1 Revision 3

2 Word Count: 6,188 (Word count including references: 7,489)

3

6

4 Hydrothermal alteration of magmatic titanite: Implications for REE

5 remobilization and the formation of ion-adsorption HREE deposits,

South China

- 7 Yuzhou Feng^{1, 2}, Yuanming Pan³, Bing Xiao^{1, 2}, Gaobin Chu^{1, 2}, Huayong Chen^{1, 2, 4*}
- ¹*Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China*
- 9 ²CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- ³Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2,
- 11 Canada
- ⁴Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou, 510640,
- 13 China
- 14 *Corresponding author: huayongchen@gig.ac.cn

15 Address: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131,

- 16 Tianhe District, Guangzhou 510640, Guangdong PRC
- 17
- 18

ABSTRACT

19 Ion-adsorption rare earth element (REE) deposits in South China are currently 20 the main source of heavy rare earth elements (HREE). The Gucheng deposit in 21 western Guangdong Province is one example of HREE mineralization hosted in

2

22	weathered coarse-grained biotite granites (CGBG). Titanite is a common accessory
23	mineral in the CGBG and contains significant amounts of total REE (31,621 to 38,431
24	ppm), especially HREE (18,906 to 22,249 ppm). Titanite with a U-Pb age of 102.6 \pm
25	1.9 Ma in the CGBG crystallized under relatively high temperatures (722-798 °C),
26	high fH_2O , and high fO_2 conditions in the late magmatic stage, and has similar Nd
27	isotopic compositions similar to the host CGBG: 143 Nd/ 144 Nd = 0.512062 to 0.512125
28	and $\varepsilon Nd(t) = -7.4$ to -8.6.
29	Back-scattered electron (BSE) imaging and TESCAN integrated mineral
30	analyzer (TIMA) measurements show that titanite in the CGBG has been altered
31	partly to fergusonite-(Y), rutile, calcite, quartz, and fluorite. The hydrothermal fluid

responsible for titanite alteration was enriched in CO_3^2 and F, and was probably 32 exsolved from the granitic magma. HREE released from the alteration of titanite were 33 34 mostly scavenged by fergusonite-(Y) and rutile, which have been further replaced by gadolinite-(Y) and synchysite-(Ce). In addition, gadolinite-(Y) in the alteration 35 assemblages exhibits further alteration and is characterized by elevated PO_4^{3-} and SO_4^{2-} 36 contents in the altered parts. These results demonstrate that magmatic titanite in the 37 CGBG underwent complex hydrothermal alteration, with a preferential accumulation 38 of HREE in fergosnite-(Y) and gadolinite-(Y) in the alteration assemblages. 39 Preferential HREE enrichments in magmatic titanite, and its alteration assemblages, 40 41 are shown to play significant roles in the formation of the Gucheng HREE deposit.

42

3

44 Keywords: Titanite; Metasomatic alteration; REE-rich mineral; REE 45 remobilization, Ion-adsorption deposit

- 46
- 47

INTRODUCTION

Currently, almost 35 % of China's total rare earth element (REE) production 48 comes from ion-adsorption REE deposits clustered in South China (Sanematsu and 49 50 Watanabe, 2016; Jowitt et al., 2017; Li et al., 2017a). This type of REE deposits also accounts for more than 80 % of the global HREE resources (Chi et al., 2012; Li et al., 51 2017a). The genesis of these deposits has resulted in large numbers of recent studies 52 53 (Li et al., 2017a, 2019, 2020). These ion-adsorption REE deposits in South China are mostly hosted in the weathered crust of granites, where the parent granites have been 54 55 proposed to have a great influence on ore formation (Bao and Zhao, 2003; Murakami 56 and Ishihara, 2008; Li et al., 2017a, 2019, 2020). In addition, hydrothermal events commonly occur during the latest stage of granite crystallization, which may have 57 played a key role during REE accumulation (Li et al., 2017a, 2019). During 58 59 hydrothermal alteration, REE could have been leached from magmatic minerals, and subsequently scavenged by weathering-susceptible REE-bearing minerals (e.g., 60 61 synchysite-(Ce) and gadolinite-(Y)) (Bern et al., 2017; Li et al., 2017a,b). As a result, 62 magmatic minerals in granites typically show complex compositional textures (e.g., dissolution-reprecipitation) (Li et al., 2017a,b, 2019). These minerals can respond 63 texturally and compositionally to changing physicochemical conditions and preserve a 64

65	wealth of information on hydrothermal processes and fluid compositions (Jamtveit,
66	1991; Pan et al., 1993; Van Hinsberg et al., 2010; Cao et al., 2015; Wen et al., 2020;
67	Xiao et al., 2021).
68	Titanite (CaTiSiO ₅) is a common accessory mineral in magmatic rocks. It can
69	typically accommodate significant amounts of REEs and high field strength elements
70	(HFSEs) (Pan and Fleet, 1991; Pan et al., 1993; Fu et al., 2016). Previous studies have
71	shown that magmatic titanite is commonly enriched in LREE and can be partly
72	replaced by hydrothermal fluids to form light rare earth element (LREE)-rich minerals
73	(e.g., allanite, monazite) (Pan et al., 1993; Cao et al., 2015). The information behind
74	this hydrothermal process can be recorded by textures and compositions of the titanite
75	(Cao et al., 2015; Xu et al., 2015; Fu et al., 2016). Titanite can also accommodate
76	considerable amounts of U and Th (with a high closure temperature of up to 700 $^{\circ}$ C;
77	Fu et al., 2016). Thus U-Pb dating has a great potential on constraining magmatic
78	events. In some ion-adsorption REE deposits, titanite is a particularly common
79	accessory mineral in the granites (Li et al., 2017a,b). However, little attention has
80	been paid regarding how magmatic titanite can be metasomatically altered and its
81	effect on REE enrichment, especially heavy rare earth element (HREE) mineralization.
82	The Gucheng deposit is a newly discovered REE (HREE dominated) deposit in
83	South China. It is HREE-dominated with \sum HREE oxides accounting for about 55 %
84	of the total REE. Mineral exploration is ongoing in the Gucheng district, but resource
85	estimates (i.e., tonnage and average REE grade) have yet to be publicly disclosed. The
86	REE mineralization is hosted in the weathered crust of a coarse-grained biotite granite

5

87	(CGBG). Microscopic observations and mineral chemistry show that titanite in the
88	CGBG is an important accessory mineral with abundant HREE. It exhibits very
89	complicated replacement textures with variable HREE contents, which can be
90	evaluated quantitatively to elucidate the role of hydrothermal alteration in the
91	formation of HREE deposits. In this study, we present detailed documentation of the
92	textures in the Gucheng titanite and its alteration products by scanning electron
93	microscope (SEM) and TESCAN integrated mineral analyzer (TIMA) imaging.
94	Integrating these textural relationships with electron microprobe analysis (EMPA) and
95	laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the
96	mineral chemistry, and laser-ablation multi-collector inductively coupled plasma mass
97	spectrometry (LA-MC-ICP-MS) for U-Pb dating of titanite, we aim to evaluate the
98	processes and roles of REE remobilization and transportation on HREE
99	mineralization during titanite alteration.

- 100
- 101

GEOLOGIC SETTING

The Gucheng deposit, located approximately 179 km northwest of Guangzhou, Guangdong Province, South China, is situated in a world-class Fe-Cu-W-Sn-REE-Nb-Ta-U polymetallic mineralization region along the southern margin of Cathaysia (Fig. 1). This region was intruded by large volumes of granitic rocks during the Late Permian, Triassic, Jurassic, and Cretaceous (Li et al., 2017a). These granites were intruded into Proterozoic to Cambrian mudstones, sandstones, and shales, as well as

6

108	Devonian to Early Permian carbonate rocks (Li et al., 2017a; Zhao et al., 2017). Large
109	numbers of regolith-hosted REE deposits have been discovered in the region, which
110	can be subdivided into LREE- (e.g., Heling, Dingnan and Guposhan) and HREE-
111	dominated types (e.g., Zudong and Dabu) (Li et al., 2017a). These REE deposits are
112	temporally and spatially associated with the Middle Jurassic to Late Cretaceous
113	granitic rocks.

The local stratigraphy at Gucheng consists of Early Devonian sedimentary units and Quaternary diluvium rocks (Fig. 2). The Early Devonian rocks are locally exposed in the north and dominated by sandstones and siltstones. The Gucheng REE deposit was formed by weathering of the Gucheng pluton, a granitic stock exposed over an area of 30 km², mainly including the coarse-grained biotite granite (CGBG), fine-grained biotite granite (FGBG), medium-grained biotite granite (MGBG), and a quartz diorite porphyry.

The CGBG is widely exposed in the Gucheng deposit with outcrops over 20 km². 121 This type of granites has grain sizes of 2-10 mm in diameter, and consists mainly of 122 K-feldspar (~20 modal %), plagioclase (~30 modal %), quartz (~32 modal %), biotite 123 (~8 modal %), and hornblende (<5 modal %). Accessory minerals (<5 modal %) 124 include allanite, titanite, apatite, zircon, magnetite, and fluorite. However, primary 125 magmatic minerals in the CGBG commonly show varying degrees of late 126 127 hydrothermal alteration: e.g. biotite being altered to chlorite, hornblende to titanite and chlorite, and plagioclase to muscovite (Feng et al., 2022). The FGBG, which is 128 less common but is found in several drill holes, consists mainly of K-feldspar (~20 129

7

130	modal %), plagioclase (~32 modal %), quartz (~35 modal %), and biotite (~8
131	modal %), with grain sizes less than 1.0 mm. Accessory minerals (<5 modal %)
132	include allanite, apatite, zircon, and Fe-Ti oxides (Feng et al., 2022). The MGBG,
133	which is restricted to the southwestern part of the Gucheng deposit, is composed of
134	mainly K-feldspar (~25 modal %), plagioclase (~32 modal %), and quartz (~35
135	modal %) as well as minor biotite (~3 modal %). Accessory minerals (< 5 modal %)
136	include apatite and zircon. Near the surface, the CGBG, FGBG, and MGBG have all
137	been intensely weathered, but the REE mineralization is restricted to the weathered
138	crust of the CGBG. Geochemical data show that the CGBG has LREE, HREE, and
139	LREE/HREE ratios of 143 to 211 (avg = 170), 17.4 to 30.6 (avg = 22.4), and 4.8 to
140	10.2 (avg = 8.0), respectively (Feng et al., 2022). Soil profiles at the Gucheng deposit
141	vary from a few meters to > 30 m thick, with the economic ore bodies hosted mainly
142	in the completely weathered zone containing enriched clay minerals.

143

144 SAMPLING AND ANALYTICAL METHODS

Five CGBG samples (ZK03-2, ZK03-4, ZK03-8, ZK03-9, and ZK06-1) were collected at depths of 41 m, 50 m, 61 m, and 70 m from the drill hole ZK03 and at 36 m from drill hole ZK06. These selected samples do not show any of the visible chemical weathering that is pervasive in the overlying REE mineralized soils. Polished thin sections of these samples were examined using optical microscopy and combined BSE and TIMA imaging to characterize mineralogical and textural

8

151	relationships, with an emphasis on the occurrence and texture of titanite. Specifically,
152	several titanite grains exhibiting hydrothermal alteration have been characterized by
153	in situ major and trace element analyses, whilst those without any obvious
154	replacement were selected for Nd isotope and U-Pb dating. Compositions of other
155	minerals (i.e., allanite, apatite, fergusonite, rutile and gadolinite) in the alteration
156	assemblages associated with titanite were also determined by in situ major and trace
157	element analyses.

158

159 **BSE and TIMA imaging**

The BSE imaging was carried out using a TESCAN MIRA3 field-emission 160 161 scanning electron microscope (FE-SEM) at the Testing Center, Tuoyan Analytical Technology Co. Ltd., Guangzhou, China. After the samples were carbon-coated, BSE 162 images were acquired under an acceleration voltage of 10 kV and a beam current of 163 164 15 nA. Mineral compositional mapping on the same MIRA3 FE-SEM was made using an acceleration voltage of 25 kV, a beam current of 8.24 nA, a working distance 165 of 15 mm, and the pixel of the BSE images and the spacing between the points of 166 167 energy dispersive spectrometry (EDS) analyses are 3.5 µm and 10.5 µm, respectively. The beam current and BSE signal intensity were calibrated automatically on a Pt 168 Faraday cup. The EDS intensity was checked using a Mn standard. The samples were 169 170 scanned using the TIMA liberation analysis module.

9

172 U-Pb dating, major and trace element analyses

173	Major and minor element compositional analyses of selected minerals were
174	conducted using a JEOL JXA-8230 electron probe micro analyzer (EPMA) at the
175	Sample Solution Co. Ltd., Wuhan, China. Operating conditions used for EPMA
176	measurements of all standards and samples include 15 kV accelerating voltage, 20 nA
177	beam current, 1 μ m electron beam size, and 10 s counting time. To correct for matrix
178	effects during EPMA, the ZAF correction was applied to transform the relative X-ray
179	peak intensities into elemental weight compositions. The relative precisions of EPMA
180	are < 2 % and < 5 % for major and minor elements, respectively.

Titanite U-Pb dating and trace element analysis of titanite, allanite, and apatite 181 were conducted at the Key Laboratory of Mineralogy and Metallogeny, Guangzhou 182 Institute of Geochemistry, the Chinese Academy of Sciences, using a laser ablation 183 inductively coupled plasma mass spectrometry (LA-ICP-MS) (Resonetics 184 RESOlution S-155 laser + Agilent 7900) with a spot size of 43 µm. This laser ablation 185 system is equipped with a large sample cell (155 mm \times 105 mm), which can host 20 186 187 epoxy sample mounts (having a diameter of 25.4 mm each). Its two-volume laserablation cell can wash out 99% of the signal within less than 1.5 s. A signal-188 smoothing and Hg-removing device was used in this laser ablation system to obtain 189 190 smooth signals and reduce the Hg signals (Hu et al., 2014). Helium gas carrying the ablated sample aerosol was mixed with Ar carrier gas and N2 as an additional di-191 192 atomic gas to enhance sensitivity in the ICP. Prior to analysis, the LA-ICP-MS system 193 was optimized using the reference sample NIST610 ablated with a 29 μ m spot size

10

194	and 5 $\mu\text{m/s}$ scan speed to achieve maximum signal intensity and low oxide rates. Each
195	analysis included approximately 20 to 30 s of background acquisition (from a gas
196	blank) followed by 50 s of data acquisition from the sample. The MKED-1 titanite
197	and the Mount McClure titanite were used as the primary and secondary standard,
198	respectively, to calibrate the U-Pb age of the titanite (Spandler et al. 2016). The
199	reference materials (NIST 610 + 612) were used as external calibration standards,
200	while Ca was used as the internal standard to quantify elemental concentrations in the
201	samples. The off-line selection and integration of the background and analyte signals,
202	time-drift correction, and quantitative calibration, were performed using the software
203	Iolite (Yan et al., 2020).

204

205 Nd isotope analyses

In situ Nd isotope analysis was performed on a Neptune Plus MC-ICP-MS 206 (Thermo Fisher Scientific, Bremen, Germany) equipped with a Geolas HD excimer 207 ArF laser ablation system (Coherent, Göttingen, Germany) at the Wuhan Sample 208 Solution Analytical Technology Co., Ltd, Hubei, China. In the laser ablation system, 209 210 He was used as the carrier gas within the ablation cell and was merged with Ar (makeup gas) after the ablation cell. Small amounts of nitrogen were added to the Ar 211 makeup gas flow in order to improve the sensitivity of the Nd isotope detection (Xu et 212 213 al. 2015). The spot diameters vary from 32 to 90 µm depending on the Nd signal intensity. The pulse frequency was changed from 4 to 10 Hz, but the laser fluence was 214

11

215	kept constant at ~8 J/cm2. A signal-smoothing device was used downstream from the
216	sample cell to efficiently eliminate the short-term variation of the signal and remove
217	Hg from the background and sample aerosol particles (Hu et al. 2014). The Neptune
218	Plus is equipped with nine Faraday cups fitted with $10^{11}\Omega$ resistors. Isotopes ¹⁴² Nd,
219	¹⁴³ Nd, ¹⁴⁴ Nd, ¹⁴⁵ Nd, ¹⁴⁶ Nd, ¹⁴⁷ Sm, ¹⁴⁸ Nd, and ¹⁴⁹ Sm were collected in Faraday cups
220	using static mode. The mass discrimination factor for ¹⁴³ Nd/ ¹⁴⁴ Nd was determined
221	using 146 Nd/ 144 Nd (0.7219) with the exponential law. The 149 Sm signal was used to
222	correct the remaining ¹⁴⁴ Sm interference on ¹⁴⁴ Nd, using the ¹⁴⁴ Sm/ ¹⁴⁹ Sm ratio of
223	0.2301. The mass fractionation of ${}^{147}\text{Sm}/{}^{149}\text{Sm}$ was corrected by the ${}^{147}\text{Sm}/{}^{149}\text{Sm}$
224	normalization ratio of 1.08680 and the exponential law. All data reduction for the MC-
225	ICP-MS analysis of Nd isotope ratios was conducted using "Iso-Compass" software
226	(Zhang et al., 2020). Two natural titanite megacrysts, MKED1 and SP-Ttn-01, were
227	used as the unknown samples in order to verify the accuracy of the calibration method
228	for in situ Nd isotope analysis of the titanite. The chemical and Nd isotopic
229	compositions of MKED1 have been reported by Spandler et al. (2016).

230

RESULTS

231 Textures of titanite and its alteration minerals

The titanite grains in the CGBG commonly occur either as replacement after hornblende or in the interstices of plagioclase, K-feldspar, and quartz, indicative of a relatively late crystallization after the major primary minerals. Titanite grains in the CGBG are euhedral to subhedral in shape, have a light brown color, range in size

236	mostly from 500 μm to 1.5 mm, and often contain inclusions of magnetite, zircon, and
237	apatite (Fig. 3a-c). BSE images reveal that the titanite grains in the CGBG exhibit
238	well developed zoning, with a typical pattern consisting of a light-colored core
239	(titanite 1) and a dark rim (titanite 2) separated by a sharp boundary (Fig. 3b).
240	Moreover, these primary titanite grains (titanite 1 and 2) are commonly partly
241	replaced by the formation of an altered zone (titanite 3; Fig. 3b). In some cases,
242	titanite grains have been almost completely pseudomorphed by an alteration
243	assemblage consisting of rutile, quartz, calcite, and fergusonite-(Y) (Fig. 3d-g).
244	The allanite grains in the CGBG, which commonly occur in the interstices of
245	plagioclase, K-feldspar and quartz, are euhedral to subhedral prisms of 300 μm to 1.0
246	mm long. BSE images reveal that the original allanite (allanite 1) grains are
247	commonly replaced with an altered rim (allanite 2; Fig. 3h).
248	Fergusonite-(Y), with grain sizes less than 80 µm (Fig. 3e), is an important
249	HREE-bearing alteration mineral associated with titanite, and often shows further
250	alteration to gadolinite-(Y). The unaltered fergusonite 1 and altered fergusonite 2 are
251	
	readily distinguished in BSE images, with the latter being darker with abundant
252	readily distinguished in BSE images, with the latter being darker with abundant porosities (Fig. 3i).
252 253	readily distinguished in BSE images, with the latter being darker with abundant porosities (Fig. 3i). Similarly, rutile in the titanite alteration assemblage has euhedral to subhedral
252 253 254	readily distinguished in BSE images, with the latter being darker with abundant porosities (Fig. 3i). Similarly, rutile in the titanite alteration assemblage has euhedral to subhedral shapes with grain sizes from 50 to 100 μ m (Fig. 3d-g). It shows well developed
252 253 254 255	readily distinguished in BSE images, with the latter being darker with abundant porosities (Fig. 3i). Similarly, rutile in the titanite alteration assemblage has euhedral to subhedral shapes with grain sizes from 50 to 100 μ m (Fig. 3d-g). It shows well developed growth zoning in the BSE images (Fig. 3j-k). The rutile grains also commonly show
 252 253 254 255 256 	readily distinguished in BSE images, with the latter being darker with abundant porosities (Fig. 3i). Similarly, rutile in the titanite alteration assemblage has euhedral to subhedral shapes with grain sizes from 50 to 100 μ m (Fig. 3d-g). It shows well developed growth zoning in the BSE images (Fig. 3j-k). The rutile grains also commonly show further alteration to gadolinite-(Y) and, in a few cases, synchysite-(Ce) along the grain

13

258	Gadolinite-(Y) grains are subhedral or anhedral with grain sizes of 10 to 50 μ m
259	(Fig. 3e and g). Similar to fergusonite-(Y), the gadolinite-(Y) grains commonly show
260	varying degrees of hydrothermal alteration and can be subdivided into less altered
261	(gadolinite 1) and more altered (gadolinite 2), with the latter being darker with more
262	abundant porosities than the former under BSE imaging (Fig. 31). Synchysite-(Ce)
263	grains are irregular in shape with sizes less than 2 μ m in diameter (Fig. 3k).
264	

265 Chemical compositions of REE-bearing minerals

266	EPMA major and trace element compositions in titanite from the Gucheng
267	CGBG are listed in Supplementary Appendix 1 and illustrated in Figure 4. Of the
268	three types of titanite, titanite 1 contains higher TiO ₂ (28.7 to 30.4 wt%), Al ₂ O ₃ (2.3 to
269	3.7 wt%), Fe ₂ O ₃ T (3.6 to 4.5 wt%), Y (36,080 to 44,318 ppm), Nb (5,037 to 13,729
270	ppm), Zr (621 to 1,543 ppm), Hf (250 to 619 ppm), and Ta (2,950 to 10,864 ppm),
271	with lower SiO_2 and CaO than titanite 2 and 3 (Fig. 4a-b). REE are also enriched in
272	titanite I ($\sum REE = 31,621$ to 38,431 ppm), but decrease sharply in titanite 2 ($\sum REE =$
273	13,639 to 16,075 ppm) and titanite 3 ($\sum REE = 9,100$ to 20,633 ppm). In the
274	chondrite-normalized REE patterns, titanite 1 is characterized by a slight HREE
275	enrichment and a pronounced negative Eu anomaly (Fig. 4c). Titanite 2 and 3 are also
276	characterized by slight LREE enrichments and pronounced negative Eu anomalies
277	(Fig. 4c). LA-ICP-MS mapping confirm a significant decrease of HREE from titanite
278	1 to titanite 2 and 3 (Fig. 4d-1).

279	EPMA major and minor element compositions in fergusonite-(Y) from the
280	Gucheng CGBG are listed in Table 1 and illustrated in Figure 5. Of the two types of
281	fergusonite-(Y), fergusonite 1 has higher Y_2O_3 (30.1 to 30.8 wt%) and WO ₃ (8.8 to
282	9.2 wt%) contents as well as lower Nb ₂ O ₅ (32.8 to 34.6 wt%), SiO ₂ (< 0.01 wt%),
283	CaO (0.3 to 1.1 wt%), ThO_2 (< 0.01 to 0.1 wt%), UO_2 (0.5 to 0.8 wt%), and F
284	contents (< 0.01 wt%) than fergusonite 2 (Table 2; Fig. 5a). Both fergusonite 1 and 2
285	contain significant amounts of REE (except for Eu), of which fergusonite 1 contains
286	lower LREE but higher HREE than the fergusonite 2 (Fig. 5b). EPMA mapping also
287	shows a decrease of HREE and an increase of LREE from fergusonite 1 to fergusonite
288	2 (Fig. 5c-k).
289	Rutile has TiO ₂ , SiO ₂ , FeO, CaO, WO ₃ , Nb ₂ O ₅ , Ta ₂ O ₅ , and SnO ₂ contents of 87.2
290	to 97.2 wt%, 0.01 to 2.1 wt%, 0.7 to 4.1 wt%, 0.03 to 0.6 wt%, < 0.01 to 4.5 wt%, 0.2
291	to 2.7 wt%, < 0.01 to 1.1 wt%, and < 0.01 to 1.4 wt%, respectively (Table 2).
292	Gadolinite 1 contains higher TiO ₂ (0.5 to 1.1 wt%), FeO (6.7 to 9.1 wt%) and Y_2O_3
293	contents (29.2 to 30.1 wt%) as well as lower SiO ₂ (25.0 to 26.2 wt%), Al ₂ O ₃ (< 0.01
294	wt%), CaO (1.9 to 3.6wt%), P_2O_5 (< 0.01 wt%), and SO ₃ contents (< 0.01 wt%) than
295	gadolinite 2 (Table 3; Fig. 6a). Both gadolinite 1 and 2 contain significant amounts of
296	REE (except for Eu), but gadolinite 1 contains lower LREE and higher HREE (except
297	for Tm) than gadolinite 2 (Fig. 6b). EPMA mapping also shows a decrease of HREE
298	but an increase of LREE from gadolinite 1 to gadolinite 2 (Fig. 6c-h).
299	The REE compositions of allanite and apatite, determined by LA-ICP-MS, are
300	given in Table 4 and Figure 7. The primary magmatic allanite (allanite 1) of the

1	~
	2
-	~

301	CGBG is characterized by a LREE enrichment (Fig. 7a) with LREE, HREE and
302	LREE/HREE of 195,744 to 211,588 ppm (avg. 203,200 ppm), 2,365 to 5,059 ppm
303	(avg. 3,815 ppm), and 41 to 84 (avg. 57), respectively. The altered magmatic allanite-
304	(Ce) (allanite 2) has higher HREE (4,485 to 8,497 ppm; avg. 6,511 ppm) but lower
305	LREE (140,939 to 164,769 ppm; avg. 156,584 ppm) and LREE/HREE (19 to 34; avg.
306	26) than those of allanite 1. The magmatic apatite of the CGBG is also characterized
307	by a LREE enrichment (Fig. 7b) and has LREE, HREE, and LREE/HREE of 3,816 to
308	7,997 ppm (avg. 6,671 ppm), 799 to 1323 ppm (avg. 990 ppm), and 4 to 10 (avg. 7),
309	respectively.

310

311 U-Pb geochronology and Nd isotope composition of titanite

A total of 50 laser ablation spots from 50 titanite grains without obvious late hydrothermal alteration (i.e., only titanite 1 and 2) have been selected for U-Pb geochronology (Supplementary Appendix 2). These define a regression line on the Tera-Wasserburg plot with a lower intercept age of 102.6 ± 1.9 Ma (mean square weighted deviation or MSWD = 0.92; n = 50; Fig. 8).

Table 5 shows that titanite 1 and 2 in the CGBG have similar Nd isotopic compositions with a narrow range of $(^{143}Nd/^{144}Nd)_i$ values from 0.512062 to 0.512125, corresponding to ϵ Nd(t) and two-stage Nd model ages (T_{2DM}) values of -7.4 to -8.6 and 1538 to 1610 Ma, respectively (Fig. 9).

16

321

DISCUSSION

322 Elemental substitution mechanism and origin of titanite at Gucheng

The EPMA data calculated on the basis of 5 oxygen atoms (Supplementary 323 Appendix 1) show that titanite 1, 2, and 3 all have significant Ca deficiencies at the 324 Ca site (≥ 0.03 apfu). Moreover, the Ca contents of titanite 1, 2, and 3 collectively 325 show a negative correlation with both LREE and HREE (Fig. 10a-b), indicating a 326 substitution of Ca²⁺ by REE³⁺ (Pan et al., 1993; Cao et al., 2015; Fu et al., 2016). 327 Linear correlations are also observed between Ti and (AI + Fe) in all three types of 328 titanite (Fig. 10c), suggesting replacement of Ti^{4+} by Al^{3+} and Fe^{3+} . These results 329 collectively suggest the charge-balanced coupled substitution: $REE^{3+} + (Al^{3+}, Fe^{3+}) =$ 330 $Ca^{2+} + Ti^{4+}$. 331

In addition, titanite 1, 2 and 3 all contain detectable F contents (0.04 to 0.10 apfu), which may indicate a substitution of O^{2^-} by F⁻ at the O site, as part of another charge-coupled substitution: $(Al^{3^+},Fe^{3^+}) + F^- = Ti^{4^+} + O^{2^-}$. This charge-coupled substitution leads to a hypotherical endmember Ca(Al,Fe³⁺)O₄F. The maximum proportions of this hypothetical end-member in titanite 1, 2 and 3, represented by the (Al+Fe)/(Al+Fe+Ti) molar ratio, are 24 mol%, 16 mol% and 17 mol%, respectively.

Other notable minor elements in the three types of titanite from the CGBG are Nb and Zr, which collectively also show a negative correlation with Ti (Fig. 10d), indicative of their locations at the Ti site involving charge-coupled (Nb⁵⁺) and isovalent (Zr^{4+}) substitutions for Ti⁴⁺ (Chakhmouradian and Zaitsev, 2002,

17

Chakhmouradian, 2004). In contrast, deviations from unity at the Si site in all three types of titanite are invariably ≤ 0.02 apfu, suggesting negligible substitutions at this site.

At Gucheng, titanite 1 and 2 commonly exhibit both core-rim and sectorial 345 zoning patterns that have been reported in many other magmatic titanites (Pan et al., 346 1993; Cao et al., 2015; Chakhmouradian and Zaitsev, 2002, Chakhmouradian, 2004; 347 Hayden et al., 2008). They have similar Al (0.12 to 0.16 apfu and 0.08 to 0.10 apfu,348 respectively) and Fe (0.10 to 0.12 apfu and 0.07 to 0.08 apfu, respectively) and low 349 Al/Fe ratios (1.02 to 1.55 and 1.23 to 1.40, respectively), which are characteristic of 350 magmatic titanite in granites (Aleinikoff et al., 2002). In addition, titanite 1 and 2 351 have high REE, HFSE contents, and obviously negative Eu anomalies with relatively 352 353 flat HREE patterns (Fig. 4c), which are also consistent with a magmatic origin (Xie et 354 al., 2010; Gao et al., 2012; Cao et al., 2015). Moreover, the LA-ICP-MS U-Pb age of titanite $(102.6 \pm 1.9 \text{ Ma; Fig. 8})$ is within the analytical uncertainty of that from zircon 355 $(104 \pm 1 \text{ Ma})$ (Feng et al., 2022). It has similar Nd isotopic compositions with the host 356 CGBG (Fig. 9). All of these results indicate that titanite 1 and 2 in the CGBG have a 357 magmatic origin, although textural evidence suggests its crystallization immediately 358 359 after major minerals such as K-feldspar, plagioclase, quartz and hornblende (Fig. 3a-360 **c**).

The occurrences of magmatic titanite as replacement after hornblende and biotite (Fig. 3c) at Gucheng are similar to those discussed by Broska et al. (2007): i.e. breakdown of hornblende, biotite, plagioclase, and titanomagnetite resulting in a high

18

364 Ca and Ti activity environment for the formation of titanite during late magmatic crystallization. Thermodynamic calculations by Broska et al. (2007) suggested that 365 these replacement reactions for the formation of titanite require a high fH_2O 366 environment with relatively oxidizing conditions (see also Harlov et al., 2006). The 367 water-rich and relatively oxidizing conditions for the formation of titanite at Gucheng 368 are indicated by the replacement of primary Fe²⁺-rich hornblende and biotite by more 369 hydrous assemblages of chlorite with Fe³⁺-rich allanite, epidote, and titanite. The Zr 370 contents in titanite 1 and 2, using the pressure-dependent Zr-in-titanite 371 geothermometer of Hayden et al. (2008), yield formation temperatures of 743-798 °C 372 and 722-730 °C, respectively. 373

374

375 Titanite alteration process and REE remobilization

A salient feature of titanite at Gucheng is the pervasive replacement by 376 secondary minerals (rutile, fergusonite-(Y), gadolinite-(Y), synchysite-(Ce), calcite 377 378 and quartz) (Fig. 3e and g). Similar replacement textures have been reported for many other occurrences of magmatic titanite (Pan et al., 1993; Broska et al., 2007; Cao et al., 379 2015). The leaching and partial dissolution processes of titanite at Gucheng can be 380 381 represented by the following reaction: Titanite + CO_3^2 + F⁻ \rightarrow rutile + calcite + quartz + REE-rich minerals. 382 (1) Here, the release of REE from the partial or complete dissolution of titanite can be 383

384 expressed as:

19

385
$$(Ca_{1-x}, REE_x)(Ti, Al, Fe)SiO_5 + (x-y)Ca \rightarrow (Ca_{1-y}, REE_y)(Ti, Al, Fe)SiO_5 + (x-y)REE,$$

386 where x > y. (2)

Similar Al and Fe contents as well as similar chondrite-normalized REE patterns 387 (i.e., pronounced negative Eu anomalies and relatively flat HREE) between titanite 2 388 (magmatic) and 3 (altered) (Fig. 4c) indicate that the hydrothermal fluid responsible 389 390 for titanite alteration was most likely exsolved from the same magma as the CGBG. The common occurrences of calcite and fluorite in the alteration assemblages suggest 391 392 that this magmatic-hydrothermal fluid was rich in CO_{2}^{2} and F⁻. Similarly, magmatichydrothermal fluids enriched in CO_3^2 and F⁻ have been proposed to be responsible for 393 the formation of many other ion-adsorption REE deposits, where the CO_3^2 and F⁻ may 394 be essentially derived from slab-derived aqueous fluids (Xu et al., 2017; Li et al., 395 396 2017a), and hence may represent an important factor promoting REE remobilization.

Mass-balance calculations on the occurrences of titanite pseudomorphs, 397 consisting of rutile, calcite, quartz, and fergusonite-(Y) (Fig. 3e), show that the REE 398 399 released from the alteration of titanite 1 and/or titanite 2 can be largely accommodated in fergusonite-(Y). However, the ratios of the average Lu contents in titanite 1 and 2 400 to the Lu contents in fergusonite 1 are 1/16 and 1/81, respectively (Fig. 11). These 401 values are even higher than the volume proportion of fergusonite 1 in the whole 402 titanite grain (1/118), which is calculated on the basis of the ratio of the area of all 403 404 fergusonite-(Y) grains relative to the titanite grain on a plane (Fig. 3e). Similarly, all other REE in fergusonite 1 increase systematically with decreasing atomic number 405 than their respective amounts in the titanite 1 and 2 precursors (Fig. 11). These results 406

20

407	demonstrate that some HREE and large amounts of LREE must have been leached
408	away from the alteration assemblages by hydrothermal fluids (Pan et al., 1993). This
409	titanite dissolution process results in significant fractionation between LREE and
410	HREE, with HREE being preferentially enriched in fergusonite-(Y) from the
411	alteration assemblages.

Rutile altered from titanite contains relatively high concentrations of Nb (0.13 to 412 2.66 wt.%), Ta (0.07 to 1.14 wt.%), and W (1.01 to 4.54 wt.%), which are generally 413 insoluble in hydrothermal fluids (Wen et al., 2020). These elements in rutile can also 414 be readily accounted for by the dissolution of magmatic titanite. Rutile at Gucheng 415 has been further altered to gadolinite-(Y) and, occasionally, synchysite-(Ce) (Fig. 3j-416 k). Similarly, fergusonite-(Y) in the alteration assemblages often show further 417 418 alteration to gadolinite-(Y), with additional enrichment in HREE (Dy, Ho, Er, Yb and 419 Lu) but depeletion in LREE (La, Ce, Pr and Nd) as well as Nb, Th, U and F in the latter (Fig. 5 and 11). A possible process for the replacement of rutile and fergusonite-420 (Y) is that they were altered by the same fluid at the same time. Another possibility is 421 422 that one of these two minerals was altered first by a fluid that was reactive with it but not reactive with the other one, and the other one was altered later by a different fluid 423 424 that was reactive with it but not reactive with the first one. The first possibility is more likely because these two minerals often occur in close associations and would be both 425 426 in the vicinity of the same fluid. Unfortunately, proof of either possibility by LA-ICP-MS dating is not feasible due to the fine-grained nature of the alteration products. 427

The alteration of rutile to synchysite-(Ce) suggests that this hydrothermal fluid

21

429	also contained F and CO_{3}^{2} , similar to those responsible for the alteration of the
430	magmatic titanite and allanite. However, textural relationships (Fig. 3) clearly show
431	that rutile and fergusonite-(Y) are alteration products of titanite, suggesting two
432	separate alteration events. We tentatively attribute the alteration of rutile and
433	ferdusonite-(Y) to a late hydrothermal event associated with the FGBG with a zircon
434	U-Pb age of 98.9 \pm 0.7 Ma (Feng et al., 2022). Therefore, the net consequences of
435	these replacement processes from titanite to fergusonite-(Y) and gadolinite-(Y) is
436	preferential enrichment in HREE, with only a small amount of LREE being retained
437	by altered titanite (3) and synchysite-(Ce).
438	Combined BSE imaging and EMPA analyses show that alteration of gadolinite-

(Y) (Fig. 31) results in a reduction of total REE, especially HREE. However, the 439 altered zones of gadolinite-(Y) do not contain any detectable F, suggesting that the 440 hydrothermal fluid at this stage was significantly different from those responsible for 441 the early alteration of titanite, rutile, and fergusonite-(Y). It is also interesting to note 442 that the altered zones of gadolinite-(Y) contain higher P₂O₅ and SO₃ contents than 443 their unaltered counterparts but have no detectable F (Fig. 6a), suggesting a fluid 444 enriched PO_4^{3-} and SO_4^{2-} but poor in F⁻, different from the F-CO₂-rich fluids replacing 445 titanite, rutile and fergusonite-(Y). Previous studies (Wood, 1990; Lee and Byrne, 446 1992; Pan et al., 1993; Bern et al., 2017; Ichimura et al., 2020) documented that 447 ground waters commonly contain elevated PO_4^{3-} and SO_4^{2-} , which are capable of 448 forming stable complexes with REE^{3+} . It might be reasonable to infer that the fluid for 449 the alteration of gadolinite-(Y) had a significant component from ground waters. 450

22

451	However, this REE remobilization related to late gadolinite-(Y) alteration resulted in
452	an opposite fractionation between HREE and LREE in the CGBG at Gucheng.
453	

454 HREE enrichment and mineralization in the Gucheng deposit

Most previous studies of ion-adsorption REE deposits emphasized HREE 455 enrichment during the chemical weathering processes, while several studies suggested 456 that HREE can be accumulated preferentially during the late magmatic stages of 457 granites (Huang et al., 1988; Li et al., 2017a). The latter suggestion is clearly 458 459 evidenced by the formation of HREE-enriched magmatic titanite 1 and 2 in the CGBG at Gucheng (Fig. 12a). In particular, the HREE-enriched composition of magmatic 460 titanite at Gucheng is distinct from the LREE-enriched characteristics of the host 461 CGBG, thus contributing to the HREE mineralization in this deposit. 462

More importantly, subsequent hydrothermal alteration of magmatic titanite leads 463 to further HREE enrichments before the chemical weathering process at Gucheng. 464 465 The magmatic titanite from the CGBG was most likely replaced by a high temperature magmatic-hydrothermal fluid rich in F and CO_3^2 (Fig. 12b). The titanite was altered 466 into fergusonite-(Y), rutile, quartz and calcite. During this process, the hydrothermal 467 468 fluid had leached a large proportion of HREE and LREE (except for La and Ce) out of the magmatic titanite, whilst the La and Ce were retained in the magmatic titanite (Fig. 469 470 4c). Therefore, the increased La and Ce in the alteration assemblages were very likely sourced from the magmatic allanite-(Ce) in the CGBG. Indeed, the La (45,374 to 471

472	54,942 ppm) and Ce contents (100,441 to 115,022 ppm) of allanite 1 decrease to
473	33,300 to 38,580 ppm and 71,350 to 84,952 ppm, respectively in allanite 2 (Fig. 7a).
474	Meanwhile, a portion of HREE out of the magmatic titanite was transformed by
475	hydrothermal fluid and then accommodated in the altered zones of the magmatic
476	allanite with HREE increasing from allanite 2 (2,365 to 5,059 ppm; avg. 3,815 ppm)
477	to allanite 1 (4,485 to 8,497 ppm; avg. 6,511 ppm) (Fig. 7a). On the other hand,
478	fergusonite-(Y) also trapped dominant HREE and minor LREE, and significant
479	amounts of REE were scavenged by rutile. Subsequently, another F-rich magmatic-
480	hydrothermal fluid replaced the fergusonite-(Y) and rutile (Fig. 12c), resulting in the
481	further fractionation of LREE and HREE, i.e., HREE decrease and LREE increase in
482	the altered fergusonite-(Y) and the rutile was transformed into HREE-rich gadolinite-
483	(Y) and LREE-dominant synchysite-(Ce). Likewise, gadolinite-(Y) and synchysite-
484	(Ce) are susceptible for chemical weathering (Fig. 12d), and their decomposition
485	could have marked effects on the REE compositions of weathering profiles (Huang et
486	al., 1988; Li et al., 2017a), which is an important mechanism for HREE and LREE
487	mineralization at the Gucheng deposit. Synchysite-(Ce) also appeared to have formed
488	from the release of LREE associated with the alteration of magmatic allanite.
489	However, this process of LREE remobilization and enrichment associated with the
490	alteration of magmatic allanite has minimal effects on HREE. At Gucheng, the
491	magmatic apatite from the CGBG contains some REE but does not show obvious
492	replacement by hydrothermal fluids, limiting the liberation of REE. Moreover, the
493	CGBG apatite has a lower REE content than that of the magmatic titanite and allanite-

24

494 (Ce). Apatite has been proven to be more resistant to the weathering process (Li et al.,
495 2019), suggesting that the magmatic apatite of the CGBG might have minimal
496 influence on the formation of the Gucheng deposit.

497 Above all, complex hydrothermal replacement processes occurring at Gucheng can favorably transform REE-bearing minerals (i.e., titanite and allanite) to forms that 498 are more easily weathered, especially the HREE-enriched minerals, through REE 499 remobilization and re-enrichment. Similar replacement processes involving REE-500 bearing magmatic minerals (e.g., allanite, apatite, titanite, xenotime and zircon) have 501 502 also been documented in many other iso-adsorption REE deposits (Huang et al., 1988; Ishihara et al., 2008; Sanematsu and Watanabe, 2016; Bern et al., 2017; Li et al., 503 2019), granites (Pan et al., 1993), alkaline rocks (Bern et al., 2017), porphyry Cu-Mo 504 505 deposits (Cao et al., 2015), and iron-oxide copper gold deposits (Xiao et al., 2021). However, metasomatic alteration of magmatic titanite followed by enrichment of 506 HREE as reported in this study is a new observation and may play an important role 507 508 in HREE mineralization during formation of iso-adsorption REE deposits in South 509 China.

510

IMPLICATIONS

511 The fractionation of LREE and HREE during the weathering processes is 512 common in ion-adsorption REE deposits (Li et al., 2017a). An explanation for this 513 fractionation is that LREE ions are preferentially retained on exchange sites in the 514 clay minerals (Bruque et al., 1980), whilst HREE ions are preferentially mobilized

25

515	from the upper levels of the weathering profile and enrichened in the lower levels
516	(Bao and Zhao, 2008; Sanematsu et al., 2013; Li et al., 2017a). However, this
517	explanation is focused on the effects of chemical weathering. Our study reveals that
518	REE-bearing magmatic minerals and their alteration products, before chemical
519	weathering, can also contribute to significant fractionation of LREE and HREE
520	towards HREE enrichment for the formation of ion-adsorption HREE deposits. These
521	discoveries are important for understanding the processes behind the genesis of ion-
522	adsorption REE deposits in South China. Moreover, the occurrences of magmatic
523	titanite in granites, especially those with replacement by secondary REE-rich minerals,
524	can be an effective vector in the search for HREE mineralization in South China and
525	elsewhere around the world.

526

ACKNOWLEDGEMENTS

This study was funded by the Guangdong Major Project of Basic and Applied Basic Research (No. 2019B030302013), the National Natural Science Foundation of China (No. 41725009, 42103058, 41921003, 42173065) and Science and Technology Planning of Guangdong Province, China (2020B1212060055). Staff of the Key Geology Bureau for Nonferrous Metals of Guangdong Province are thanked for supporting the research and for providing access to drill cores and sample collection.

533

26

535

REFERENCES CITED

- 536 Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., and Dorais, M.J. (2002) U-Pb
- 537 geochronology of zircon and polygenetic titanite from the Glastonbury Complex,
- 538 Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study. Chem.
- 539 Geol, 188, 125–147.
- 540 Bao, Z.W., and Zhao, Z.H. (2003) Geochemistry and tectonic setting of the Fogang 541 aluminous A-type granite, Guangdong Province, China–a preliminary study.

542 Geol. Geochem, 31, 52–61 (in Chinese with English abstract).

- Bern, C.R., Yesavage, T., and Foley, N.K. (2017) Ion-adsorption REEs in regolith of
 the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal
 alteration. J. Geochem. Explor, 172, 29–40.
- Broska, I., Harlov, D., Tropper, P., and Siman, P. (2007) Formation of magmatic
 titanite and titanite–ilmenite phase relations during granite alteration in the
 Tribeč Mountains, Western Carpathians, Slovakia. Lithos, 95, 58–71.
- Bruque, S., Mozas, T., and Rodriguez, A. (1980) Factors influencing retention of
 lanthanide ions by montmorillonite. Clay Miner, 15, 413–420.
- 551 Cao, M.J., Qin, K.Z., Li, G.M., Evans, N.J., and Jin, L.Y. (2015) In situ LA-(MC)-
- ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic
 titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW
 China. Ore Geol. Rev, 65, 940–954.
- Chakhmouradian, A.R., and Zaitsev, A.N. (2002) Calcite-amphibole-clinopyroxene
 rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a
 possible link to carbonatites. III. Silicate minerals. Can. Mineral, 40, 1347–1374.
- 558 Chakhmouradian, A.R. (2004) Crystal chemistry and paragenesis of compositionally
- unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia. Am. Mineral,
 89, 1752–1762.
- 561 Chi, R., Tian, J., Luo, X., Xu, Z., and He, Z. (2012) The basic research on the 562 weathered crust elution-deposited rare earth ores. Nonferrous Met. Sci. Eng, 3,

563	1 - 13	(in Chinese	with En	glish at	stract).
				0	

- Feng, Y.Z., Xiao, B., Chu, G.B., Li, S.S., Wang, J., and Wen, Z.Q. (2022) Late
 Mesozoic magmatism in the Gucheng district: Implications for REE
 metallogenesis in South China. Ore Geol. Rev, 148, 105034.
- Fu, Y., Sun, X.M., Zhou, H.Y., Lin, H., and Yang, T.J. (2016) In-situ LA-ICP-MS UPb geochronology and trace elements analysis of polygenetic titanite from the
 giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China. Ore
 Geol. Rev, 77, 43–56.
- Gao, X.Y., Zheng, Y.F., Chen, Y.X., and Guo, J.L. (2012) Geochemical and U-Pb age
- constraints on the occurrence of polygenetic titanites in UHP metagranite in the
 Dabie orogen. Lithos, 136–139, 93–108.
- Hayden, L.A., Watson, E.B., and Wark, D.A. (2008) A thermobarometer for sphene
 (titanite): Contrib. Mineral. Petrol, 155, 529–540.
- 576 Harlov, D., Tropper, P., Seifert, W., Nijland, T., and Forster, H.J. (2006) Formation of 577 Al-rich titanite (CaTiSiO₄O-CaAlSiO₄OH) reaction rims on ilmenite in 578 metamorphic rocks as a function of fH_2O and fO_2 . Lithos, 88, 72–84.
- Hu, Z.C., Zhang, W., Liu, Y.S., Gao, S., Li, M., Zong, K.Q., Chen, H.H., and Hu, S.H.
 (2014) "Wave" signal-smoothing and mercury-removing device for laser ablation
 quadrupole and multiple collector ICPMS analysis: application to lead isotope
 analysis. Analytical Chemistry, 87(2), 1152–1157.
- Huang, D.H., Wu, C.Y., and Han, J.Z. (1988) REE Geochemistry and Mineralization
 Characteristics of the Zudong and Guanxi Granites, Jiangxi Province. Acta Geol.
 Sin, 2(2), 139–157.
- Ichimura, K., Sanematsu, K., Kon, Y., Takagi, T., and Murakami, T. (2020) REE
 redistributions during granite weathering: Implications for Ce anomaly as a
 proxy for paleoredox states. Am. Mineral, 105(6), 848–859.
- Ishihara, S., Renmin, H., Hoshino, M., and Murakami, H. (2008) REE abundance and
 REE minerals in granitic rocks in the Nanling Range, Jiangxi Province, Southern
 China, and generation of the REE-rich weathered crust deposits. Resour. Geol,
- 592 58, 355–372.

593	Jamtveit, B. (1991) Oscillatory zonation patterns in hydrothermal grossular-andradite
594	garnet; nonlinear dynamics in regions of immiscibility. Am. Mineral, 76, 1319-
595	1327.
596	Jowitt, S., Wong, V., Wilson, S., and Gore, O. (2017) Critical metals in the critical
597	zone: controls, resources and future prospectivity of regolith-hosted rare earth
598	elements. Australian Journal of Earth Sciences, 64, 1045-1054.
599	Lee, H.G., and Byrne, R.H. (1992) Examination of comparative rare earth element
600	complexation behavior using linear free-energy relationships. Geochim.
601	Cosmochim. Acta, 56, 1127–1137.
602	Li, M.Y.H., Zhao, W.W., and Zhou, M.F. (2017a) Nature of parent rocks,
603	mineralization styles and ore genesis of regolith-hosted REE deposits in South
604	China: An integrated genetic model. Journal of Asian Earth Sciences, 148, 65–95.
605	Li, X.C., and Zhou, M.F. (2017b) Hydrothermal alteration of monazite-(Ce) and
606	chevkinite-(Ce) from the Sin Quyen Fe-Cu-LREE-Au deposit, northwestern
607	Vietnam. Am. Mineral, 102, 1525–1541.
608	Li, M.Y.H., Zhou, M.F., and Williams-Jones, A.E. (2019) The Genesis of Regolith-
609	Hosted Heavy Rare Earth Element Deposits: Insights from the World-Class
610	Zudong Deposit in Jiangxi Province, South China. Econ. Geol, 114(3), 541–568.
611	Li, M.Y.H., and Zhou, M.F. (2020) The role of clay minerals in formation of the
612	regolith-hosted heavy rare earth element deposits. Am. Mineral, 105, 92-108.
613	Murakami, H., and Ishihara, S. (2008) REE mineralization of weathered crust and clsy
614	sediment on granitic rocks in the Sanyo Belt, SW Japan and the Southern Jiangxi
615	Province, China. Resource Geol, 58, 373–401.
616	Pan, Y.M., and Fleet, M.E. (1991) Vanadian allanite-(La) and vanadian allanite-(Ce)
617	from the Hemlo gold deposit, Ontario, Canada. Mineral. Mag, 55, 497-507.
618	Pan, Y.M., Fleet, M.E., and Macrae, N.D. (1993) Late alteration in titanite (CaTiSiO5):
619	Redistribution and remobilization of rare earth elements and implications for
620	U/Pb and Th/Pb geochronology and nuclear waster disposal. Geochim.
621	Cosmochim. Acta, 57, 355–367.
622	Sanematsu, K., Kon, Y., Imai, A., Watanabe, K., and Watanabe, Y. (2013)

623	Geochemical and mineralogical characteristics of ion-adsorption type REE
624	mineralization in Phuket, Thailand. Mineral. Deposita, 48, 437–451.
625	Sanematsu, K., and Watanabe, Y. (2016) Characteristics and genesis of ion-adsorption
626	type deposits. Rev. Econ. Geol, 18, 55–79.
627	Spandler, C., and Hammerli, J. (2016) MKED1: A new titanite standard for in situ
628	analysis of Sm-Nd isotopes and U-Pb geochronology. Chem. Geol, 425(1), 110-
629	126.
630	Van Hinsberg, V.J., Migdisov, A.A., and Williams-Jones, A.E. (2010) Reading the
631	mineral record of fluid composition from element partitioning. Geology, 38,
632	847–850.
633	Wen, G., Li, J.W., Hofstra, A.H., Koenig, A.E., and Cui, B.Z. (2020) Textures and
634	compositions of clinopyroxene in an Fe skarn with implications for ore-fluid
635	evolution and mineral-fluid REE partitioning. Geochim. Cosmochim. Acta, 290,
636	104–123.
637	Wood, S.A. (1990) The aqueous geochemistry of the rare-earth elements and yttrium.
638	1. Review of available low-temperature data for inorganic complexes and the
639	inorganic REE speciation of natural waters. Chem. Geol, 82, 159–186.
640	Xiao, B., Pan, Y.M., Song, H., Song, W.L., Zhang, Y., and Chen, H. (2021)
641	Hydrothermal alteration processes of fluorapatite and implications for REE
642	remobilization and mineralization. Contrib. Mineral. Petrol, 176, 87.
643	Xie, L., Wang, R.C., Chen, J., and Zhu, J.C. (2010) Mineralogical evidence for
644	magmatic and hydrothermal processes in the Qitianling oxidized tin-bearing
645	granite (Hunan, South China): EMP and (MC)-LA-ICPMS investigations of
646	three types of titanite. Chem. Geol, 276, 53-68.
647	Xu, C., Kynický, J., Smith, M.P., Kopriva, A., Brtnichý, M., Urubek, T., Yang, Y.H.,
648	Zhao, Z., He, C., and Song, W.L. (2017) Origin of heavy rare earth
649	mineralization in South China. Nat. Commun, 8, 14598.
650	Xu, L., Hu, Z.C, Zhang, W., Yang, L., Liu, Y.S., and Gao, S. (2015) In situ Nd isotope
651	analyses in geological materials with signal enhancement and non-linear mass
652	dependent fractionation reduction using laser ablation MC-ICP-MS. J. Anal. At.

- 2	n
2	v
-	

653	Spectrom,	30(1),	232-244

- Yan, S., Zhou, R.J., Niu, H.C., Feng, Y.X., Nguyen, A.D., Zhao, Z.H., Yang, W.B.,
 Dong, Q., and Zhao, J.X. (2020) LA-MC-ICP-MS U-Pb dating of low-U garnets
 reveals multiple episodes of skarn formation in the volcanic-hosted iron
 mineralization system, Awulale belt, Central Asia. GSA Bulletin, 132, (5-6),
 1031–1045.
- Zhang, W., Hu, Z.C., and Liu, Y.S. (2020) Iso-Compass: new freeware software for
 isotopic data reduction of LA-MC-ICP-MS. J. Anal. At. Spectrom, 35, 1087–
 1096.
- Zhao, W.W., Zhou, M.F., Li, M.Y.H., Zhao, Z., and Gao, J.F. (2017) Genetic types,
 mineralization styles and geodynamic settings of Mesozoic tungsten deposits in
 South China. J. Asian Earth Sci, 37, 109–140.
- 665

31

667 **FIGURE CAPTIONS**

- 668 Figure 1. The distribution of granites and volcanic rocks in south China (after Li et al.,
- 669 2019). The location of the Gucheng deposit is marked by a blue dot.

670

Figure 2. Geologic map of the Gucheng ore district showing locations of the ZK03
and ZK06 drill holes.

673

674 Figure 3. Photomicrographs showing titanite and its alteration products at Gucheng. (a) A subhedral titanite grain containing a magnetite inclusion in the interstices of 675 676 quartz and plagioclase; (b) BSE image of (a) showing three texturally and compositionally distinct types of titanite; (c) Magmatic hornblende partially 677 pseudomorphed by an assemblage of titanite, apatite, and magnetite; (d-e) magmatic 678 679 titanite almost completely peudomorphed by rutile, calcite, quartz, and HREE-rich fergusonite; (f-g) Rutile in a magmatic titanite pseudomorph showing further 680 alteration to gadolinite; (h) Magmatic allanite (1) with an altered rim (2) and 681 682 synchysite-(Ce) along the rim; (i) Fergusonite grain showing partial dissolution; (j) 683 Rutile partially replaced by gadolinite; (k) Rutile partially replaced by synchysite-(Ce) along the margin; (1) Gadolinite grain showing partial dissolution. Aln-allanite; Ap-684 apatite; Bt-biotite; Cal-calcite; Chl-chlorite; Fgs-fergusonite; Gad-gadolinite; Hbl-685 hornblende; Kfsp-K-feldspar; Mag-magnetite; Ms-muscovite; Pl-plagioclase; Qz-686 quartz; Rt-rutile; Syn-synchysite; Ttn-titanite. 687

32

689	Figure 4. (a) Ranges in the TiO_2 , SiO_2 , CaO , Al_2O_3 , and FeO contents for the three
690	titanite types; (b) Ranges in the Y, Nb, Ta, Zr, and Hf content for the three titanite
691	types; (c) Chondrite-normalized REE patterns of the three titanite types; (d) A BSE
692	image showing the three titanite types; (e-l) Trace element mapping of titanite by LA-
693	ICP-MS for Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
694	
695	Figure 5. (a) The ranges in the Nb ₂ O ₅ , Y_2O_3 , SiO ₂ , CaO, WO ₃ , ThO ₂ , UO ₂ , and F
696	content for the two types of fergusonite; (b) The ranges in the La_2O_3 , Ce_2O_3 , Pr_2O_3 ,
697	Nd_2O_3 , Sm_2O_3 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Yb_2O_3 , and Lu_2O_3 content for the two types of
698	fergusonite; (c) A BSE image showing two types of fergusonite; (d-k) Trace element
699	mapping of fergusonite by LA-ICP-MS for La, Ce, Nd, Sm, Dy, Ho, Er, and Yb.
700	
701	Figure 6. (a) The ranges in the TiO ₂ , SiO ₂ , Al ₂ O ₃ , FeO, CaO, P ₂ O ₅ , and Y ₂ O ₃ content
702	for the two types of gadolinite; (b) The ranges in the La_2O_3 , Ce_2O_3 , Pr_2O_3 , Nd_2O_3 ,
703	Sm_2O_3 , Tb_2O_3 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 ; Yb_2O_3 and Lu_2O_3 content for the two types of
704	gadolinite; (c) A BSE image showing two types of gadolinite; (d-h) Trace element
705	mapping of gadolinite by LA-ICP-MS for Ce, Nd, Sm, Dy, and Er.
706	
707	Figure 7. Chondrite-normalized plots of the REE compositions for allanite (a) and
708	apatite (b) from the CGBG at Gucheng.
709	

710 Figure 8. LA-ICP-MS U-Pb Tera-Wasserburg concordia diagram for magmatic

711	titanite.
712	
713	Figure 9. Diagram showing range of $(^{143}Nd/^{144}Nd)_i$ values for titanite 1 and 2; (b)
714	Histograms showing the variations in $\epsilon Nd(t)$ for titanite (this study) and CGBG whole
715	rock data.
716	
717	Figure 10. Plots of LREE (ppm) vs. Ca (apfu) (a), HREE (ppm) vs. Ca (apfu) (b), Ti
718	(apfu) vs. (Al + Fe) (apfu) (c), and Nb + Zr (ppm) vs. (Ti) (apfu) (d) of the three types
719	of titanite at Gucheng CGBG.
720	
721	Figure 11. Chondrite normalized plots of REE from the titanites 1 and 2 and REE in
722	fergusonite (1/16 and 1/81) and gadolinite (1/18 and 1/90) from the Gucheng CGBG.
723	
724	Figure 12. Sketches illustrating the various stages of titanite alteration at the Gucheng
725	deposit during two hydrothermal alteration events and during chemical weathering.

	Fgs1	Fgs1	Fgs1	Fgs2	Fgs2	Fgs2	Fgs2
WO ₃	9.2	8.8	8.8	0.2	0.9	0.4	0.1
Nb_2O_5	34.6	33.9	32.8	40.7	36.8	38.9	38.6
Ta ₂ O ₅	5.0	6.0	6.0	4.4	3.4	5.1	4.9
SiO ₂	0	0	0	7.5	5.6	10.3	9.8
TiO ₂	2.0	2.8	2.6	2.4	2.0	1.7	1.9
ThO_{2}	0.1	0.1	0	2.4	3.2	1.9	2.9
UO ₂	0.7	0.5	0.5	3.4	4.6	5.5	5.0
Al_2O_3	0	0	0	0.4	0.1	0.8	0.6
Y_2O_3	30.1	30.4	30.8	6.4	14.2	3.9	6.4
La_2O_3	0.1	0	0	1.2	1.2	1.7	1.5
Ce ₂ O ₃	0	0	0	4.7	3.7	4.1	4.6
Pr ₂ O ₃	0	0	0	0.5	0.4	0.4	0.6
Nd_2O_3	0.2	0.1	0.1	3.8	2.1	2.1	2.9
$\mathrm{Sm}_2\mathrm{O}_3$	0.7	1.0	1.6	3.9	2.5	2.1	3.0
$\mathrm{Eu}_{2}\mathrm{O}_{3}$	0	0	0	0	0	0	0
Gd_2O_3	0.7	0.8	0.8	0.9	0.8	0.6	0.7
Tb_2O_3	0.3	0.4	0.4	0.3	0.4	0	0.2
Dy_2O_3	3.7	4.4	5.0	2.2	2.6	1.1	1.6
$\mathrm{Ho}_{2}\mathrm{O}_{3}$	0.8	1.3	1.3	0.6	0.8	0.3	0.5
$\mathrm{Er}_{2}\mathrm{O}_{3}$	4.0	3.9	4.3	1.2	2.1	0.8	1.0
Tm_2O_3	0.2	0	0	0.2	0.2	0.1	0.1
Yb_2O_3	4.5	4.1	4.5	1.2	2.4	0.8	1.1
Lu_2O_3	0.9	1.2	1.0	0.2	0.7	0.2	0.3
CaO	1.1	0.5	0.3	5.6	3.1	6.8	5.9
FeO	0	0.1	0	0.7	0.4	0.8	0.7
F	0	0	0	2.0	2.3	2.9	2.5
Total	99.1	100.5	101.0	96.2	95.7	92.4	96.4

 TABLE 1. EPMA major and minor elements in fergusonite-(Y) from the Gucheng CGBG (wt%)

TABLE 2. EPMA major and minor elements in rutile from the Gucheng CGBG (wt%)

	WO ₃	Nb ₂ O ₅	Ta ₂ O ₅	SiO ₂	TiO ₂	SnO ₂	Al ₂ O ₃	CaO	FeO	Total
Rt1	1.0	0.2	0.1	1.6	92.3	0	0.5	0.5	1.8	98.1
Rt1	2.8	0.3	0.1	0.2	93.4	0	0.2	0.1	2.8	100.0
Rt1	1.7	0.3	0.1	0.1	95.9	0.1	0.1	0.1	2.0	100.5
Rt1	4.5	1.7	0.3	0.1	87.2	0.6	0.2	0.1	4.0	98.9
Rt1	1.4	2.6	0.6	0.0	92.4	0.8	0.0	0	2.4	100.2
Rt1	2.4	0.2	0.1	0.4	94.0	0	0.2	0.2	2.1	99.7
Rt1	1.3	0.1	0.1	1.9	91.0	0	0.7	0.6	2.0	97.7
Rt1	3.6	2.7	1.1	0.0	88.5	0.7	0.1	0	3.7	100.4
Rt2	0.2	2.4	1.1	0.2	95.3	0.1	0.1	0.1	0.7	100.2
Rt2	0.6	0.9	0.5	0.8	95.0	0.1	0.1	0.1	1.2	99.3
Rt2	0.2	2.2	0.1	0.6	96.4	0.1	0	0.1	0.8	100.5
Rt2	0.1	0.5	0.2	2.1	96.3	0	0	0.2	0.7	100.1
Rt2	0.6	1.2	0.4	0.4	95.9	0.2	0	0.1	1.5	100.3
Rt2	0.4	0.9	0.4	0.5	97.2	0	0.1	0.1	1.1	100.6
Rt2	0.3	1.2	0.2	1.4	95.8	0.2	0.1	0	1.5	100.7
Rt2	0.4	1.0	0.1	1.2	96.1	0.1	0	0.1	1.2	100.3
Rt2	0	1.2	0	0.4	93.7	1.4	0.1	0.1	1.3	98.4
Rt2	0	1.9	0	1.5	95.0	0.2	0.1	0.1	1.0	99.9
Notes: F	Rt = rutile	2.								

TABLE 3. EPMA ma	ajor and minor	elements in	gadolinite-(Y	Y) from the	Gucheng	CGBG (wt%
	-			/			

		inajoi and		ements m	gadonnite	-(1) 1101	the Guch	leng CGB	G (wi%)		
	Gd1	Gd1	Gd1	Gd1	Gd1	Gd1	Gd2	Gd2	Gd2	Gd2	Gd2
SO ₃	0	0	0	0	0	0	0.02	0.03	0.04	0.04	0.03
P_2O_5	0	0	0	0	0	0	0.05	0.1	0.04	0.05	0.03
Nb_2O_5	0	0	0	0	0	0	0	0	0	0	0
SiO_2	25.0	25.1	25.8	26.2	25.6	26.0	28.6	29.7	28.7	28.7	28.8
TiO_2	0.8	0.8	0.5	0.5	0.9	1.1	0.2	0.4	0.5	0.4	0.5
ThO ₂	0.2	0.1	0.2	0.1	0.4	0.2	0.5	0.5	0.2	0.3	0.4
UO_2	0	0.1	0.1	0	0.1	0.1	0	0	0	0	0
Al_2O_3	0	0	0	0	0	0	0.6	1.1	0.7	0.6	0.7
Y_2O_3	29.9	30.1	29.6	29.2	30.0	29.1	26.6	25.4	25.7	26.3	26.0
La_2O_3	0	0.1	0.0	0.1	0	0.1	0.4	0.4	0.4	0.4	0.4
Ce ₂ O ₃	0	0	0.2	0	0	0	2.5	2.3	2.3	2.1	2.0
Pr_2O_3	0	0	0.1	0	0	0	0.4	0.4	0.3	0.3	0.3
Nd_2O_3	0.4	0.2	1.0	0.4	0.6	0.2	3.7	3.6	3.7	4.0	3.4
$\mathrm{Sm}_2\mathrm{O}_3$	2.7	1.5	4.7	1.8	2.8	1.0	5.9	5.7	5.5	6.4	5.5
Eu_2O_3	0	0	0	0	0	0	0	0	0	0	0
Gd_2O_3	1.8	1.3	2.0	1.3	1.8	1.1	1.6	1.6	1.4	1.3	1.4
Tb_2O_3	0.3	0.2	0.4	0.4	0.5	0.3	0.3	0.3	0.3	0.1	0.2
Dy_2O_3	5.9	5.1	5.8	5.2	5.3	5.2	4.1	4.0	3.3	4.2	4.3
$\mathrm{Ho}_{2}\mathrm{O}_{3}$	1.9	1.4	2.0	1.5	2.0	1.6	1.2	1.4	1.6	1.5	1.6
$\mathrm{Er}_{2}\mathrm{O}_{3}$	3.6	3.4	3.5	3.7	3.7	3.9	1.9	1.8	1.8	1.5	1.9
Tm_2O_3	0.1	0.1	0	0.2	0.1	0	0.1	0	0	0.1	0.1
Yb_2O_3	3.3	3.8	2.9	3.6	2.9	4.2	0.7	0.8	0.6	0.7	0.8
Lu_2O_3	1.2	1.1	1.1	1.1	1.4	1.0	0.7	0.6	0.4	0.3	0.6
CaO	2.0	2.7	2.2	3.6	1.9	2.9	4.5	4.3	4.4	4.6	4.2
FeO	7.7	8.4	6.8	6.7	7.4	9.1	2.6	2.9	3.1	3.1	3.5
Total	87.1	85.6	89.1	85.7	87.4	87.4	87.3	87.5	85.3	87.1	86.6

	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	REE	LREE	HREE	LR/HR	(La/Yb) _N
Aln1	45707	100441	10438	34334	4797	28.3	2255	221	863	123	254	28.2	168	21.0	199678	195744	3934	50	184
Aln1	54942	102574	9350	27716	3030	57.5	1340	127	499	74.5	163	19.7	125	16.4	200035	197670	2365	84	296
Aln1	53801	103544	9660	29169	3398	45.2	1506	139	524	75.7	159	18.0	110	14.1	202164	199618	2546	78	329
Aln1	45374	109625	11432	34547	5046	15.6	2219	242	1006	157	386	55.9	433	65.6	210604	206039	4565	45	71
Aln1	47256	115022	11736	33149	4413	12.8	1714	190	809	128	339	56.6	482	74.3	215381	211588	3793	56	66
Aln1	46648	110322	11632	35911	5119	14.6	2235	232	934	138	320	42.4	298	41.2	213888	209647	4241	49	106
Aln1	45854	102319	10643	34968	4895	24.6	2281	227	885	127	265	29.7	182	22.5	202721	198703	4018	49	170
Aln1	45599	105327	11331	38409	5913	15.9	2857	287	1121	161	337	38.1	228	28.7	211654	206595	5059	41	135
Aln2	37232	81677	8879	28863	4242	25.2	2034	232	1047	178	473	73.2	572	81.9	165609	160917	4692	34	44
Aln2	33300	80511	9152	31422	5250	21.9	2818	362	1856	345	1013	171	1394	198	167813	159657	8156	20	16
Aln2	35288	84952	9101	30398	5013	16.2	2685	358	1927	376	1118	176	1336	190	172935	164769	8165	20	18
Aln2	34123	79573	8886	29728	4864	19.8	2685	362	1945	376	1122	194	1586	227	165691	157194	8497	19	15
Aln2	34526	72428	7775	24855	3652	25.1	1796	216	1057	186	518	85.6	703	101	147924	143261	4663	31	33
Aln2	34261	71350	7592	24255	3456	24.8	1719	210	1006	180	501	82.9	687	99.1	145424	140939	4485	31	34
Aln2	38580	83779	8485	27025	3795	33.4	1959	250	1316	256	754	120	901	127	167380	161697	5682	28	29
Aln2	35563	84715	9132	29891	4908	29.3	2658	354	1856	359	1046	158	1158	159	171984	164237	7747	21	21
Ap	1415	3724	480	1969	389	20.4	350	48.6	271	54.9	141	17.9	106	14.4	9001	7997	1003	8	9
Ap	518	1699	242	1073	273	11.2	285	41.5	249	51.6	144	19.4	120	19.8	4746	3816	930	4	3
Ap	940	2691	363	1533	331	13.2	308	43.0	243	48.0	119	15.3	87.6	11.6	6747	5871	876	7	7
Ap	1604	4048	528	2170	424	20.4	382	51.0	280	53.6	129	15.3	84.8	10.7	9800	8794	1006	9	13
Ap	780	2619	369	1651	398	15.9	410	60.4	359	73.9	196	27.4	170	25.5	7156	5833	1323	4	3
Ap	1451	3676	458	1791	324	16.2	294	38.8	217	41.8	107	13.2	77.3	10.4	8515	7715	799	10	13
Notes:	Aln = all	anite; Ap	= apatit	e															

TABLE 4. LA-ICP-MS REE elements in allanite and apatite from the Gucheng CGBG (ppm)

TABLE 5. Nd isotopic compositions of titanite of the CGBG in the Gucheng deposit

	(¹⁴³ Nd/ ¹⁴⁴ Nd) ^a	Sm (ppm)	Nd (ppm)	$({}^{143}\text{Nd}/{}^{144}\text{Nd})_i^b$	ENd(t) ^c	T_{2DM}^{d}
Ttn1	0.512377	2738	3441	0.512062	-8.7	1610
Ttn1	0.512360	2710	3676	0.512069	-8.6	1599
Ttn1	0.512400	2636	3145	0.512069	-8.6	1599
Ttn1	0.512351	2730	3793	0.512066	-8.6	1603
Ttn1	0.512404	2744	3389	0.512084	-8.3	1575
Ttn1	0.512394	2555	3328	0.512091	-8.2	1565
Ttn1	0.512391	2495	3294	0.512091	-8.2	1563
Ttn1	0.512378	2784	3978	0.512101	-8.0	1548
Ttn1	0.512382	2614	3689	0.512102	-7.9	1547
Ttn2	0.512379	2689	3705	0.512092	-8.1	1562
Ttn2	0.512396	2601	3562	0.512107	-7.8	1538
Ttn2	0.512405	2941	3889	0.512106	-7.9	1540
Ttn2	0.512348	2622	3698	0.512068	-8.6	1601
Ttn2	0.512377	2459	3373	0.512088	-8.2	1568

Notes: Ttn = titanite.

a Measured ¹⁴³Nd/¹⁴⁴Nd-ratios.

b Initial ¹⁴³Nd/¹⁴⁴Nd-ratios.

c $\text{ENd}(t) = [(^{143}\text{Nd}/^{144}\text{Nd})_{i}/(^{143}\text{Nd}/^{144}\text{Nd})_{CHUR}-1] \times 10000$

d Two-stage Nd model ages.

))	0	N	1
8	0	N	L
)	0		J
ŀ	0		I
)	0	N	1

Medium-grained biotite

Weathered crust with REE

Figure 4

Figure 8

 $\epsilon Nd(t)$

Quartz

Fergusonite 1 $(LRE_2O_3 = 1.01 - 1.76 \text{ wt. }\%;$ $HRE_{2}O_{3} = 15.07 - 17.32 \text{ wt. \%}$

 $(LRE_2O_3 = 11.66 - 13.18 \text{ wt. }\%;$ $HRE_{2}O_{3} = 9.49 - 10.81 \text{ wt. \%}$