- 1 Revision 1
- 2 Word count: 6354
- 3
- 4 Magmatic degassing controlled the metal budget of the
- 5 Axi epithermal gold deposit
- 6
- 7 NUO LI^{1,2*}, BO ZHANG^{3,4}, THOMAS ULRICH⁵, A.E. WILLIAMS-JONES⁴,
- 8 YANJING CHEN³
- 9 ¹Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and
- 10 Geography, Chinese Academy of Sciences, Urumqi 830011, China
- ¹¹ ² State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology
- 12 and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- ³ Laboratory of Orogen and Crust Evolution, Peking University, Beijing 100871,
- 14 China
- ⁴ Department of Earth and Planetary Sciences, McGill University, 3450 University
- 16 Street, Montréal, Québec H3A 0E8, Canada
- ⁵ Department of Geoscience, Aarhus University, Aarhus DK-8000, Denmark
- 18
- 19 *E-mail: Nuo Li, <u>linuo@ms.xjb.ac.cn; nuolipku@126.com</u>
- 20
- 21

22 ABSTRACT

23 From integrated textural and compositional studies of auriferous and barren pyrite/marcasite in the epithermal Axi gold deposit, China, we have identified a 24 25 relationship between multiple gold mineralizing events, mafic magma recharge and fluid-rock reactions. Three generations of pyrite (Py1-3) and four generations of 26 27 marcasite (Mar1-4) record episodic gold mineralizing events, followed by 28 silver-copper-lead-zinc-cadmium enrichment. The gold mineralizing events were 29 recorded by high concentrations of sub-nanometer sized gold in Py1, Py3, and Mar3 30 (max. = 147, 129 and 34 ppm, med. = 39, 34 and 12 ppm). Based on previous Re-Os 31 ages determinations of pyrite and U-Pb zircon ages of the andesitic wallrock, these 32 gold events slightly postdated pulsed mafic magma recharge, and represent the 33 incursion of Au-As-S-rich magmatic volatiles into circulating meteoric water. 34 Silver-Cu-Pb-Zn-Cd enrichment in Py2, Mar2 and Mar4 are consistent with quiescent 35 degassing and gradual Ag-Cu-Pb-Zn-Cd enrichment in an evolved felsic magma. 36 Barren Mar1 records the dominance of meteoric water, and a limited magmatic fluid 37 contribution. High Co-Ni-V-Cr-Ti contents in porous cores of Py1 and Mar2 are 38 attributed to wall rock alteration and dissolution-reprecipitation. The results provide 39 convincing evidence that the metal budget (especially for Au, Ag, Cu, Pb, Zn, Sb) of the hydrothermal fluids and sulfides in epithermal systems is controlled by the influx 40 of magmatic fluids and associated magma, whereas the enrichment of certain 41

42 fluid-immobile elements, such as Co, Ni, V, Cr and Ti, is caused in part by fluid-rock

43 interaction.

44 Keywords: Mafic recharge; magma degassing; metal budget; fluid-rock interaction;

45 epithermal deposit; Axi; Central Asian Orogenic Belt

46

47 INTRODUCTION

48 Andesites play an important role in the formation and evolution of continental 49 crust at convergent margins (Rudnick, 1995). They can be produced through 50 fractional crystallization of basalt and crustal assimilation, slab melting, hydrous melting of peridotite, or magma mixing between mafic and felsic magmas 51 52 (Carmichael, 2002; Defant and Drummond, 1990; Laumonier et al., 2014; Lee and 53 Bachmann, 2014; Reubi and Blundy, 2009). In the last of these mechanisms, the 54 replenishment of a shallower, felsic and partially solidified magma reservoir by mafic 55 magma yields evolved (andesitic to dacitic), volatile-rich magmas that are of 56 sufficiently low density to erupt (Kent et al., 2010).

Epithermal deposits are commonly associated with volcanic rocks in magmatic arcs (Simmons et al., 2005). Notwithstanding the debate concerning the nature of the magmatic contribution to the epithermal mineralization, it has been proposed that the characteristics of epithermal ore-forming systems, as well as those of analogous geothermal systems, are mainly determined by the nature of the associated magmatism (Giggenbach, 1995; Sillitoe and Hedenquist, 2003; Simmons and Brown,

63 2007). Considering that mafic melt is intrinsically rich in gold and sulfur (Hattori and
64 Keith, 2001; Nadeau et al., 2016), the question arises: Does mafic magma
65 replenishment and the mixing of mafic magma with felsic magma at mid-crustal
66 levels affect the upper-crustal epithermal mineralization?

We selected the Axi epithermal gold deposit (>70 t Au; Chen et al., 2012), NW 67 China (Fig. 1), to provide the context in which to answer this question because it has 68 69 been clearly shown that the host andesitic rocks were the products of episodic mafic 70 magma injection and mixing with shallower felsic magmas (Zhang, 2020). Moreover, 71 detailed geochronologic studies demonstrate that precipitation of auriferous pyrite (at 72 ca. 355 Ma and 332 Ma, Re-Os isochron, Liu et al., 2020; Li et al., 2022) slightly 73 postdated mafic magma injection (351-357 Ma and 340 Ma, zircon U-Pb age, Li et 74 al., 2022), indicating a potential link between mafic magma replenishment and gold 75 mineralization.

In this paper, we report the results of combined textural and *in situ* trace-element studies of auriferous and barren pyrite/marcasite. These results reveal how mafic magma intrusion, magma mixing, and fluid-rock interaction affect metal budgets in epithermal systems.

80 THE AXI VOLCANICS AND GOLD MINERALIZATION

The Axi district is located in the Chinese Western Tianshan in an area of long-lived, subduction-related arc magmatism (Yu et al., 2018; Ye et al., 2020). The deposit is hosted by volcanic-sedimentary rocks of the Late Paleozoic Dahalajunshan

84	Formation (Fig. 1). Volcanism began at ca. 410 Ma and focused in the vicinity of the
85	Axi deposit from 361 to 340 Ma (Li et al., 2022 and references therein). The volcanics
86	exposed in the deposit consist of crystal-rich (30-50%) and esitic to dacitic rocks in
87	which plagioclase, clinopyroxene, amphibole and quartz phenocrysts are embedded in
88	a microcrystalline groundmass of plagioclase, magnetite and ilmenite. A wealth of
89	petrological and geochemical evidence shows that magma mixing played an important
90	role in the petrogenesis of the Axi volcanics, including the development of
91	disequilibrium textures (e.g., inverse zoning, patchy zoning, sieve textures) involving
92	plagioclase phenocrysts, the resorption of quartz phenocrysts, the entrapment of
93	quenched mafic and felsic silicate melt inclusions by quartz phenocrysts and the
94	changes in bulk rock chemistry that led to simple linear trends on bivariate plots of
95	major oxide components (Zhang, 2020).
96	Nearly 90% of the gold (ca. 60 tonnes, with an average grade of 5.6 g/t) were
97	mined from the No. 1 orebody (Rui et al., 2002; Chen et al., 2012). As details of the

98 alteration and mineralization have been reported by Zhai et al. (2009), An and Zhu

99 (2018); Liu et al. (2018, 2020), and Zhang et al. (2018), only a brief summary of these
100 features is presented below.

101 The hydrothermally altered rock contains quartz, chalcedony, calcite, sericite and 102 adularia (Bao et al., 2002; Zhai et al., 2009), an assemblage typical of low sulfidation 103 epithermal deposits (White and Hedenqueist, 1990, 1995; Simmons et al., 2005). A 104 zonal distribution of alteration is observed, from an inner silicification zone outwards

105	through adularia-sericite to propylitic alteration zones. Silicification is most closely								
106	associated with gold mineralization. The adjacent adularia-sericite alteration zone								
107	comprises sericite, quartz, adularia, plus minor illite and carbonate (Zhai et al., 2009;								
108	An and Zhu, 2018; Liu et al., 2020). The peripheral propylitic alteration is								
109	characterized by the mineral assemblage chlorite, carbonate, and epidote. Native gold,								
110	electrum, pyrite, marcasite, sphalerite, chalcopyrite, tetrahedrite and galena are the								
111	main ore minerals (Liu et al., 2018; Zhang et al., 2018).								
112	SAMPLING AND ANALYSIS TECHNIQUES								
113	Sampling								
114	Over 500 samples from outcrop and eight drill holes (ZK2404, ZK2405,								
115	ZK4811, ZK3605, ZK3507, ZK4002, ZK4004, ZK4007) were examined								
116	petrographically in order to identify key minerals and textures. Twelve representative								
117	pyrite and marcasite samples from drill holes ZK2404 and ZK2405 were selected for								
118	further study.								

119 SEM-BSE imaging

Thin sections were prepared and examined using transmitted and reflected light microscopy to characterize the morphology, textures and paragenesis of pyrite and marcasite. This was followed by SEM-BSE imaging using a FEI Quanta 650 FEG scanning electron microscope (SEM) at the Key Laboratory of Orogenic Belts and Crustal Evolution, Peking University. The SEM is equipped with an energy dispersive spectrometer (EDS), which allows combined backscattered electron (BSE) imaging of

- 126 mineral morphology and compositional analysis. The applied voltage was 10 to 20
- 127 kV, with a spot-size of 4.0 to 5.0 μ m, and a dwell time of 20 to 30 μ s.
- 128 LA-ICPMS trace element analyses

129 The trace element composition of the sulfide minerals was analyzed using 130 laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS) at the 131 Aarhus Geochemistry and Isotope Research platform (AGiR), Department of 132 Geoscience, Aarhus University, Denmark. A 193 nm ArF Excimer laser from 133 Resonetics attached to an Agilent 7900 ICPMS was used for this purpose. The 134 ablation rate was 8 Hz and the laser energy was 70 mJ. Helium was used as the carrier 135 gas, which was mixed with Ar before it entered the ICP. A total of 245 single-spot 136 analyses were performed using a laser beam that varied from 6 to 60 μ m, depending 137 on the size of the crystals. All the data were collected in time-resolved mode. The 138 analysis time was 55 seconds, including an initial 25 seconds of background 139 measurement and 30 seconds of ablation. Data for a set of 20 elements were reported 140 for the spot analyses (Hg, Au, Sb, Ag, Mo, Se, As, Zn, Cu, Co, Mn, Cr, V, Cs, Tl, Pb, 141 Sc, Ti, Ni and Al). Bismuth, Sn, In, Cd, Pt and U were also analyzed, but their 142 concentrations were typically very low (<1 ppm) and in many cases below the limit of 143 detection.

144 The NIST 610 synthetic glass and MASS 1 pressed sulfide reference materials 145 were used as external calibration standards. The reproducibility and accuracy of 146 MASS-1 for different analytical sessions are given in Table A1. The relative standard

147	deviation for the different elements is between $2 - 10\%$ (Table A1). The standards							
148	were analyzed after roughly every 10th pyrite analysis. For the quantification of the							
149	data, the Fe concentration obtained by electron microprobe analysis (Zhang et al.,							
150	2018) was used as the internal standard. The data processing and quantification were							
151	done using Iolite software (Paton et al., 2011).							
152	In order to develop a chemical profile across selected pyrite grains, two							
153	LA-ICPMS line scans were conducted. The sample was moved under the laser along a							
154	line, crossing the mineral grain at a scanning speed of 8 $\mu\text{m/s}$ with a spot size of 8 $\mu\text{m}.$							
155	The elements mentioned above were chosen for these analyses. The profiles varied							
156	between 300 to 400 µm in length.							
157	RESULTS							
158	Types of pyrite/marcasite							
159	Previous studies have documented many features of the pyrite at Axi, including							
160	their textures, paragenetic relationships and composition (Zhang et al., 2018; Liu et							
161	al., 2015, 2018). These studies reveal that pyrite hosts nearly half of the total gold							

162 reserve, and that there are three generations of pyrite. In this study, we couple detailed

163 SEM/EDS imaging of pyrite and marcasite with specific textures/minerals, including

164 crustiform banding, hydrothermal breccias, adularia, platy calcite/quartz and

165 replacement textures, and use them to refine previous textural and mineralogic

166 interpretations.

167	The earliest pyrite, Py1 (50 – 1500 μ m in diameter, Fig. 2, 3) is associated with
168	quartz and sericite. It comprises a corroded, porous core (Py1a), a compact,
169	inclusion-free mantle (Py1b), an oscillatory-zoned rim (Py1c), and an arsenopyrite
170	overgrowth (these features are not present in all the crystals). The anhedral Py1a
171	replaced clinopyroxene phenocrysts as pseudomorphs (Fig. 3B) or is concentrated
172	close to the fluid-rock reaction front (Fig. 3C). Subhedral to euhedral Py1b and Py1c
173	are more common in quartz-dominated cements or veinlets and away from the
174	fluid-rock reaction front (Fig. 3C). Anhedral Py2 (50 – 1000 μ m in diameter) coexists
175	with chalcopyrite, sphalerite, tetrahedrite, quartz, calcite and chlorite (Fig. 2B, 3D).
176	Tiny Py3 crystals (10 – 50 μm in diameter) are euhedral to subhedral, and
177	oscillatory-zoned (Fig. 2C). They are surrounded by chalcedony \pm calcite, and cement
178	Py1 and/or Py2 clasts in breccias (Fig. 3F).
179	In addition to pyrite, we identified four generations of marcasite (Figs. 2-4) at
180	shallower depth (< 280 m) than pyrite (that is present to 720 m). The blade-shaped
181	Mar1 (50 – 600 μ m in length) coexists with fine- to coarse-grained quartz, chalcedony
182	and/or calcite. It may crosscut Py1 (Fig. 3A) and Py2 and hence crystallized later than
183	them. This marcasite occurs in crustiform layers with a rhythmic alternation of quartz,
184	chalcedony, Py3 and Mar1 (Fig. 4). Since Py3 occurs more commonly in the outer
185	layers, and Mar1 in the inner layers, we propose that Mar1 crystallized

186 contemporaneously with or slightly later than Py3. The second marcasite generation,

187 Mar2, forms radial or fan-shaped aggregates ($100 - 2000 \mu m$ in length) and has an

188	inclusion-rich, porous core (Mar2a) that is surrounded by a homogeneous marcasite
189	overgrowth (Mar2b) and arsenopyrite (Fig. 2D). It cements hydrothermal breccia
190	fragments together with fine-grained quartz, chalcedony and minor calcite. This
191	generation of marcasite was followed by Mar3 (100 – 1500 μ m in length) in calcite±
192	chalcedony veins/cements. Commonly, Mar3 crosscuts anhedral Py2 (Fig. 3E), or
193	cements breccia clasts containing earlier pyrite and marcasite generations. Locally,
194	Mar3-calcite veins crosscut lattice structures and adularia, and calcite may fill the
195	lattice interstices (Fig. 3I). The latest marcasite generation (Mar4) forms acicular
196	crystals/aggregates (50 $-1000 \ \mu m$ in length) and is hosted by calcite veins, in which
197	the calcite is euhedral to subhedral and occurs as rhombs with alternating clear and
198	"dusted" zones due to sub-microscopic inclusions. These veins crosscut
199	calcite-chalcedony-Mar3 veins (Fig. 3H), indicating that Mar4 was later than Mar3.
200	On a modal basis, Py1, Py3, Mar2 and Mar3 are the most abundant pyrite and
201	marcasite phases, followed by minor Py2, and traces of Mar4 and Mar1.
202	The trace element record of episodic mineralization

The trace element data for pyrite and marcasite are summarized in Table 1 and listed in Appendix A2. In the following text, the maximum (max.) values are reported for gold hosted by Py1b, Py3 and Mar3, and median (med.) values are reported for all other elements/samples (see also Fig. 5).

207 The compositional data reveal episodic gold mineralizing events. Each of these 208 events was followed by a period of silver and base metal enrichment. The first gold

209	mineralizing event is recorded by Py1b that has the highest concentrations of Au (max.
210	= 147 ppm, med. = 39 ppm) and As (67500 ppm). The precursor Py1a, by contrast, is
211	characterized by higher Co (209 ppm), Ni (510 ppm), V (14 ppm), Cr (12 ppm) and
212	Ti (3300 ppm) contents than Py1b (Co = 25 ppm, Ni = 35 ppm, V = 0.83 ppm, Cr =
213	3.5 ppm, $Ti = 12$ ppm). The compositional variation of different parts of Py1 crystals
214	is clearly illustrated by the laser ablation traverses across a Py1 grain (Fig. 6). The
215	subsequent Py1c is relatively deficient in most trace elements in comparison to Py1a
216	and Py1b, especially As (15000 ppm), Zn (1.1 ppm), Cu (96 ppm), Co (11 ppm), V
217	(0.67 ppm), Cr (1.0 ppm) and Ti (7.7 ppm). Gold mineralization was followed by the
218	introduction of Cu, Pb, Zn and Sb, which is recorded in Py2 (Cu = 928 ppm, Pb = 124
219	ppm, $Zn = 96$ ppm, $Sb = 884$ ppm). This pyrite type has the highest concentration of
220	Ag among all the samples (max. = 305 ppm, med. = 157 ppm) but is depleted in Au
221	(6.0 ppm).
222	The second gold mineralizing event is documented by the composition of Py3
223	(max. = 129 ppm, med. = 34 ppm Au). Later Mar1, however, is depleted in most trace
224	elements. A second period of Ag-Zn enrichment is recorded by Mar2 (containing 243
225	ppm Ag and 69 ppm Zn in the core, and 60 ppm Ag and 27 ppm Zn in the rim). Its
226	porous core (Mar2a) has higher Co (298 ppm), Ni (697 ppm), V (9.7 ppm), Cr (8.0
227	ppm) and Ti (32 ppm) contents than the compact Mar2b overgrowth (Co = 58 ppm,

228 Ni = 195 ppm, V = 7.0 ppm, Cr = 3.8 ppm, Ti = 13 ppm), mimicking the

compositional difference between Py1a and Py1b (Fig. 5).

230	A weak gold mineralizing event may be indicated by the composition of Mar3,
231	although its Au content is much lower (max.= 34 ppm, med. = 12 ppm) than those of
232	Py1b (39 ppm) and Py3 (34 ppm). It also has relatively high Ag (146 ppm), Pb (169
233	ppm), Zn (29 ppm) and Sb (872 ppm) contents. The youngest marcasite variety,
234	Mar4, is characterized by extremely low contents of Au (0.11 ppm), Ag (13 ppm) and
235	As (3115 ppm), but moderately high Pb (1027 ppm), Zn (104 ppm) and Sb (417 ppm)
236	contents.

237 **INTERPRETATION AND DISCUSSION**

238 In a previous study, we showed that the Axi andesites accumulated incrementally 239 through injections of mafic magma into a shallow, felsic magma reservoir (Li et al., 240 2022). We documented the injection events by the textural features of zircon in which 241 an anhedral, antecrystic core is resorbed and embayed by a thin, irregular zone (<5µm) prior to overgrowth by an oscillatory-zoned autocrystic rim (Li et al., 2022). 242 243 Using the ages of the core and rim of the zircon, the main period of injections is 244 interpreted to have been between 351 and 357 Ma, contemporaneous with the 245 crystallization of Py1b (357 ± 18 Ma, 353 ± 6 Ma, Re-Os isochron, Liu et al., 2020; 246 Li et al., 2022). This chronology, in combination with our new sulfide trace element 247 data, provides compelling evidence for a link between magma injection and gold 248 mineralization. We propose that fluid exsolution associated with mafic magma 249 injections and interspersed periods of magma quiescence exerted a first-order control 250 on the metal budget of the ores (Fig. 7). We further propose that enrichment of certain 251 fluid-immobile elements, such as Co, Ni, V, Cr and Ti, was caused, in part, by252 fluid-rock interaction. A detailed discussion is provided below.

253 The earliest pyrite, anhedral Py1a, is interpreted to have formed as a result of 254 fluid-mediated sulfidation, or coupled dissolution-reprecipitation reactions (Putnis, 255 2009), based on the observation that it replaced clinopyroxene phenocrysts as 256 pseudomorphs, or is concentrated close to the sharp fluid-rock reaction front (Fig. 257 3C). Intense alteration led to the breakdown of clinopyroxene, amphibole, plagioclase, 258 magnetite-ilmenite and other constituents of the andesite host. Consequently, 259 elements that were once compatible in these phases (such Co, Ni, V, Cr and Ti) were 260 released into the circulating fluids (Mustard et al., 2006; Jenner et al., 2010), and were 261 scavenged by the alteration products. Thus, it was the alteration of the parent mineral, 262 coupled in space and time with the precipitation of daughter minerals and 263 co-generation of porosity, that led to the development of porous, Co-Ni-V-Cr-Ti-rich 264 Pyla.

The gold mineralization event recorded by Py1b is interpreted to have been associated with mafic magma intrusion into the shallow, felsic magma reservoir referred to above. Although the sulfur and gold contents of igneous rocks in the Axi area have not been analyzed, mafic magma is generally considered to have high sulfur (more than several thousand ppm; Nadeau et al., 2016) and Au contents (Keith et al., 1997; Hattori and Keith, 2001; Halter et al., 2005; Stern et al., 2007; Zajacz et al., 2012; Guo and Audetat, 2017), and thus, is likely to have been the source of sulfur

272	and gold. Injections of mafic magma would have induced a sudden over-saturation in
273	volatiles (Kent et al., 2010; Nadeau et al., 2016), with sulfur partitioning
274	preferentially into the exsolving supercritical fluid (a $D_{S}^{\text{fluid/melt}}$ value of 20 has been
275	proposed based on hydrothermal S partitioning experiments, Webster and
276	Botcharnikov, 2011). Elements such as Au, As and Hg are readily transported by
277	aqueous vapor, as shown by the compositions of volcanic gases and their sublimates
278	(Williams-Jones and Heinrich, 2005). This reflects the high volatility of Hg and As
279	(Williams-Jones et al., 2002); and Au prefers reduced sulfur, which also partitions
280	preferentially into the vapor (Hurtig and Williams-Jones, 2014; Williams-Jones and
281	Migdisov, 2014). In contrast, elements such as Pb and Zn are likely to have low
282	volatility because of the very strong bonds that they form with chloride ions in
283	aqueous liquids. On rising above the depth of exsolution, the supercritical fluid, which
284	would have been liquid-like because of the high temperature of the mafic magma,
285	would have condensed a small proportion of brine and Au-As-S would have been
286	transported upwards dominantly by the more buoyant vapor. Incursion of this
287	Au-As-S-rich vapor thus would have greatly increased the gold content of the
288	circulating meteoric fluids and decreased their pH (Zhai et al. 2009), leading to gold
289	mineralization and associated quartz-sericite-pyrite (Py1b) alteration. Later Py1c is
290	interpreted to have precipitated from fluids with lesser inputs of magmatic
291	components, and thus less Au and As.

292	The Ag and base metal-rich Py2 postdated Py1 (Liu et al., 2020; Zhang et al.,
293	2018) and the related mafic magma injection. It possibly accompanied a period of
294	magma quiescence, during which there was a gradual enrichment of Ag, Cu, Pb, Zn
295	and Sb in the evolved magma and exsolved fluids (Nadeau et al., 2016). In the
296	absence of mafic magma injection, the supercritical fluid would have been liquid-like
297	because of its lower temperature, and would have separated to produce a small
298	proportion of vapor leaving a brine more enriched in Cl (Giggenbach, 1997; Zajacz et
299	al., 2008). This, in turn, would have enhanced the transportation of Cl-complexed
300	elements (such as Ag, Cu, Pb, Zn and Sb, Wood and Samson, 1998; Seward et al.,
301	2014) into shallow meteoric water. As a representative of the second gold
302	mineralizing event, Py3 incorporated comparable amounts of Au and As to Py1b,
303	indicating a similar source, i.e., mafic magma. The concentrations of Ag, Cu, Pb, Zn
304	and Sb in Py3, however, are slightly higher than those of Py1b. Invoking a
305	contribution from the felsic magma would reconcile this issue, by providing an
306	additional metal reservoir for Ag, Cu, Pb, Zn and Sb. The deposition of Py3 is
307	attributed to fluid boiling, as shown by: (1) the development of hydrothermal breccias
308	(with Py3 \pm chalcedony as the cement); and (2) the occurrence of adularia and bladed
309	calcite (pseudomorphed by quartz) (Fig. 3I). Boiling not only caused precipitation of
310	gold, bladed calcite and adularia (Simmons et al., 2005), but fractured the surrounding
311	rocks, accelerating mixing with meteoric fluids. Marcasite has been shown to form
312	from aqueous solutions with a pH < 5, at temperatures of $80 - 240$ °C, in the presence

313	of H_2S_2 (aq) (Murowchick, 1992), whereas Py3 is interpreted to have deposited at 325
314	- 385 °C, as determined by the arsenopyrite geothermometer (Zhang et al., 2018).
315	The occurrence of Py3 and Mar1 in alternating crustiform layers (Fig. 4) may have
316	been the result of fluid mixing, with the high temperature, Au-rich Py3 recording a
317	greater magmatic fluid contribution and the low temperature, trace-element-poor
318	Mar1 recording the predominance of meteoric water and a minor magmatic fluid
319	component.

320 The marcasite variety, Mar2a, shares textural (porous) and compositional 321 (Co-Ni-V-Cr-Ti-rich) characteristics similar to Pyla. The compact overgrowth 322 contains proportions of Ag, Pb, Zn and Sb overlapping with or slightly lower than 323 those of Py2, suggesting a similar metal control by quiescent degassing. Thus, the 324 conditions of formation of Mar2a and Mar2b were comparable to those of Py1a and 325 Py1b, with the exception that the invading fluid was Pb-Zn-Sb-rich instead of 326 Au-As-S-rich. Crystallization of Mar2 was followed by that of Mar3, which contains 327 slightly less Au and As than Py1b and Py3 and may record a small injection of mafic 328 magma that was not identified by zircon age dating. The elevated Ag, Sb and Zn 329 contents suggest a hybrid input involving a contribution from the evolved felsic 330 magma. In the final variety of marcasite, Mar4, the fingerprint of the mafic magma is 331 absent, and only that of the felsic magma (high Pb, Zn and Sb) is recorded.

332 CONCLUSION AND IMPLICATION

16

333	The present work provides convincing evidence for a linkage between mafic
334	recharge, andesite formation and epithermal gold mineralization. It suggests that the
335	bulk metal budget (especially for Au, Ag, Cu, Pb, Zn, Sb) of an epithermal system is
336	controlled primarily by the composition of the fluids, which, in turn, is controlled by
337	the nature of the magma in a shallow magma chamber (Keith et al., 2018; Martin et
338	al., 2020). The episodic gold mineralizing events are attributed to repeated mafic
339	magma injections into a shallow, felsic magma chamber and associated magma
340	degassing. Silver-Cu-Pb-Zn-Sb enrichment, by contrast, is related to quiescent
341	degassing of the felsic magma. It also acknowledges that fluid-rock interaction would
342	have involved coupled dissolution and reprecipitation and facilitated immobile
343	element enrichment such as Co, Ni, V, Cr and Ti. Considering that mafic magma
344	replenishment and its mixing with felsic magma play an important role in the
345	formation of andesite (Anderson, 1976; Eichelberger, 1978; Reubi et al., 2009; Kent
346	et al., 2010), the metal budget reported for Axi may also apply to similar cases in
347	convergent margins.

348 ACKNOWLEDGMENTS

We are grateful to David Dolejs for the editorial handling and two anonymous reviewers for thoughtful comments that greatly improved the quality of the manuscript. We also thank Dr. Yu Jie, Wu Yanshuang, Chen Xi for assistance in field work. The research was funded by National Natural Science Foundation of China (No. 42122014), the Xinjiang Key Research Project (No. 2021A03001-2) and the 354 Xinjiang Outstanding Youth Scientific Grant (No. 2020Q006). N. Li acknowledges

355 the Alexander von Humboldt Foundation for support.

356 REFERENCES CITED

- An, F., Zhu, Y.F. (2018) Geology and geochemistry of the Early Permian Axi
 low-sulfidation epithermal gold deposit in North Tianshan (NW China). Ore
- 359 Geology Reviews, 100, 12–30. doi.org/10.1016/j.oregeorev.2017.03.021
- 360 Anderson, A.T. (1976) Magma mixing: Petrological process and volcanological tool.
- Journal of Volcanology and Geothermal Research, 1, 3–33.
 doi.org/10.1016/0377-0273(76)90016-0.
- Bao, J.X., Chen, Y.J., Zhang, Z.J., Chen, H.Y., and Liu, Y.L. (2002) The preliminary
- study of laumontitization of Axi gold deposit and paleogeothermal
 minerogenetic fluid system in west Tianshan. Acta Scientiarum Naturalium
 Universitatis Pekinensis, 38, 253–259 (in Chinese with English abstract).
- 367 Carmichael, I. S. (2002) The andesite aqueduct: perspectives on the evolution of
- 368 intermediate magmatism in west-central (105–99°W) Mexico. Contributions
- 369 to Mineralogy and Petrology, 143, 6, 641–663.
 370 doi.org/10.1007/s00410-002-0370-9.
- 371 Chen, Y. J., Pirajno, F., Wu, G., Qi, J. P., and Xiong, X. L. (2012) Epithermal
- deposits in North Xinjiang, NW China. International Journal of Earth
 Sciences, 101, 889–917. doi.org/10.1007/s00531-011-0689-4.

- 374 Defant, M. J., and Drummond, M. S. (1990) Derivation of some modern arc magmas
- by melting of young subducted lithosphere. Nature, 347, 6294, 662–665.
- doi.org/10.1038/347662a0.
- Eichelberger, J.C. (1978) Andesitic volcanism and crustal evolution. Nature, 275,
 21–27. doi.org/10.1038/275021a0.
- Giggenbach, W. F. (1995) Variations in the chemical and isotopic composition of
 fluids discharged from the Taupo volcanic zone, New-Zealand. Journal of
 Volcanology and Geothermal Research, 68, 89–116.

382 doi.org/10.1016/0377-0273(95)00009-J.

- Giggenbach, W.F. (1997) The origin and evolution of fluids in
 magmatic-hydrothermal systems. In: Barnes, H.L. (eds) Geochemistry of
 hydrothermal ore deposits. John Wiley & Son, New York, 737–796.
- 386 Guo, H.H., Audetat, A. (2017) Transfer of volatiles and metals from mafic to felsic
- 387 magmas in composite magma chambers: An experimental study. Geochmica
- 388 et Cosmochimica Acta, 198, 360–378. doi.org/10.1016/j.gca.2016.11.029.
- Halter, W.E., Heinrich, C.A., and Pettke, T. (2005) Magma evolution and the
 formation of porphyry Cu-Au ore fluids: Evidence from silicate and sulfide
 melt inclusions. Mineralium Deposita, 39, 845–863.
 doi.org/10.1007/s00126-004-0457-5
- Hattori, K. H., and Keith, J. D. (2001) Contribution of mafic melt to porphyry copper
 mineralization: evidence from Mount Pinatubo, Philippines, and Bingham

395	Canyon,	Utah,	USA.	Mineralium	Deposita,	36,	799–806.
396	doi.org/10	.1007/s00	12601002	209.			

- Hurtig, N.C., and Williams-Jones, A.E. (2014) An experimental study of the solubility
 of MoO₃ in aqueous vapour and low to intermediate density supercritical
- 399 fluids. Geochmica et Cosmochimica Acta, 136, 169–193.
 400 doi.org/10.1016/j.gca.2014.03.043
- 401 Jenner, F.E., O'Neill, H.S.C., Arculus, R.J., Mavrogenes, J.A. (2010) The magnetite
- 402 crisis in the evolution of arc-related magmas and the initial concentration of
- 403 Au, Ag and Cu. Journal of Petrology, 51, 2445–2464. doi.org/
 404 10.1093/petrology/egs015.
- 405 Keith, J., Whitney, J., Hattori, K., Ballantyne, G., Christiansen, E., Barr, D., Cannan,
- 406 T., and Hook, C. (1997) The role of magmatic sulfides and mafic alkaline
- 407 magmas in the Bingham and Tintic mining district, Utah. Journal of Petrology,

408 38, 1679–1690. doi.org/10.1093/petrology/38.12.1679

- 409 Keith, M., Haase, K. M., Klemd, R., Smith, D. J., Schwarz-Schampera, U., and Bach,
- 410 W. (2018) Constraints on the source of Cu in a submarine 411 magmatic-hydrothermal system, Brothers volcano, Kermadec island arc. 412 Contributions Mineralogy Petrology, 173, 5, 40. to and 413 doi.org/10.1007/s00410-018-1470-5.

20

- 414 Kent, A. J., Darr, C., Koleszar, A. M., Salisbury, M. J., and Cooper, K. M. (2010)
- 415 Preferential eruption of andesitic magmas through recharge filtering. Nature
 416 Geoscience, 3, 631. doi.org/10.1038/NGEO924.
- 417 Laumonier, M., Scaillet, B., Pichavant, M., Champallier, R., and Arbaret, L. (2014)
- 418 On the conditions of magma mixing and its bearing on andesite production in
- the crust. Nature Communications, 5, 5607. doi.org/10.1038/ncomms6607.
- 420 Lee, C.T., and Bachmann, O. (2014) How important is the role of crystal fractionation
- 421 in making intermediate magmas? Insights from Zr and P systematics. Earth
- 422 and Planetary Science Letters, 393, 266–274.
 423 doi.org/10.1016/j.epsl.2014.02.044.
- Li, N., Zhang, B., Danisik, M., Chen, Y. J., Selby, D., and Xiao, W. J. (2022)
 Multi-system chronometry to address preservation and exhumation of an
 Andean-type continental arc: Insights from the Paleozoic Axi epithermal
 deposit Chinese Western Tianshan. Journal of the Geological Society London,
 igs2021-150.
- Liu, X. X., Wang, G. H., Huo, Q., Xie, J. P., Li, S. P., Wu, H. Y., and Guo, Y. J.
 (2015) Novel two-step process to improve efficiency of bio-oxidation of Axi
 high-sulfur refractory gold concentrates. Transactions of Nonferrous Metals
 Society of China, 25, 4119–4125. doi.org/10.1016/S1003-6326(15)64063-8
 (in Chinese with English abstract).

434	Liu, Z.,	Mao, X	K., Deng,	H., Li	, B.,	Zhang,	S.,	Lai,	J.,	Bayless,	R.	С.,	Pan,	М.,	Li,	L.,
-----	----------	--------	-----------	--------	-------	--------	-----	------	-----	----------	----	-----	------	-----	-----	-----

435	and Shang, Q. (2018) Hydrothermal processes at the Axi epithermal Au
436	deposit, western Tianshan: Insights from geochemical effects of alteration,
437	mineralization and trace elements in pyrite. Ore Geology Reviews, 102,
438	368-385. doi.org/10.1016/j.oregeorev.2018.09.009.
439	Liu, Z., Mao, X., Ackerman, L., Li, B., Dick, J. M., Yu, M., Peng, J., and Shahzad, S.
440	M. (2020) Two-stage gold mineralization of the Axi epithermal Au deposit,
441	Western Tianshan, NW China: Evidence from Re-Os dating, S isotope, and
442	trace elements of pyrite. Mineralium Deposita, 55, 863-880.
443	doi.org/10.1007/s00126-019-00903-6.
444	Martin, A. J., Keith, M., Parvaz, D. B., McDonald, I., Boyce, A. J., McFall, K. A.,
445	Jenkin, G. R. T., Strauss, H., and MacLeod, C. J. (2020) Effects of magmatic
446	volatile influx in mafic VMS hydrothermal systems: Evidence from the
447	Troodos ophiolite, Cyprus. Chemical Geology, 531, 119325. doi.org/
448	10.1016/j.chemgeo.2019.119325.
449	Murowchick, J.B. (1992) Marcasite inversion and the petrographic determination of
450	pyrite ancestry. Economic Geology, 87, 1141–1152.

- 451 Mustard, R., Ulrich, T., Kamenetsky, V.S, Mernagh, T., 2006. Gold and metal
- 452 enrichment in natural granitic melts during fractional crystallization. Geology,
- 453 34, 85–88. doi.org/10.1130/G22141.1.

- 454 Nadeau, O., Stix, J., and Williams-Jones, A. E. (2016) Links between arc volcanoes
- 455 and porphyry-epithermal ore deposits. Geology, 44, 11–14.
 456 doi.org/10.1130/G37262.1.
- 457 Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011) Iolite: Freeware
- 458 for the visualisation and processing of mass spectrometric data. Journal of
- 459 Analytical Atomic Spectrometry, 26, 12, 2508–2518.
 460 doi.org/10.1039/c1ja10172b.
- 461 Putnis, A. (2009) Mineral Replacement Reactions. Reviews in Mineralogy and
 462 Geochemistry, 70, 87–124. doi.org/10.2138/rmg.2009.70.3.
- 463 Reubi, O., and Blundy, J. (2009) A dearth of intermediate melts at subduction zone
- volcanoes and the petrogenesis of arc andesites. Nature, 461, 7268, 1269.
 doi.org/10.1038/nature08510.
- 466 Rudnick, R. L. (1995) Making continental crust. Nature, 378, 6557, 571–578.
 467 doi.org/10.1038/378571a0.
- 468 Rui, Z.Y., Goldfarb, R.J., Qiu, Y.M., Zhou, T.H., Chen, R.Y., Pirajno, F., and Yun, G.
- 469 (2002) Paleozoic-early Mesozoic gold deposits of the Xinjiang Autonomous
- 470 Region, northwestern China. Mineral Deposita, 37, 393–418.
 471 doi.org/10.1007/s00126-001-0243-6.
- 472 Seward, T., Williams-Jones, A.E, and Migdisov, A. (2014). The chemistry of metal
- transport and deposition by ore-forming hydrothermal fluids. Treatise on
 Geochemistry 2nd Edition, 29–57. doi.org/10.1016/B978-0-08-095975-7.01102-5

475	Sillitoe, R. H., and Hedenquist, J. W. (2003) Linkages between volcanotectonic
476	settings, ore-fluid compositions, and epithermal precious metal deposits.
477	Special Publication-Society of Economic Geologists, 10, 315-343. doi.org/
478	10.1126/science.101.2621.295-b.
479	Simmons, S. F., and Brown, K. L. (2007) The flux of gold and related metals through
480	a volcanic arc, Taupo Volcanic Zone, New Zealand. Geology, 35, 1099–1102.
481	doi.org/ 10.1130/G24022A.1.
482	Simmons, S. F., White, N. C., and John, D. A. (2005) Geological characteristics of
483	epithermal precious and base metal deposits. Economic Geology 100th
484	anniversary volume, 29, 485-522. doi.org/10.2113/gsecongeo.100.5.1052.
485	Stern, C.R., Funk, J.A., Skewes, M.A., and Arevalo, A. (2007) Magmatic anhydrite in
486	plutonic rocks at the El Teniente Cu-Mo deposit, Chile and the role of sulfur-
487	and copper-rich magmas in its formation. Economic Geology, 102, 1335-1344.
488	doi.org/10.2113/gsecongeo.102.7.1335.
489	Webster, J.D., and Botcharnikov, R.E. (2011) Distribution of sulfur between melt and
490	fluid in S-O-H-C-Cl-bearing magmatic systems at shallow crustal pressures
491	and temperatures. Reviews in Mineralogy and Geochemistry, 73, 247-283.
492	doi.org/10.2138/rmg.2011.73.9
493	White N. C., and Hedenquist J. W. (1990) Epithermal environments and styles of
494	mineralization - variations and their causes, and guidelines for exploration.

24

- 495 Journal of Geochemical Exploration, 36, 445–474.
 496 doi.org/10.1016/0375-6742(90)90063-G.
- White N. C., and Hedenquist J. W. (1995) Epithermal gold deposits: styles,
 characteristics and exploration. Society of Economic Geology newsletter 23,
 9–13.
- 500 Williams-Jones, A.E., and Heinrich, C.A. (2005) Vapor transport of metals and the 501 formaiton of magmatic-hydrothermal ore deposits. Economic Geology, 100,
- 502 1287–1312. doi.org/10.2113/100.7.1287.
- 503 Williams-Jones, A.E., and Migdisov, A.A. (2014) Experimental constraints on the
- transport and deposition of metals in ore-forming hydrothermal systems. In:
 Kelley, K.D., and Golden, H.C. Builing Exploration Capability for the 21th
 Century. 18, 77–95.
- 507 Williams-Jones, A.E., Migdisov, A.A., Archibald, S.M., and Xiao, Z.F. (2002)
- 508 Vapor-transport of ore metals. In: Hellmann, R., and Wood, S.A. Water-rock 509 interactions, ore deposits, and environmental geochemsitry: A tribute to David

510 A. Crerar. The Geologicla Society, specially publication, 7, 279–305.

- 511 Wood, S.A. and Samson, I.M. (1998) Solubility of ore minerals and complexation of
- 512 ore metals in hydrothermal solutions. Reviews in Economic Geology, 10, 33–80.
- 513 Ye, T., Xi, W., Li, N., and Danisk, M. (2020). From magma replenishment to
- 514 epithermal mineralization: Combined evidence from zircon U-Pb,

515	(U-Th-[Sm])/He	and	trace	element	data.	Ore	Geology	Reviews,
516	doi.org/10.1016/j.	oregeo	orev.202	20.103746.				

- 517 Yu, J., Li, N., Qi, N., Guo, J.P., and Chen, Y.J. (2018) Carboniferous-Permian
- 518 tectonic transition envisaged in two magmatic episodes at the Kuruer Cu-Au
- 519 deposit, Western Tianshan (NW China). Journal of Asian Earth Sciences, 153,
- 520 395–411. doi.org/ 10.1016/j.jseaes.2017.07.048.
- 521 Zajacz, Z., Halter, W.E., Pettke, T., and Guillong, M. (2008) Determination of
- 522 fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid
- 523 and silicate melt inclusions: Controls on element partitioning. Geochmica et
- 524 Cosmochimica Acta, 72, 2169-2197. doi.org/10.1016/j.gca.2008.01.034
- 525 Zajacz, Z., Candela, A., Piccoli, M., Waelle, M., and Sanchez-Valle, C. (2012) Gold
- 526 and copper in volatile saturated mafic to intermediate magmas: Solubilities,
- 527 partitioning, and implications for ore deposit formation. Geochimica et
- 528 Cosmochimica Acta, 91, 140–159. doi.org/10.1016/j.gca.2012.05.033.
- 529 Zhai, W., Sun, X. M., Sun, W. D., Su, L. W., He, X. P., and Wu, Y. L. (2009)
- 530 Geology, geochemistry, and genesis of Axi: A Paleozoic low-sulfidation type 531 epithermal gold deposit in Xinjiang, China. Ore Geology Reviews, 36,
- 532 265–281. doi.org/10.1016/j.oregeorev.2009.04.003.
- 533 Zhang, B. (2020) Metallogeny study of the Axi gold deposit in Western Tianshan,
- 534 Xinjiang. Ph.D. thesis, Peking University, Beijing, 229 p (in Chinese with
- 535 English abstract).

- 536 Zhang, B., Li, N., Shu, S., Wang, W., Yu, J., Chen, X., Ye, T., and Chen, Y. (2018)
- 537 Textural and compositional evolution of Au-hosting Fe-S-As minerals at the
 538 Axi epithermal gold deposit, Western Tianshan, NW China. Ore Geology
 539 Reviews, 100, 31–50. doi.org/10.1016/j.oregeorev.2017.08.002.
- 540

541 FIGURE CAPTIONS

542 FIGURE 1. A simplified geological map of the Axi epithermal deposit (modified after

- 543 Zhang et al., 2018).
- 544
- 545 FIGURE 2. Representative SEM images, showing textures of different types of pyrite546 and marcasite.
- 547 A: Py1 characterized by a porous core (Py1a), a compact mantle (Py1b) and an

oscillatory-zoned rim (Py1c). Near it is bladed Mar1 with an arsenopyrite overgrowth.

549 Also shown is a laser ablation traverse across the crystal; B: Py2 accompanied by

- 550 coeval chalcopyrite and tetrahedrite; C: tiny, oscillatory-zoned Py3; D. Mar2 with a
- laminated relict "core" (Mar2a), clear "rim" (Mar2b) and an arsenopyrite overgrowth;
- 552 E. fan-shaped Mar3 (with an arsenopyrite overgrowth) coexisting with chalcedony
- and calcite; F. Homogeneous Mar4 characterized by the absence of an arsenopyrite
- overgrowth and coexistence with zoned calcite.
- 555 Abbreviations: Asp-arsenopyrite; Cc-calcite; Ccp-chalcopyrite; Mar-marcasite;
- 556 Py-pyrite; Qz-quartz; Td-tetrahedrite.

557

558 FIGURE 3. Photomicrographs showing paragenetic relationship among different 559 types of pyrite and marcasite. 560 A: Py1 crosscut by Mar1; B: pseudomorphic replacement of clinopyroxene by Py1; C: 561 a breccia clast containing Py1 cemented by Py1+quartz; Py1 crystals at the reaction 562 front or in the clast are morphologically irregular (Py1a), whereas those away from 563 the front or in the cement are subhedral to euhedral Py1b or Py1c; D: Py1 included in 564 or surrounded by Py2; E: Py2 crosscut by Mar3; F: Py1-bearing clast cemented by 565 Py3+chalcedony; G: a clast containing Py1, Py3 and Mar1 cemented by Mar2; H: a 566 calcite-Mar4 vein crosscutting a calcite-chalcedony-Mar3 vein; I: a lattice texture 567 composed of platy quartz (pseudomorphs after calcite) and adularia, which was 568 crosscut or infilled by later calcite. The yellow lines illustrate the inner textural 569 boundary (A), and the white lines outline the phenocryst (B), breccia (C, F, G), or 570 veinlet (H). 571 Mineral abbreviation: Adl-adularia; Apy-arsenopyrite; Cc-calcite; Cln-chalcedony;

- 572 Mar-marcasite; Py-pyrite; Qz-quartz.
- 573

574 FIGURE 4. Crustiform banding characterized by the rhythmic alternation of quartz,575 chalcedony, Py3 and Mar1.

576 The crustiform bands comprise eight thin layers (numbered 1 to 8); Mar 1 either

577 forms thin laminae (layer 7 in Fig. C)) alternating with aggregates of Py3 and

- 578 chalcedony (layer 1), or coexist with Py3 and arsenopyrite in a single band, indicating
- 579 nearly contemporaneous precipitation of Mar1 and Py3.
- 580 Mineral abbreviation: Apy-arsenopyrite; Mar-marcasite; Py-pyrite.
- 581
- 582 FIGURE 5. Boxplots of selected trace element concentrations in pyrite and marcasite,
- 583 illustrating the episodic nature of the gold mineralizing events (Au1, Au2, Au3) and
- 584 Ag-Pb-Zn-Sb enrichment (BM1, BM2, BM3).
- 585
- 586 FIGURE 6. Two laser ablation traverses across a Py1 grain illustrating the elevated
- 587 Au and As contents of Py1b. There are numerous inclusions (e.g., rutile and galena) in588 the core (Py1a).
- 589
- FIGURE 7. A schematic model showing the relationship between mafic magmareplenishment, magmatic degassing, sulfide precipitation and mineralization.

Fig. A shows intense magmatic degassing associated with the intrusion of mafic magma into a shallow, felsic magma reservoir, where the degassed, supercritical volatile is enriched in Au, As and S. Fig. B illustrates a period of magma quiescence, during which the magma and exsolved supercritical fluids are gradually enriched in Ag, Cu, Pb, Zn and Sb. During intrusion of the mafic magma, the supercritical fluid is vapor-like and condenses brine, with S, Au and As transported dominantly by the solve the supercritical fluids are gradually enriched in the supercritical fluid is

- 599 quiescence the temperature is lower, the supercritical fluid is liquid-like and Cl, Cu,
- 600 Ag, Pb, Zn are transported by the brine.
- 601 Fig. C illustrates the association between magma degassing and precipitation of FeS₂.
- 602 The formation of porous, Co-Ni-V-Cr-Ti-rich Py1a and Mar2a was caused by coupled
- 603 dissolution-reprecipitation of the host andesite (here represented by the clinopyroxene,
- 604 i.e. Cpx). The incursion of Au-As-S-rich volatile induced precipitation of Py1b, Py3
- and Mar3, while the Ag-Cu-Pb-Zn-Cd-rich volatile favored formation of Py2, Mar2b
- and Mar4. Interlayered Mar1 with Py3 in crustiform banding resulted from mixing
- 607 with (or diluted by) meteoric water.
- 608

609 TABLE CAPTIONS

- 610 Table 1 Summary of compositions of pyrite and marcasite from the Axi gold deposit
- 611 (ppm)
- 612

613 Appendix

- 614 Appendix A1. Composition and reproducibility of the standard MASS-1.
- 615
- 616 Appendix A2. Compositions of selected pyrite and marcasite crystals from the Axi
- 617 gold deposit (ppm).

Table 1. Summary of compositions of pyrite and marcasite from the Axi gold deposit (ppm)

No.	Hg	Au	Sb	Ag	Mo	Se	As	Zn	Cu	Co	Mn	Cr	V	Cs	Tl	Pb	Sc	Ti	Ni	Al
Py1a																				
Min.	0.08	1.3	47	6.3	0.04	4.4	9400	0.60	258	6.8	5.4	0.93	1.5	0.83	7.3	108	2.9	306	63	117
Max.	6.2	129	1160	95	27	17000	66300	37	2070	690	336	32	820	50	244	2550	50	38700	1400	17900
Med.	1.5	23	168	27	0.77	70	44000	9.6	459	209	28	12	14	10	43	381	11	3300	510	3860
Std.	2.2	35	276	22	7.6	4198	15257	9.3	370	159	83	8.0	168	11	67	627	13	7279	376	4537
Py1b																				
Min.	0.32	1.0	44	6.2	0.26	15	18900	0.20	56	0.61	0.80	0.24	0.37	0.32	0.16	2.3	0.09	8.3	3.9	2.5
Max.	4.4	147	2070	70	14	44000	168000	23	790	326	1600	34	1630	88	570	1090	36	18300	500	11200
Med.	1.2	39	107	23	1.5	195	67500	1.8	265	25	7.3	3.5	0.83	1.3	1.8	25	0.22	12	35	175
Std.	1.6	58	682	20	4.5	19149	48377	7.5	244	101	521	10	511	30	182	335	13	5745	148	4491
Py1c																				
Min.	0.03	1.0	11	1.5	0.02	1.10	3010	0.25	0.75	0.05	0.19	0.25	0.04	0.01	0.47	0.06	0.01	4.1	0.05	1.0
Max.	2.8	137	702	253	276	104	84300	2330	1710	570	202	266	164	5.7	125	3190	37	27000	936	32000
Med.	0.20	13	119	27	2.7	11	15000	1.1	96	11.0	4.9	1.0	0.67	1.0	8.0	30	0.16	7.7	40	153
Std.	0.57	35	138	44	43	18	17816	356	416	100	31	45	26	1.3	22	506	7.1	4453	206	5241
Py2																				
Min.	0.10	1.0	156	53	0.02	0.3	1890	20	296	0.74	0.42	0.18	0.04	0.02	6.2	6.3	0.01	4.2	5.3	0.40
Max.	0.45	15	2700	305	1.4	27	9600	1620	10200	221	11	6.8	6.3	2.1	39	521	0.17	270	242	1160
Med.	0.25	6.0	884	157	0.28	5.2	4610	96	928	38	2.4	0.64	0.59	0.53	18	124	0.07	5.3	66	341
Std.	0.08	3.3	596	86	0.38	6.1	1582	402	2388	51	2.4	1.5	1.6	0.59	9.8	117	0.05	77	69	326
РуЗ																				
Min.	0.20	0.17	10	0.04	0.02	6.0	5340	1.5	5.2	0.21	1.0	0.80	0.30	0.64	0.40	1.3	0.10	1.30	7.3	4.5
Max.	6.2	129	1590	330	10	650	142000	73	729	715	590	205	232	15	134	3300	75	95000	1660	62000

Med.	0.60	34	189	53	1.1	40	37100	9.7	292	106	27	15	11	6.2	34	306	3.9	1905	238	4175
Std.	1.8	37	375	59	3.4	166	31994	14	213	162	105	44	52	4.8	30	752	16	21683	482	12864
Mar1																				
Min.	0.03	4.1	44	20	8.2	1.9	3820	0.38	4.5	0.22	0.70	0.35	0.11	0.01	5.2	2.7	0.01	4.1	3.3	28
Max.	1.8	24	338	117	368	14	12700	3.7	186	41	6.5	14	3.1	1.7	27	374	1.8	14	527	1770
Med.	0.45	8.3	206	66	37	9.7	9555	0.64	18	6.4	1.6	0.89	0.91	0.67	15	13	0.66	5.4	168	336
Std.	0.54	5.7	82	27	114	3.3	2632	0.94	64	12	1.6	3.9	0.98	0.45	6.4	116	0.60	2.7	162	579
Mar2a																				
Min.	0.52	2.7	135	89	1.2	0.8	2120	2.1	35	11	0.42	0.47	1.0	0.23	3.4	6.0	1.0	4.9	186	5.7
Max.	12	16	1169	350	83	3200	29500	219	225	841	5090	215	39	9.0	461	840	38	180	2440	8000
Med.	4.4	5.3	581	243	3.7	4.5	6380	69	139	298	1190	8.0	9.7	0.68	71	206	12	32	697	205
Std.	3.2	2.7	261	72	22	1049	8566	61	42	182	1374	67	8.3	3.2	135	235	12	56	701	1914
Mar2b																				
Min.	0.36	0.18	48	9.9	0.19	2.8	15	0.43	11	0.91	2.0	0.96	0.20	0.11	5.6	0.22	0.03	4.1	2.2	3.6
Max.	5.3	19	1430	253	65	1300	52600	532	980	313	19400	66	189	5.7	402	361	133	160	2530	18800
Med.	1.5	4.0	190	60	6.0	8.0	3235	27	71	58	43	3.8	7.0	1.3	62	38	2.2	13	195	410
Std.	1.4	5.4	272	54	16	503	10791	143	195	79	3906	17	43	1.7	91	91	32	50	533	3710
Mar3																				
Min.	1.3	4.4	348	77	0.40	1.1	8300	0.90	95	150	4.0	1.7	0.50	0.08	16	47	0.13	7.2	359	48
Max.	10	34	2710	369	5.2	180	94300	1510	357	2870	14500	40	59	9.1	92	2370	92	150	8430	41900
Med.	2.6	12	872	146	1.4	20	25400	29	138	290	1030	16	7.7	2.9	56	169	9.7	30	1460	5700
Std.	3.0	7.2	610	63	1.1	44	22709	366	66	634	4139	9.8	14	2.6	21	554	25	37	1747	10101
Mar4																				
Min.	8.4	0.07	325	8.5	1.4	1.6	2500	52	563	401	189	1.3	0.86	0.08	17	619	0.23	5.7	158	32
Max.	15	0.19	797	15	4.9	12	4450	341	2900	955	3560	189	44	3.5	40	1252	29	830	407	15600
Med.	13	0.11	417	13	2.6	5.8	3115	104	779	706	1056	8.2	15	0.68	29	1027	6.7	7.2	258	114

Std. 2.1 0.03 126 2.2 0.87 3.1 566 67 546 152 990 49 14 1.0 6.4 190 10 199 64 3737

