Isolation Pilot
361	Plant (WIPP), a geological repository for transuranic waste in the southeastern New
362	Mexico, USA, is 1.16 mol•kg ⁻¹ (Xiong and Lord, 2008).
363	Another important implication from this study is that our thermodynamic model
364	can accurately describe the interactions between borate and sulfate. Therefore, our model
365	can be applied to salt lakes with high concentrations of sulfate for efficient recovery of
366	borate
500	
367	Finally, as kurnakovite has important industrial applications, the thermodynamic
367 368	Finally, as kurnakovite has important industrial applications, the thermodynamic model presented in this study for kurnakovite could increase its usefulness, because the
367 368 369	Finally, as kurnakovite has important industrial applications, the thermodynamic model presented in this study for kurnakovite could increase its usefulness, because the model can be applied to optimize crystallization of kurnakovite from natural brines and
367368369370	Finally, as kurnakovite has important industrial applications, the thermodynamic model presented in this study for kurnakovite could increase its usefulness, because the model can be applied to optimize crystallization of kurnakovite from natural brines and its synthesis on an industrial scale.
 367 368 369 370 371 	Finally, as kurnakovite has important industrial applications, the thermodynamic model presented in this study for kurnakovite could increase its usefulness, because the model can be applied to optimize crystallization of kurnakovite from natural brines and its synthesis on an industrial scale. It is of interest to note that the <i>ab-initio</i> calculations have been attempted for
 367 368 369 370 371 372 	Finally, as kurnakovite has important industrial applications, the thermodynamic model presented in this study for kurnakovite could increase its usefulness, because the model can be applied to optimize crystallization of kurnakovite from natural brines and its synthesis on an industrial scale. It is of interest to note that the <i>ab-initio</i> calculations have been attempted for assessment of thermodynamic properties of the aqueous species of some heavy metals
 367 368 369 370 371 372 373 	Finally, as kurnakovite has important industrial applications, the thermodynamic model presented in this study for kurnakovite could increase its usefulness, because the model can be applied to optimize crystallization of kurnakovite from natural brines and its synthesis on an industrial scale. It is of interest to note that the <i>ab-initio</i> calculations have been attempted for assessment of thermodynamic properties of the aqueous species of some heavy metals (Vetuschi Zuccolini et al., 2011). Therefore, it will be valuable to apply <i>ab-initio</i>
 367 368 369 370 371 372 373 374 	Finally, as kurnakovite has important industrial applications, the thermodynamic model presented in this study for kurnakovite could increase its usefulness, because the model can be applied to optimize crystallization of kurnakovite from natural brines and its synthesis on an industrial scale. It is of interest to note that the <i>ab-initio</i> calculations have been attempted for assessment of thermodynamic properties of the aqueous species of some heavy metals (Vetuschi Zuccolini et al., 2011). Therefore, it will be valuable to apply <i>ab-initio</i> calculations to the borate system including solid boron phases and aqueous borate species
 367 368 369 370 371 372 373 374 375 	Finally, as kurnakovite has important industrial applications, the thermodynamic model presented in this study for kurnakovite could increase its usefulness, because the model can be applied to optimize crystallization of kurnakovite from natural brines and its synthesis on an industrial scale. It is of interest to note that the <i>ab-initio</i> calculations have been attempted for assessment of thermodynamic properties of the aqueous species of some heavy metals (Vetuschi Zuccolini et al., 2011). Therefore, it will be valuable to apply <i>ab-initio</i> calculations to the borate system including solid boron phases and aqueous borate species in the future. When that happens, it will be possible to compare the <i>ab-initio</i> calculations

- from Li et al. (2000) and the method of Anovitz and Hemingway (2002) for borates,
- 378 which adopted the methodology for silicates, against the bench-mark experimental
- 379 values. It would also provide new insights into the speciation scheme of aqueous borate
- 380 species.
- 381

383 ACNOWLEDGEMENTS

384	Sandia National Laboratories is a multi-mission laboratory operated by National
385	Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
386	Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear
387	Security Administration under contract DE-NA-0003525. SAND2019-4805J. This
388	paper describes objective technical results and analysis. Any subjective views or
389	opinions that might be expressed in the paper do not necessarily represent the views of
390	the U.S. Department of Energy or the United States Government. The author thanks two
391	journal reviewers, the Associate Editor, Professor Edward Grew, for their thorough and
392	insightful reviews, which significantly improved the presentation. The editorial efforts
393	by the Editor, Dr. Hongwu Xu, are gratefully acknowledged. The author is grateful to the
394	following colleagues and student interns for the laboratory assistance: Leslie Kirkes,
395	Terry Westfall, Cassie Marrs, Jandi Knox, Heather Burton, Diana Goulding, Brittany
396	Hoard, Chase Kicker, Danelle Morrill, Rachael Roselle, Mathew Stroble, William
397	Sullvan, Kira Vicent, and Yoni Xiong.

399 REFERENCES

- Anovitz, L.M., and Hemingway, B.S. (2002) Thermodynamics of boron minerals:
 Summary of structural, volumetric and thermochemical data. In Grew, E.S., and
 Anovitz, L.M., Editors, Boron: Mineralogy, Petrology, and Geochemistry, Reviews
 in Mineralogy, Volume 33, p. 181-262, .2nd Printing, Mineralogical Society of
 America, Washington, D.C., USA.
- Arcis, H., Ferguson, J.P., Zimmerman, G.H. and Tremaine, P.R. (2016) The limiting
 conductivity of the borate ion and its ion-pair formation constants with sodium and
 potassium under hydrothermal conditions. Physical Chemistry Chemical Physics, 18,
 24081–24094.
- Baysal, O. (1973) New hydrous magnesium-borate minerals in Turkey: kurnakovite,
 inderite, inderborite. Bull. Min. Res. & Explor. Inst. Ankara, 80, 93–103.
- Birsoy, R. and Özbaş, Ü. (2012) Activity diagrams of borates: implications on common
 deposits. Carbonates and evaporites, 27, 71–85.

Borkowski, M., Richmann, M., Reed, D.T., and Xiong, Y.-L. (2010) Complexation of
Nd(III) with Tetraborate Ion and Its Effect on Actinide (III) Solubility in WIPP
Brine. Radiochimica Acta, 98, 577–582.

Braitsch, O. (1971) Other Components of Salt Deposits. In Salt Deposits: Their Origin
 and Composition (pp. 215-245). Springer Berlin Heidelberg.

Buchner, R., Hefter, G., May, P., and Sipos, P. (1999) Dielectric relaxation of dilute
aqueous NaOH, NaAl(OH)₄, and NaB(OH)₄. Journal of Physical Chemistry, B 103,
11186–11190.

- 422 Chermak, J.A., and Rimstidt, J.D. (1989) Estimating the thermodynamic properties
- 423 $(\Delta G_f^0 \text{ and } \Delta H_f^0)$ of silicate minerals at 298 K from the sum of polyhedral
- 424 contributions. American Mineralogist, 74, 1023–1031.
- 425 Corazza, E. (1974) The crystal structure of kurnakovite: a refinement. Acta
 426 Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 30,
 427 2194–2199.
- 428 Derun, E. and Kipcak, A. (2011) Characterization of some boron minerals against
 429 neutron shielding and 12 year performance of neutron permeability. Journal of
 430 Radioanalytical and Nuclear Chemistry, 292, 871-878.
- 431 Dobson Jr, J.W., Hayden, S.L. and Hinojosa, B.E., Texas United Chemical Corp (2005)
 432 Borate crosslinker suspensions with more consistent crosslink times. U.S. Patent
 433 6,936,575.

- 434 Domski, P.S. (2015) "Memo AP-173, EQ3/6 Database Update: DATA0.FM2"
 435 Memorandum to WIPP Records, October 27, 2015. Carlsbad, NM: Sandia National
- 436 Laboratories. ERMS 564914.
- 437 Erd, R. C., McAllister, J. F., Vlisidis, A.C. (1970) Wardsmithite,
- 438 5CaO•MgO•12B₂O₃•30H₂O, a new borate mineral from the Death Valley region,
- 439 California, American Mineralogist, 55, 349–357.
- Felmy, A.R., Weare, J.H. (1986) The prediction of borate mineral equilibria in natural
 waters: Applications to Searles Lake, California. Geochimica et Cosmochimica
 Acta, 50, 2771–2783.
- Frondel, C., Morgan, V. and Waugh, J.L.T. (1956) Lesserite, A new borate mineral.
 American Mineralogist, 41, 927–928.
- Gatta, G.D., Guastoni, A., Lotti, P., Guastella, G., Fabelo, O. and Fernandez-Diaz, M.T.
 (2019) A multi-methodological study of kurnakovite: A potential B-rich aggregate.
 American Mineralogist, 104, 1315–1322.
- Godlevsky, M.N. (1940) Kurnakovite, a new borate. Compt. Rend. Doklady Acad. Sci.,
 U.S.S.R., 28, 638–640).
- Hansen, D.J. (2001) Determining aluminum solubilities as part of cement degradation
 studies in support of the Waste Isolation Pilot Plant. SAND2001-2144P,
 Albuquerque, NM: Sandia National Laboratories.
- Heinrich, E. W. (1946), A second discovery of inderite: American Mineralogist, 31, 71–
 76.
- Helvaci, C. (1978) A review of the mineralogy of the Turkish borate deposits. Mercian
 Geology, 6(4), 257–270.
- Helvacı, C., Stamatakis, M.G., Zagouroglou, C. and Kanaris, J. (1993) Borate minerals
 and related authigenic silicates in northeastern Mediterranean late Miocene
 continental basins. Exploration and Mining Geology, 2, 171–178.
- Huang, S., Zhang, Q., Li, Y. And Chen, P. (1988) The specific heat measurements of
 kurnakovite (2MgO•3B₂O3•15H₂O) from 65 to 310K and calculation of its
 thermodynamic properties. Acta Chimica Sinica, 46, 967–971.
- Hurlbut, C. S., Erd, R. C. (1974) Aristarainite, Na₂O•MgO•6B₂O₃•10H₂O, a new mineral
 from Salta, Argentina, American Mineralogist, 59, 647–651.
- Jiang, C., Zheng, M., Wang, P. Qian, Y., and Liao, D. (1996) Chapter 21. Boron Deposits
 of China. In Editorial Committee of the Mineral Deposits of China, Mineral Deposits
 of China, Volume 5, p. 1–51. Geological Publishing, Beijing, China.

- Kistler, R.B. and Helvaci, C. (1994) Boron and borates. Industrial minerals and rocks, 6,
 171–186.
- Li, W.-Z, Zheng, M-P.. and Zhao, Y.-Y. (2004): The status and suggestions on the
 exploitation and application of magnesium-borate minerals in Tibet. Resources &
 Industries 6(5), 33-37 (in Chinese with English abstract).
- Li, J., Gao, S., Xia, S., Li, B. and Hu, R. (1997) Thermochemistry of hydrated
 magnesium borates. The Journal of Chemical Thermodynamics, 29, 491–497.
- Li, J., Li, B. and Gao, S. (2000) Calculation of thermodynamic properties of hydrated
 borates by group contribution method. Physics and Chemistry of Minerals, 27(5),
 342-346.
- Li, X., Liu, Z., Gao, S. and Xia, S. (2012) Geochemical hypothesis for hydrated
 magnesium borate deposit in Salt Lake, NW China. Environmental Earth Sciences,
 66, 1431–1438.
- 481 Li, X., Gao, S., Liu, Z., and Xia, S. (2013) Kurnakovite deposits on the Qinghai-Tibet
 482 Plateau (II): An investigation from chemical kinetics of chloropinnoite dissolution.
 483 Environmental Earth Sciences, 70, 1151–1158.
- 484 Liu, X.F. and Zheng, M.P. (2010) Geological features and metallogenic mechanism of
 485 the Nieer Co magnesium borate deposit, Tibet. Acta Geologica Sinica, 84, 1601–
 486 1612.
- Liu, Z.H., Hu, M.C., Gao, S.Y. and XIA, S.P. (2003) Experiment on formation process of
 kurnakovite and pinnoite. Geochimica, 32(6), 569–572.
- 489 National Academy of Science's Committee on Waste Disposal. 1957. *The Disposal of* 490 *Radioactive Waste on Land*. Publication 519. Washington, DC: National Academy
 491 of Sciences–National Research Council.
- 492 Nies, N.P. and Hulbert, R.W. (1967) Solubility isotherms in the system sodium oxide493 boric oxide-water. Revised solubility-temperature curves of boric acid, borax,
 494 sodium pentaborate, and sodium metaborate. Journal of Chemical and Engineering
 495 Data, 12, 303–313.
- 496 Pemberton, H.E. (1983) BMinerals of California. Van Nostrand, New York. 591 p.
- 497 Qian, Z. and Xuan, Z. (1985) Borate minerals in salt lake deposits at Chaidamu Basin,
 498 China. Sixth International Symposium on Salt, 1983, vol. 1, 185–192.
- 499Razmanova, Z.P., Rumanova, I.M. and Belov, N.V. (1970) Crystal Structure of500Kurnakovite $Mg_2B_6O11 \cdot 15H_2O = 2Mg [B_3O_3(OH)_5] \cdot 5H_2O$. In Soviet Physics501Doklady (Vol. 14, p. 1139).

- Robinson, G.R., Jr., Haas, J.L., Jr. (1983) Heat capacity, relative enthalpy, and
 calorimetric entropy of silicate minerals: An empirical method of prediction.
 American Mineralogist, 68, 541–553.
- Rowe, L., Atkinson, G. (1990) The effect of pressure on the formation of alkali metal
 borate ion pairs at 25°C. Journal of Solution Chemistry, 19, 149–158.
- Rumanova, I.M. and Ashirov, A. (1964) The determination of the crystal structure of
 inderite. Sov. Phys Cryst., 8, 414–428.
- Schaller, W.T. and Mrose, M.E. (1960) The naming of the hydrous magnesium borate
 minerals from Boron, California a preliminary note. American Mineralogist, 45,
 732–734.
- Senberber, F.T., Yildirim, M., Özdogan, I.N., Kipcak, A.S. and Derun, E. (2017)
 Dehydration behavior and kinetics of kurnakovite under microwave irradiation.
 Turkish Journal of Chemistry, 41, 399–409.
- 515 Spiryagina, A. (1949) Conditions of formation of kurnakovite. In *Dokl. Akad. Nauk SSSR*516 (Vol. 68).
- 517 Sun, D.-P., Gao, Z.-H., Wang, K.-J.(1984) The origins of borates in saline lakes,
 518 Qinghai-Xizaig plateau. Acta Sedimentologica Sinica, 2(4), 111–126.
- Tanner, L.H. (2002) Borate formation in a perennial lacustrine setting: Miocene–Pliocene
 furnace creek formation, Death Valley, California, USA. Sedimentary Geology, 148,
 259–273.
- Teeple, J.E. (1929) *The industrial development of Searles Lake brines with equilibrium data*. The Chemical Catalog Company, Inc.; New York.
- Vetuschi Zuccolini, M., Ottonello, G. and Belmonte, D. (2011) Ab-initio assessment of
 conventional standard-state thermodynamic properties of geochemically relevant
 gaseous and aqueous species. Computers & Geosciences, 37, 646–661.
- Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H. and Halow, I. (1982) *The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units.* National Standard Reference Data System.
- Weres, O. (1995) Vapor pressure, speciation, and chemical activities in highly
 concentrated sodium borate solutions at 277 and 317°C. Journal of Solution
 Chemistry, 24, 409-438.
- Wolery, T.W., Xiong, Y.-L., and Long, J. (2010) Verification and Validation
 Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry,

535 536	Document Version 8.10. Carlsbad, NM: Sandia National laboratories. ERMS 550239.
537 538 539 540 541 542	Wood, S.A., Palmer, D.A., Wesolowski, D.J. and Bénézeth, P.A.S.C.A.L.E. (2002) The aqueous geochemistry of the rare earth elements and yttrium. Part XI. The solubility of Nd(OH) ₃ and hydrolysis of Nd ³⁺ from 30 to 290°C at saturated water vapor pressure with in-situ pHm measurement. <i>Water–rock interactions, ore deposits, and environmental geochemistry: a tribute to David Crerar, Special Publication, 7</i> , pp.229–256.
543 544 545	Xiong, YL. (2008) Thermodynamic properties of brucite determined by solubility studies and their significance to nuclear waste isolation. Aquatic Geochemistry, 14, 223–238.
546 547 548 549	 Xiong, YL. (2011) WIPP Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Revision 1, Document Version 8.20. Supersedes ERMS 550239. Carlsbad, NM. Sandia National Laboratories. ERMS 555358.
550 551 552	Xiong, YL. (2017) Solution Chemistry for Actinide Borate Species to High Ionic Strengths: Equilibrium Constants for AmHB ₄ O ₇ ²⁺ and AmB ₉ O ₁₃ (OH) ₄ (cr) and Their Importance to Nuclear Waste Management. MRS Advances, 2, 741–746.
553 554 555	Xiong, YL., Domski, P.S. (2016) "Updating the WIPP Thermodynamic Database, Revision 1, Supersedes ERMS 565730." Carlsbad, NM: Sandia National Laboratories. ERMS 566047.
556 557 558	Xiong, YL., and Lord, A.C.S. (2008) Experimental investigations of the reaction path in the MgO–CO ₂ –H ₂ O system in solutions with ionic strengths, and their applications to nuclear waste isolation. Applied Geochemistry, 23, 1634–1659.
559 560 561 562 563	Xiong, YL., Deng, HR., Nemer, M., and Johnsen, S. (2010) Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg ₃ Cl(OH) ₅ ·4H ₂ O), phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations. Geochimica et Cosmochimica Acta, 74, 4605–4611.
564 565 566 567	Xiong, Y., Kirkes, L. and Westfall, T. (2013) Experimental determination of solubilities of sodium tetraborate (borax) in NaCl solutions, and a thermodynamic model for the Na-B(OH) ₃ -Cl-SO ₄ system to high-ionic strengths at 25°C. American Mineralogist, 98, 2030–2036.
568 569 570	Xiong, Y., Kirkes, L., Knox, J. and Marrs, C. (2017) Experimental determination of solubilities of sodium polyborates in MgCl ₂ solutions: solubility constant of disodium hexaborate tetrahydrate, and implications for the diagenetic formation of

ameghinite. The Canadian Mineralogist, 55, 1001-1008. 571

572	Xiong, Y., Kirkes, L., Knox, J., Marrs, C. and Burton, H. (2018) Experimental
573	determination of solubilities of magnesium borates: Solubility constants of boracite
574	[Mg ₃ B ₇ O ₁₃ Cl(cr)] and aksaite [MgB ₆ O ₇ (OH) ₆ •2H ₂ O (cr)]. Chemical Geology, 483,
575	254–260.
576 577	Yang, Q. (1989) Borate deposits in Qaidam Basin. Acta Sedimentologica Sinica, 7(2), 117–124 (in Chinese with English abstract).
578	Yang, S. (1991) Saline deposits and minerals of salt lakes in Qinghai-Xizang plateau.
579	Journal of Lake Sciences 3(1), 1–10 (in Chinese with English abstract).
580 581 582	Yang, S. and Zheng, X. (1985) The components of the saline lake in Xizang and approach to their origin. Chinese Journal of Oceanology and Limnology, 3(2), 251–264.
583	Yeh, DN. (1965) Structure of Kurnakovite. Scientia Sinica, 14(7), p.1086.
584	Yuan, YL., Tang, XM., He, YJ., (1993) Syntheses and luminescence properties of
585	kurnakovite. Journal of Mineralogy and Petrology, 18(4), 50–55 (in Chinese with
586	English abstract).
587	Zheng, M. and Liu, W. (1982) The discovery of a lithium-rich magnesian borate deposit
588	in Xizang (Tibet) Di Zhi Lun Ping = Geological Review. 28(3), 263–266 (in Chinese
589	with English abstract).
590	Zheng, M. and Liu, X. (2009) Hydrochemistry of salt lakes of the Qinghai-Tibet Plateau,
591	China. Aquatic Geochemistry, 15, 293–320.
592	Zheng, M.P., Qi, W. and Yuan, H.R. (2005) Characteristics of salt lake boron deposits
593	and magnesium borate deposits of the Qinghai-Tibet Plateau, China. In Jingwen
594	Mao, Frank P. Bierlein (eds.) Mineral Deposit Research: Meeting the Global
595	Challenge. Proceedings of the Eighth Biennial Society for Geology Applied to
596	Mineral Deposits Meeting, Beijing, China, 18 - 21 August, 2005, 8(2), 1123–1125.
597	Springer Berlin Heidelberg.
598	Zhou, B., Michaelis, V.K., Pan, Y., Yao, Y., Tait, K.T., Hyde, B.C., Wren, J.E., Sherriff,
599	B.L. and Kroeker, S. (2012a) Crystal structure refinements of borate dimorphs
600	inderite and kurnakovite using ¹¹ B and ²⁵ Mg nuclear magnetic resonance and DFT
601	calculations. American Mineralogist, 97, 1858–1865.
602 603 604	Zhou, Y,-Q., Fang, CH., Fang, Y., Zhu, FY., Song, T. and Xu, S. (2012b) Structure of aqueous sodium metaborate solutions: X-ray diffraction study. Russian Journal of Physical Chemistry A, 86, 1236–1244.
605 606	Zhou, Y., Higa, S., Fang, C., Fang, Y., Zhang, W. and Yamaguchi, T. (2017) B(OH) ₄ ⁻ hydration and association in sodium metaborate solutions by X-ray diffraction and

607 empirical potential structure refinement. Physical Chemistry Chemical Physics, 19,
 608 27878–27887.

609

611	
612	Table 1. Experimental results of indirect precipitation of kurnakovite from 1.0 mol \cdot kg ⁻¹ MgCl ₂ + 1.0 mol \cdot kg ⁻¹ NaCl solutions at 22.5
613	± 0.5 °C.
614	

			Total		Total sodium	Total chloride
			magnesium	Total boron	molality, $m_{\Sigma Na}$,	molality, $m_{\Sigma Cl}$,
	Experimental		molality, $m_{\Sigma Mg}$,	molality, $m_{\Sigma B}$,	$mol \cdot kg^{-1}$	$mol \bullet kg^{-1}$
Experimental No.	Duration (day)	pH _m *	mol•kg ⁻¹	mol•kg ⁻¹		
SYN-Boracite-2	957	8.15	1.112	1.199	1.14	3.083
	1204	8.25	1.125	1.220	1.00	3.054
	1266	8.16	1.130	1.180	1.13	3.016
	1289	8.18	1.138	1.233	1.14	3.072
	1322	8.14	1.130	1.197	N/A	3.055
	1470	8.16	1.146	1.191	N/A	3.137
	1582	8.25	1.167	1.091	1.09	3.094
	1629	8.15	1.049	1.030	1.18	3.028

 615 *pcH values are first calculated based on pH readings and correction factors for MgCl₂ solutions from Hansen (2001), and are then

616 converted to pH_m based on the equation from Xiong et al. (2010). As the experimental solutions contain significant amounts of

617 sodium and borate as well as the supporting medium, MgCl₂, the pH_m's calculated based on the correction factor for pure MgCl₂

618 might have additional experimental uncertainties. The uncertainties for pH_m by using the correction factor for pure MgCl₂ are

619 estimated to be less than \pm 0.08 according to the comparison with the correction factors for NaCl used in Xiong (2008) at the ionic 620 strengths of the experiments in this work. In the thermodynamic calculations, the uncertainties include those for pH_m.

621

				Molal total boron
	Supporting			concentrations, $m_{\Sigma B}$, in
	Medium Na ₂ SO	₄ Experimental		equilibrium with sodium
Experimental No.	(molal)	time (day)	pH_m	tetraborate
Nd(OH) ₃ -B-0.01SO ₄ -1	0.010	454	9.21	0.529
Nd(OH) ₃ -B-0.01SO ₄ -2	0.010	454	9.22	0.518
Nd(OH) ₃ -B-0.1SO ₄ -1	0.10	454	9.08	0.420
Nd(OH) ₃ -B-0.1SO ₄ -2	0.10	454	9.07	0.407
Nd(OH) ₃ -B-0.5SO ₄ -1	0.5	454	8.73	0.226
Nd(OH) ₃ -B-0.5SO ₄ -2	0.5	454	8.73	0.273
Nd(OH) ₃ -B-1.0SO ₄ -1	1.0	454	8.55	0.232
Nd(OH) ₃ -B-1.0SO ₄ -2	1.0	454	8.55	0.230
Nd(OH) ₃ -B-1.5SO ₄ -1	1.5	454	8.55	0.254
Nd(OH) ₃ -B-1.5SO ₄ -2	1.5	454	8.55	0.222
Nd(OH) ₃ -B-1.8SO ₄ -1	1.8	454	8.66	0.231
Nd(OH) ₃ -B-1.8SO ₄ -2	1.8	454	8.66	0.231
Nd(OH) ₃ -B-0.01SO ₄ -1	0.010	762	9.22	0.527
Nd(OH) ₃ -B-0.01SO ₄ -2	0.010	762	9.19	0.536
Nd(OH) ₃ -B-0.1SO ₄ -1	0.10	762	9.04	0.447
Nd(OH) ₃ -B-0.1SO ₄ -2	0.10	762	9.04	0.455
Nd(OH) ₃ -B-0.5SO ₄ -1	0.5	762	8.71	0.253
Nd(OH) ₃ -B-0.5SO ₄ -2	0.5	762	8.71	0.258
Nd(OH) ₃ -B-1.8SO ₄ -1	1.8	762	8.63	0.212
Nd(OH) ₃ -B-1.8SO ₄ -2	1.8	762	8.63	0.208
Nd(OH) ₃ -B-0.5SO ₄ -1	0.5	791	8.74	0.261
Nd(OH) ₃ -B-0.5SO ₄ -2	0.5	791	8.73	0.267

623 Table 2. Experimental results for solubility of borax in Na₂SO₄ solutions at 25 ± 0.5 °C. 624

Nd(OH) ₃ -B-1.0SO ₄ -1	1.0	791	8.56	0.224
Nd(OH) ₃ -B-1.0SO ₄ -2	1.0	791	8.56	0.233
Nd(OH) ₃ -B-1.5SO ₄ -2	1.5	791	8.56	0.207
Nd(OH) ₃ -B-1.8SO ₄ -2	1.8	791	8.65	0.203
Nd(OH) ₃ -B-0.01SO ₄ -1	0.010	811	9.33	0.551
Nd(OH) ₃ -B-0.01SO ₄ -2	0.010	811	9.23	0.553
Nd(OH) ₃ -B-0.1SO ₄ -1	0.10	811	9.09	0.463
Nd(OH) ₃ -B-0.1SO ₄ -2	0.10	811	9.09	0.467
Nd(OH) ₃ -B-0.5SO ₄ -1	0.5	811	8.74	0.303
Nd(OH) ₃ -B-0.5SO ₄ -2	0.5	811	8.75	0.296
Nd(OH) ₃ -B-1.0SO ₄ -1	1.0	811	8.56	0.254
Nd(OH) ₃ -B-1.0SO ₄ -2	1.0	811	8.57	0.247
Nd(OH) ₃ -B-1.5SO ₄ -1	1.5	811	8.56	0.227
Nd(OH) ₃ -B-1.5SO ₄ -2	1.5	811	8.56	0.218
Nd(OH) ₃ -B-1.8SO ₄ -1	1.8	811	8.65	0.205
Nd(OH) ₃ -B-1.8SO ₄ -2	1.8	811	8.65	0.215

625

8 9 0 1 2	Table 3. Equilibrium constants at infinite dilution for the equilib and kurnakovite and for the dissolution reaction of kurnakovit	orium between boracite te at 25°C and 1 bar.
	Reaction	$\log_{10} K^0^A$
	$Mg_{3}B_{7}O_{13}Cl(cr) + H^{+} + 2B(OH)_{4}^{-} + 18H_{2}O(l) \Rightarrow$ $3MgB_{3}O_{3}(OH)_{5} \cdot 5H_{2}O(cr) + Cl^{-}$	$12.83 \pm 0.08 (2\sigma)$
	$MgB_{3}O_{3}(OH)_{5}\bullet 5H_{2}O(cr) = Mg^{2+} + 3B(OH)_{4}^{-} + H^{+} + H_{2}O(l)$	$-14.11 \pm 0.40 \ (2\sigma)$
+ 5	tabulated in Table 1. The uncertainty in terms of 2σ includes that extrapolation from 22.5°C to the standard temperature of 25°C	for the small
5 7 8 9 0 1 2	Table 4. Equilibrium constants at infinite dilution for kurnakovand 1 bar calculated from the Gibbs free energies from	ite dissolution at 25°C the literature.
5 7 8 9 0 1 2 3	Table 4. Equilibrium constants at infinite dilution for kurnakov and 1 bar calculated from the Gibbs free energies from Reaction	ite dissolution at 25° C the literature.
6 7 8 9 0 1 2 3	Table 4. Equilibrium constants at infinite dilution for kurnakov and 1 bar calculated from the Gibbs free energies from Reaction MgB ₃ O ₃ (OH) ₅ •5H ₂ O(cr) = Mg ²⁺ + 3B(OH) ₄ ⁻ + H ⁺ + H ₂ O(l)	ite dissolution at 25°C the literature. $10g_{10} K^{0}$ -17.23^{A} -21.16^{B}

Table 5. Thermodynamic properties of kurnakovite, MgB₃O₃(OH)₅•5H₂O(cr), at 25°C 653

654 and 1 bar. The values recommended by this study are in bold.

655

Species	ΔH_f^0 ,	ΔG_{f}^{0} ,	S^{0}	References and Remarks
	kJ•mol ⁻¹	kJ•mol ⁻¹	$J \cdot mol^{-1} \cdot K^{-1}$	
Kurnakovite	-4856	-4272	405	Anovitz and Hemingway (2002) ^A
Kurnakovite	-4813.24 ± 2.46			Li et al. (1997) ^B
Kurnakovite	-4831.81	-4249.79	411.85	Li et al. (2000); Entropy calculated in this work ^C
Kurnakovite	-4813.24	-4231.95	414.31	This work ^D
	± 2.46	± 2.29	± 0.9	

^A All parameters were estimated. 656

^B Enthalpy was experimentally determined. 657

All parameters were estimated. Gibbs free energy of formation and enthalpy of С 658

659 formation were calculated using the group contribution method of Li et al. (2000).

Entropy was calculated internally with the Gibbs-Helmholtz equation by this work from 660 the estimated enthalpy and Gibbs free energy. 661

^D Enthalpy is the experimental value of Li et al. (1997) determined using the calorimetric 662 method. Gibbs free energy was computed from the experimentally determined 663

664 equilibrium constant from this work. Entropy was calculated from the experimental

enthalpy of Li et al. (1997) and the derived Gibbs free energy from the experimental 665

equilibrium constant of this work. 666

667

- 670
- 671

672 Table 6. The revision of the thermodynamic model for the Na–B(OH)₃–SO₄ system in 673

674

Xiong et al. (2013) based on experimental solubility data of borax in Na₂SO₄ solutions at 25°C presented in this work

Pitzer Mixing Parameters and Interaction Parameters Involving Neutral Species						
Species, i	Species, j	Species, k	θ_{ij} or λ_{ij}	Ψ_{ijk} or ζ_{ijk}		
B(OH) ₄ ⁻	SO_4^{2-}		0.17 ± 0.03			
			(Xiong et al.			
			2013)			
B(OH) ₄ ⁻	SO_4^{2-}		$-0.00562 \pm$			
			0.0026 (P.W.)			
NaB(OH) ₄ (aq)	Na ⁺		0.093 ± 0.005			
$B_4O_5(OH)_4^{2-}$	SO_4^{2-}	Na ⁺		0.1 ± 0.2		
				(Xiong et al.,		
				2013)		
$B_4O_5(OH)_4^{2-}$	$\mathrm{SO_4}^{2-}$	Na ⁺		$0.00174 \pm$		
				0.0012 (P.W.)		
Equilibrium Constants for Solubility and Complex Formation Reactions						
Reaction		$\log K$ or $\log \beta_l$ at 25 °C unless				
		otherwise noted				
Na ₂ B ₄ O ₇ •10 $H_2O^A \Rightarrow 2Na^+ + 4B(OH)_4^- + 2H^+ + H_2O^-$			-24.80 ± 0.10 (2 σ) (Xiong et al.,			
			2013)			
$Na^+ + B(OH)_4^- =$	= NaB(OH) ₄ (ad)	0.25 ± 0.01				

P.W.: present work. 675

^A: The structural formula for borax is Na₂B₄O₅(OH)₄•8H₂O, which is same as its 676

chemical formula that was used in Xiong et al. (2013), Na₂B₄O₇•10H₂O. 677

Table 7. A comparison of the experimental invariant solution compositions for the

assemblage of Halite (NaCl) + Nahcolite (NaHCO₃) + Borax (Na₂B₄O₇•10H₂O or

683 684 assemblage of Hante (NaCI) + Nanconte (NaCO₃) + Borax (Na₂B₄O₇•10H₂O of Na₂B₄O₅(OH)₄•8H₂O as its structural formula) with the values predicted by various

models at 25°C. Elemental FW86 **Re-calibrated** Experimental Xiong et al. data ^B Concentrations, (2013)Model (Present mol•kg⁻¹ Work) 0.199 B(III) 0.237 0.176 0.195 Na(I) 6.11 6.33 6.30 6.30 Cl(-I) 5.90 6.00 6.01 6.01 C(IV), TDIC^A 0.107 0.214 0.208 0.209

685

 A TDIC, total dissolved inorganic carbon, as HCO_3^{-}/CO_3^{2-}

 $^{B} 20^{\circ}$ C; from Teeple (1929).

688 689

- Table 8. A comparison of the experimental solution compositions for the assemblage of
- 691 Borax (Na₂B₄O₇•10H₂O or Na₂B₄O₅(OH)₄•8H₂O as its structural formula) + Sodium

692

Pentaborate	$(NaB_5O_8 \bullet 5)$	$H_2O)$	with the	e values j	predict	ted by	various r	nodels	at 25°	C.
						-				

Elemental	Experimental	FW86	Xiong et al.	Re-calibrated	
Concentrations,	data ^A		(2013)	Model (Present	
mol•kg ⁻¹				Work)	
B(III)	4.20	5.33	4.21	4.21	
Na(I)	1.03	1.36	0.972	0.972	

693

694 ^A 24° C; from Teeple (1929).

695

- 696
- Table 9. Predicted distributions of borate species for the assemblage of borax and

698 mirabilite by using the model in Xiong et al. (2013) and the re-calibrated model in this 699 work

Borate species	Model in Xiong	g et al. (2013)	Re-calibrated model		
	molality	log a _i	molality	log a _i	
B(OH) ₃ (aq)	0.04588	-1.4905	0.050379	-1.4482	
B(OH) ₄	0.032386	-1.8985	0.039938	-1.9443	
NaB(OH) ₄ (aq)	0.020311	-1.3760	0.018332	-1.4180	
$B_3O_3(OH)_4^-$	0.0071235	-3.0793	0.0079010	-3.0398	
$B_4O_5(OH)_4^{2-}$	0.0016022	-4.2857	0.0080894	-4.2917	
ΣΒ	0.12606		0.16471		

700

701

702

704705 Figure Captions

706

Figure 1. XRD patterns of the solid phases from the experiments. The vertical lines in

pink, green and blue are the reference peaks of boracite, kurnakovite, and borax,

respectively. All of the reference peaks are from the database of <u>the International Centre</u>

- 710 <u>for Diffraction Data, ICDD</u>. a. The XRD pattern in comparison with those of boracite
- and borax; b. the XRD pattern in comparison with those of kurnakovite and borax.

712

713

Figure 2. Variations of the total boron, chloride, magnesium and sodium concentrationsas a function of run duration.

716

717

- 718 Figure 3. A comparison of experimental solubility data of borax in Na₂SO₄ solutions at
- 719 25° C with the values predicted by using various models.

731 732

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7212

739 740 741 742 743 Experimental data in Na2SO4 at 25°C, This Work 0.70 0.65 Re-calibrated Model, This Work Total Boron Concentration (ΣB, m) 0.60 Na₂SO₄ medium using the model of Xiong et al. (2013) 0.55 Na₂SO₄ medium using Felmy and Weare (1986) model 0.50 0.45 Nies and Hulbert (1967), 25°C Δ 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 1 2 3 4 5 6 lonic Strength on Molality Scale (3 m_{Na2SO4}) 744 745 Figure 3. 746 747 748