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 12 

ABSTRACT 13 

The results of investigations into enrichment of precious metals in sphalerite and 14 

pyrite from the Maluntou epithermal gold deposit, China are reported. The resulting 15 

data suggest intimate associations of Au- and Ag-bearing nanoparticles with 16 

chalcopyrite inclusions in sphalerite and pyrite. The origins of chalcopyrite inclusions 17 

involved different hydrothermal processes, including recrystallization-driven phase 18 

separation from parent chalcopyrite-sphalerite solid-solutions, and replacement of 19 

pre-existing pyrite in the presence of Cu-bearing fluids. The chalcopyrite 20 

blebs/lamellae follow sphalerite {111} planes which define a shared sulfur layer for 21 

both chalcopyrite and sphalerite. This study indicates that mixing and boiling during 22 

evolution of ore-forming fluids for the Maluntou deposit are key processes for the 23 

abnormal enrichment of precious metals in sphalerite and pyrite. The chalcopyrite 24 

micro/nano inclusions enhanced enrichment of precious metals in sphalerite provides 25 

new insights into the controls on the enrichment of precious metals in sulfides. 26 
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 28 

INTRODUCTION 29 

Of the major precious metals recovered from sulfide ore deposits, gold and silver 30 

show natural affinities with different sulfide minerals. Gold is unique in that it occurs 31 

as both “visible” grains (>1000 Å; under aided optical magnification) and “invisible” 32 

(<1000 Å) Au in pyrite, with the latter either entrapped into the lattice defects as 33 

nanoparticles (Au0) or incorporated into the pyrite structure in solid solutions (Au1+; 34 

Cook and Chryssoulis, 1990; Palenik et al., 2004; Reich et al., 2005; Hastie et al., 35 

2021). In contrast, Ag is usually recovered as a by-product in Pb and Zn mining of 36 

hydrothermal Pb-Zn deposits (Slack et al., 2020; Belokonov et al., 2021), as Ag has 37 

an affinity with galena and sphalerite (Huston et al., 1996; Wu et al., 2016, 2018); 38 

although high concentrations of Ag are more likely related to µm/sub-µm sized 39 

inclusions of discrete argentiferous sulfosalts, such as diaphorite (Sharp and Buseck, 40 

1993; Giuli et al., 2005) and tetrahedrite (Gasparrini and Lowell, 1985; Wang et al., 41 

2018; Zhai et al., 2019) in galena. 42 

Several mechanisms are thought to control the incorporation of Au and Ag as 43 

solid solutions in sulfides. Arsenic-induced defects have been proposed to facilitate 44 

the incorporation of Au in arsenian pyrite (Gopon et al., 2019; Zhang et al., 2022), 45 

with substitution of Au1+ for Fe2+ (Merkulova et al., 2019; Filimonova et al., 2020; 46 

Meng et al., 2022). Galena can host significant quantities of Ag1+, through the 47 

following coupled substitutions of Ag1+ + Sb3+ ⇔ 2Pb2+ or Ag1+ + Bi3+ ⇔ 2Pb2+ 48 

(Lueth et al., 2000; Chutas et al., 2008; Grant et al., 2015). Silver(I) can enter the 49 
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chalcopyrite structure via a co-substitution mechanism: (x + 2y)(Ge, Sn)4+ + x(Zn, 50 

Pb)2+ + y(Cu, Ag)1+ ⇔ (2x + 3y)Fe3+ (Belissont et al., 2019) and can also be 51 

incorporated into the sphalerite structure through limited coupled substitutions via 52 

2Ag1+ + Sn4+ ⇔ 3Zn2+ (Cook et al., 2009) or Ag1+ + Cu1+ + Sn4+ ⇔ 3Zn2+ (Pring et al., 53 

2020). Furthermore, geochemical factors likely influence the distribution of Ag in 54 

sulfides. For example, higher temperatures and more reduced conditions favor 55 

preferential partitioning of Ag into chalcopyrite over galena and sphalerite in 56 

hydrothermal systems (Huston et al., 1996; Wu et al., 2016). 57 

In recent years, there has been a growing attention towards the role of submicron- 58 

to nanometer-sized mineral particles in controlling the mobility of precious metals in 59 

geological settings (e.g., Reich et al., 2006; Deditius et al., 2011; Wu et al., 2016, 60 

2018). The disseminated chalcopyrite in sphalerite crystals has been extensively 61 

documented from natural ores of sulfide deposits (e.g., Bortnikov et al., 1991; Xu et 62 

al., 2021). Here, we document enhanced enrichment of precious metals in sphalerites 63 

by chalcopyrite micro/nano inclusions, relative to those chalcopyrite-free sphalerites 64 

from the Maluntou epithermal gold deposit, which provides new insights into the 65 

controls on the enrichment of precious metals in sulfides. 66 

MATERIALS AND METHODS 67 

Materials 68 

Maluntou deposit is an intermediate-sulfidation epithermal Au deposit (> 5.0 t Au 69 

@ 3.70 g/t) in the Dongkeng Volcanic Basin in Fujian Province, southeastern China, 70 

where ore-forming fluids evolved from higher-temperature magmatic-hydrothermal 71 
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fluids (up to 377 oC) due to mixing with meteoric water (Chen et al., 2021). The 72 

orebodies are hosted by hydrothermally-altered volcanic breccias and dacitic-rhyolitic 73 

pyroclastic rocks of the Huangkeng Formation and spatially controlled by the NW- 74 

and NE-striking faults and fractures (Chen et al., 2021). Ore samples used in this 75 

study (Fig. 1) were collected from the altered dacitic volcanic tuff at 360 m above sea 76 

level. 77 

Electron Microprobe Analysis 78 

The chemical composition of sphalerite was determined using electron 79 

microprobe analysis (EMPA) employing a JXA 8230 instrument. The microprobe is 80 

equipped with five wavelength-dispersive X-ray spectrometers (WDS), including 81 

channel 1 (PETJ and LiF), channel 2 (TAP and LDE2), channel 3 (PETH and LiFH), 82 

channel 4 (PETL and LiFL), and channel 5 (TAP and LDE1). Elements, X-ray lines 83 

and standards used were: FeKα/chalcopyrite, CuKα/chalcopyrite, ZnKα/sphalerite, 84 

PbMα/galena, SKα/spahlerite, AsLα/arsenopyrite, AuMα/metallic gold, SbLα/Sb2Te3, 85 

NiKα/(Fe,Ni)9S8, AgLα/metallic silver, and MnKα/fayalite (2.2 wt% MnO). A LiF 86 

crystal was used for Fe, Cu, and Zn, a PETJ crystal for Pb and S, a TAP crystal for As, 87 

a PETH crystal for Au and Sb, a LiFH crystal for Ni, a PETL crystal for Ag, and a 88 

LiFL crystal for Mn. The analyses were undertaken using an accelerating voltage of 89 

15 kV and a beam current of 20 nA. The beam spot diameter was set at 1 μm. 90 

TESCAN Integrated Mineral Analysis 91 

TESCAN Integrated Mineral Analysis (TIMA) can deliver high speed, detailed 92 

measurements on samples by using multiple energy dispersive X-ray spectroscopy 93 
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(EDS) detectors operated at very high count rates, provide quantitative data for 94 

mineral identification, and help further understand complex mineral relationships (e.g., 95 

Hrstka et al., 2018). Here, compositional maps were obtained on carbon-coated thin 96 

sections using a TESCAN Mira-3 field emission scanning electron microscope 97 

(FE-SEM) equipped with four EDS detectors (EDAX Element 30) at Nanjing 98 

Hongchuang Geological Exploration Technology Service Co. Ltd., China. An 99 

acceleration voltage of 25 kV and a probe current of 9.25 nA were used. The electron 100 

beam intensity was set to 19.00 and spot size to 86.99 nm. Working distance was set 101 

to 15 mm. Before every test, the probe current and backscattered electron (BSE) 102 

signal intensity were calibrated on a Faraday cup using the automated procedure. The 103 

calibration set point was 600 kcps. EDS performance was checked using a manganese 104 

standard. This dot mapping mode, together with TIMA liberation analysis, was used 105 

to collect modal and textural data of our samples. The pixel and dot spacings were set 106 

to 3 μm and 9 μm, respectively. 160 individual fields with 1500 μm width were 107 

scanned, with X-ray events and acquisition pts being 4690.6 M and 4766156, 108 

respectively. 109 

Transmission Electron Microscopy 110 

A carbon-coated thin section was characterized by optical and SEM microscopy 111 

prior to focused ion beam-SEM (FIB-SEM) study. Two foils from the 112 

chalcopyrite-speckled areas of sphalerite were prepared using a Helios G4-UX dual 113 

FIB-SEM at Nanjing NanZhi Institute of Advanced Optoelectronic Integration, China. 114 

The sample was first tilted at 52o with respect to the ion beam. The procedure starts 115 
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by the deposition of platinum onto the region of interest to prevent damage of the top 116 

portion of the specimen during milling. Trenches were sputtered on either side of the 117 

region of interest using a Ga+ ion-beam at high voltage and current (30 kV and 20 nA) 118 

to produce a slice, with its two surfaces cleaned using a lower current (0.79 nA). The 119 

specimen was then de-tilted to 0o and a tungsten needle was brought into the field and 120 

welded with Pt onto the top portion of the slice. The slice was then lifted, transported, 121 

and finally attached to the Cu grid holder and the needle was cut away. The specimen 122 

was tilted back to 52o and milling was conducted on alternate sides of the slice using 123 

various beam currents (80 pA – 0.79 nA). The foil was finally cleaned at low voltage 124 

and current (5 kV and 15 pA) and polished to a final thickness of ~ 80 nm. 125 

Two foils were imaged using a FEI Tecnai F20 transmission electron microscope 126 

(TEM) and a FEI Titan Cubed G2 60−300 aberration-corrected S/TEM (equipped 127 

with Super-X™ technology) at Nanjing University, China. The two instruments were 128 

operated at electron beam accelerating potentials of 200 kV and 300 kV, respectively. 129 

Bright-field TEM observations, selected-area electron diffraction (SAED), high-angle 130 

annular dark-field (HAADF) observations, and EDS analyses (~ 1 wt% detection limit) 131 

were performed. The latter two observations and analyses were performed under 132 

scanning TEM (STEM) mode. The 22.5 mrad convergence angle and 0.05 nA probe 133 

current were used for the HAADF-STEM observations.  134 

RESULTS 135 

The texture of a typical ore sample from the Maluntou deposit clearly exhibits 136 

three distinct features: quartz veins, alteration zones, and dacitic volcanic tuff (Fig. 1). 137 
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TIMA mapping show that sulfides are enriched within the alteration zones (Fig. 1a) 138 

and predominantly composed of sphalerite and galena, with minor chalcopyrite and 139 

pyrite (Fig. 1b). 140 

Most sphalerite crystals are heavily speckled with chalcopyrite blebs/lamellae in 141 

the µm to sub-µm size range (Fig. 2). Such a texture is sometimes referred to as 142 

“chalcopyrite disease” (Barton, 1978). A higher magnification view of the texture 143 

shows that the distributions of some chalcopyrite lamellae are crystallographically 144 

controlled (Figs. 2e and 2f). In addition, some sphalerite domains show the absence of 145 

chalcopyrite inclusions (Figs. 2e and S1) and range from approximately several 146 

microns to 500 μm in size on the basis of Figure S1. Further EMPA analysis indicates 147 

that sphalerite is Fe-bearing (0.1–2 wt%) and Au/Ag-free (Table S1). At least 80% of 148 

the total chalcopyrite in our sample occurs as blebs/lamellae in sphalerite, while the 149 

remainder is present as fracture-fillings in pyrite (Figs. 2g and 2h).  150 

The intimate intergrowths of electrum with either chalcopyrite or Ag-rich 151 

covellite were also found in pyrite (Figs. 2g, 2h, S2, and S3). The Raman spectrum 152 

confirms that the mineral is covellite rather than “blaubleibender covellin” species, 153 

yarrowite or spionkopite. Together with Cu enrichment, minor amounts of Cu-Ag-(Au) 154 

nanoparticles are adhered to those chalcopyrite inclusions in sphalerite (Figs. 2c and 155 

2d), providing an evidence of the derivation of the precious metals from Cu-rich 156 

hydrothermal fluids. 157 

Further TEM observations suggest the presence of dislocation/stacking 158 

fault-induced distortions (Fig. 3). These distortions are arranged parallel to one 159 
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another and follow {111} planes (Figs. 3a and 3e–3f). The 160 

crystallography-constrained distribution of chalcopyrite lamellae in sphalerite is 161 

evident, with the lamellae following sphalerite {111} planes (Figs. 3b–3e). In addition, 162 

the chalcopyrite blebs/lamellae are closely associated with nanoparticles of native Cu, 163 

Au-Ag-Cu alloy and Cu-Ag-S, as indicated by EDS mappings (Figs. 4, S4 and S5). 164 

DISCUSSION 165 

Possible origins of chalcopyrite blebs/lamellae within sphalerite 166 

 The origin of disseminated chalcopyrite blebs/lamellae in sphalerite remains 167 

unclear and possibly involves processes of exsolution (Shimazaki, 1980), replacement 168 

(Govindarao et al., 2018), coprecipitation (Bortnikov et al., 1991) or a mixture of the 169 

above. Given hydrothermal origins of these blebs/lamellae, some empirical arguments, 170 

such as extremely limited Cu solubility in sphalerite (Kojima and Sugaki, 1984) based 171 

on dry experiments at relatively high temperatures (> 500 oC) rather than under 172 

hydrothermal conditions, require further mineralogical re-examination built on 173 

mineralogical textural evidence. Exsolution of chalcopyrite from bornite (Li et al., 174 

2018; Adegoke et al., 2021), and bornite from bornite-digenite solid-solutions (Zhao 175 

et al., 2017), in the presence of hydrothermal fluids has been reported to be greatly 176 

accelerated compared to the equivalent dry system at lower temperatures (< 300 oC). 177 

The exsolution rate and lamellae size were found to be very sensitive to the 178 

compositions of hydrothermal fluids. Here, replacement is unlikely to be the 179 

mechanism for our sphalerites where most chalcopyrite occurs as µm/sub-µm sized 180 

inclusions (Figs. 2 and S1), without typical hydrothermal replacement textures (e.g., 181 
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chalcopyrite mesh-veinlets; Xu et al., 2021). In contrast, replacement is evident for 182 

pyrite where chalcopyrite occurs as fracture-fillings (Figs. 2g and 2h). Additionally, 183 

the intimate association of Cu-Ag-(Au) nanoalloys and chalcopyrite blebs/lamellae 184 

(Figs. 2c and 2d) is indicative of a common formation mechanism. Zhao et al. (2017) 185 

reported a process of hydrothermal and recrystallization-driven coarsening of 186 

exsolution lamellae from bornite-digenite solid-solutions, which was accompanied by 187 

healing of open porous microstructures in the solid-solutions. Li et al. (2018) 188 

observed a similar situation with the exsolution of chalcopyrite from bornite. Wu et al. 189 

(2018) also reported a recrystallization-driven decrease in Ag content, mineral 190 

porosity, and defect density within natural sphalerite from the Edmond hydrothermal 191 

field, Central Indian Ridge. Temperature-dependent structural transformation was 192 

identified from the tetragonal α-phase chalcopyrite into the high-temperature cubic 193 

β-phase above 400 oC (Baláž et al., 1989; Chang et al., 2019). Based on these findings, 194 

it is likely that these chalcopyrite blebs/lamellae resulted from hydrothermal 195 

recrystallization, with phase separation, where earlier coprecipitation of metastable 196 

chalcopyrite-sphalerite solid-solution phases was possibly followed by a fluid-driven 197 

recrystallization process to eliminate intragranular porosity (Fig. 2d). The decreased 198 

porosity, in turn, caused a shortened path length for rapid solid-solution diffusion. 199 

Crystal-chemical considerations suggest that intragranular diffusion tends to be 200 

crystallographically constrained (e.g., Fougerouse et al., 2016). The extension of 201 

chalcopyrite lamellae along sphalerite {111} planes is evident in our study (Fig. 3). 202 

The alternative stacking structures of sulfur and metal atoms layers along sphalerite 203 
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[111] or chalcopyrite [001]/[112] can facilitate epitaxial crystallization of chalcopyrite 204 

following sphalerite {111} planes. Similar links have also been documented in the 205 

reaction of chalcopyrite with hydrochloric acid where nantokite lamellae followed the 206 

chalcopyrite {001} and {112} planes which define a shared Cu layer for both 207 

chalcopyrite and nantokite (Cai et al., 2012).  208 

Natural chalcopyrite can form by replacing pyrite in Cu-bearing hydrothermal 209 

fluids based on geological observations (Wu et al., 2016) and experimental 210 

investigations (Zhang et al., 2020, 2021), although limited amounts of Cu can 211 

substitute Fe into the pyrite structure (Pačevski et al., 2008). Therefore, the difference 212 

in occurring modes of chalcopyrite (blebs/lamellae vs. fracture-fillings; Fig. 2) can be 213 

regarded as a reflection of different mineral reaction processes, including 214 

recrystallization-driven phase separation from parent chalcopyrite-sphalerite 215 

solid-solutions, and replacement of pre-existing pyrite in the presence of Cu-bearing 216 

fluids. 217 

Controls on enrichment of precious metals within sphalerite 218 

The “barren” sphalerite domains are Au/Ag-free, consistent with general findings 219 

that sphalerite is not a significant host for structurally-bound Ag in hydrothermal 220 

systems, unless through coupled substitutions of Ag1+, with cations such as Sn4+ or 221 

In3+, for Zn2+ (Cook et al., 2009; Pring et al., 2020). Here, the intimate intergrowths of 222 

chalcopyrite blebs/lamellae with Cu-Ag-(Au) nanoparticles not only provide evidence 223 

of chalcopyrite micro/nano inclusions enhanced enrichment of precious metals within 224 

sphalerite but are also the best indicators of a key role of “chalcopyritization” in 225 
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scavenging precious metals in epithermal systems. Similarly, the introduction of 226 

electrum grains into pyrite is frequently accompanied by chalcopyritization, such as 227 

those reported in the Qiucun low-sulfidation (Ni et al., 2018; Zhang et al., 2022), the 228 

Dongji intermediate-sulfidation (Chen et al., 2021), and the Zijinshan high-sulfidation 229 

epithermal deposits (Liu et al., 2016). 230 

Of particular note is that the different modes of occurrence of Ag (ionic vs. 231 

particulate) in covellite and chalcopyrite (Figs. 2c and 2h), respectively, are consistent 232 

with the facts that gold and other precious metals readily exsolve at low temperatures 233 

from chalcopyrite, in contrast to covellite which has stronger ability to withstand 234 

cooling (Fraley and Frank, 2014; Tagirov et al., 2016). The covellite is generally of 235 

secondary origin in zones of oxidation and secondary enrichment of sulfide ore 236 

deposits and derives from primary sulfides such as chalcopyrite (e.g., Liu et al., 2016). 237 

The occurrence of Ag-rich covellite is also inferred to result from input of oxygenated 238 

seawater in some submarine hydrothermal fields and volcanic-related hydrothermal 239 

ore deposits (Demir et al., 2013; Melekestseva et al., 2017). In this study, the 240 

upwelling ore-forming fluids for the Maluntou deposit are expected to evolve into a 241 

system of relatively lower sulfur fugacity and higher oxygen fugacity. Mixing with 242 

oxygenated meteoric waters is an effective way of scavenging precious metals from 243 

ore-forming fluids, as a significant decrease in HS1– concentration can result from a 244 

relatively small increase in oxygen fugacity, thereby de-stabilizing metal hydrosulfide 245 

complexes (Williams-Jones et al, 2009). Fluid boiling is also another effective way to 246 

reduce the HS1– concentration and temperature through phase separation and adiabatic 247 
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expansion, respectively (Heinrich, 2007). Such processes of mixing and boiling have 248 

recently been proposed to occur during the evolution of ore-forming fluids at the 249 

Maluntou deposit based on analyses of fluid inclusions and petrography (Chen et al., 250 

2021). Chen et al., (2021) also proposed that this may have triggered the 251 

coprecipitation of metal ions from the Maluntou ore-forming fluids and promoted the 252 

enrichment of precious metals within chalcopyrite-sphalerite solid-solutions. 253 

IMPLICATIONS 254 

This study highlights the key role played by chalcopyrite inclusions in enhancing 255 

the enrichment of precious metals in sphalerite and pyrite. Such information can help 256 

in understanding the geochemical behaviors of Au, Ag, and Cu during the evolution of 257 

epithermal ore-forming fluids, and thereby provide guidance for further ore 258 

prospecting.  259 

The diversity of distribution and mode of occurrence of precious metals in 260 

sulfides involves a range of different hydrothermal processes, such as replacement 261 

and recrystallization-driven phase separation. Systematic research can characterize the 262 

distribution of precious metals in sulfides, especially those in ores where fluid boiling 263 

or mixing with oxygenated meteoric waters has occurred. Such information is critical 264 

for understanding Au/Ag recovery and industry processing of refractory ores. 265 
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 449 

Figure Captions 450 

Fig. 1. (a) Photograph illustrating representative textures of a typical ore sample from 451 

the Maluntou deposit. (b) TIMA image showing the mineral compositions within the 452 

alteration zones. Abbreviations: Qtz = quartz, Sp = sphalerite, Ccp = chalcopyrite, Py 453 

= pyrite, Gn = galena, Chl = chlorite, Fl = fluorite. 454 

Fig. 2. Reflected light photomicrographs (a–b, e–g) and BSE images (c, d, h) of 455 

Maluntou sulfides. (a) Image showing the intergrowths of galena and sphalerite. 456 

Chalcopyrite occurs as blebs/lamellae in sphalerite (b, e–f) or fracture-fillings in 457 

pyrite (g). Cu-Ag-(Au)-bearing nanoparticles are closely associated with chalcopyrite 458 

inclusions (c–d) in sphalerite, and Ag-rich covellite with electrum (h) in pyrite, with 459 

their EDS spectra shown in Fig. S2. Note that chalcopyrite inclusions are also 460 

associated with pores in d. The regions of two TEM specimens (R1–R2) are 461 

highlighted by white dashed boxes in b, and the boundaries between the 462 

chalcopyrite-speckled- and the “barren” portions of sphalerite by yellow dashed lines 463 

in e. Abbreviations are as per Fig. 1 with Elc = electrum and Cv = covellite. 464 

Fig. 3. (a) Bright-field image showing the distortions within the chalcopyrite-rich 465 

portions of sphalerite. HAADF-STEM images showing respectively associations of 466 

chalcopyrite with native Cu (b), Cu-Ag-Au nanoalloy (c), and Cu-Ag-S nanoparticle 467 
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(d), with the extension directions of chalcopyrite lamellae and distortions highlighted 468 

by white solid- and dashed arrows in c, respectively. (e) High-resolution STEM and 469 

fast Fourier transformation (FFT) images illustrating that the distortions in c follow 470 

sphalerite {111} planes. (f) Bragg-filtered image for e with some dislocations marked 471 

by white arrows. Abbreviations: DST = distortion, DSL = dislocation. 472 

Fig. 4. STEM and EDS maps showing the distribution of Au-Ag-Cu nanoalloy. The 473 

Cu signal is partially from the TEM grid. 474 
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