1	Revision 1
2	Heavy halogen compositions of lamprophyres derived from
3	metasomatized lithospheric mantle beneath eastern North China
4	Craton
5	Word Count: 6309
6	
7	Yixin Zheng ¹ , Zaicong Wang ¹ *, Tao He ¹ , Ray Burgess ² , Zhaoxian Zhu ¹ , Lian-Xun Wang ¹ ,
8	Xiang Wang ¹ , Zhaochu Hu ¹ , Yongsheng Liu ¹
9	¹ State Key Laboratory of Geological Processes and Mineral Resources, and School of
10	Earth Sciences, China University of Geosciences, Wuhan 430074, China
11	² School of Earth and Environmental Science, The University of Manchester, Oxford Road,
12	Manchester M13 9PL, UK
13	*Correspondence to Zaicong Wang, zaicongwang@cug.edu.cn
14	
15	ABSTRACT
16	Halogens and other volatiles are widely recycled into the deep mantle by subduction
17	and are key components to metasomatize the sub-continental lithospheric mantle (SCLM).
18	Lamprophyres are well-known to be rich in volatiles and are important for understanding
19	the halogen characteristics of the metasomatized SCLM and/or the mobilization of

20	halogens during the ascent of such volatile-rich, low-degree partial melts. The North
21	China Craton (NCC) hosts lamprophyre dikes coeval with extensive thinning of the
22	eastern NCC in the Mesozoic and generated from lithosphere metasomatized by
23	multiple-stage subduction components. Here we report bulk-rock heavy halogens (Cl, Br,
24	and I) of 16 lamprophyres from the eastern NCC. The bulk-rock halogen concentrations
25	are overall very low (Cl = 58–170 $\mu g/g,$ Br = 285–559 ng/g, and I less than 5 ng/g),
26	comparable with depleted Mid-Ocean ridge basalts (N-MORBs). Volatile-rich minerals
27	(e.g., amphibole and biotite) are abundant (20–30 vol.%) in these lamprophyres, however,
28	EPMA data indicate that amphiboles are mainly rich in OH and F but display very low Cl
29	concentrations (0.01–0.04 wt.%). The bulk rock and amphibole data consistently indicate
30	low abundances of heavy halogens in the lamprophyres, which is difficult to reconcile
31	with the remarkable enrichment of fluid-mobile large ion lithophile elements such as Ba,
32	Rb, and K. Based on low Cl/Nb and Br/Nb but high Ba/Nb and K/Nb ratios, the low
33	halogen concentrations likely resulted from extensive volatile loss (> 90%) during melt
34	ascent. The low Cl concentrations in early-stage amphiboles (Mg# 60-64) further
35	indicate that such loss would have occurred before amphibole crystallization at a depth of
36	approximately 15 km. We thus propose that crystallization of early olivines and
37	pyroxenes and reaction with surrounding mantle rocks likely induced volatile saturation
38	and exsolution, leading to strong partitioning of the halogens into the exsolved aqueous

39	volatile phases and thus the extensive loss of halogens from the rising melt. These results
40	reveal that significant volatile loss of halogens not only occurs during surficial
41	low-pressure eruption but also at much deeper levels in the crust, as also identified for
42	some kimberlites. Consequently, it would be difficult to constrain the primitive halogen
43	components of the mantle sources via lamprophyres or similar magmas.
44	Keywords: Halogen, Lamprophyres, Deep degassing, Metasomatized mantle, North
45	China Craton

46

INTRODUCTION

47	Recycling of volatiles into the mantle at subduction zones has a profound impact on
48	the geochemical evolution of the Earth's mantle (e.g., Barnes et al., 2018; Bekaert et al.,
49	2021; Broadley et al., 2016; Kendrick et al., 2020; Wallace, 2005). The oceanic
50	lithosphere (including the oceanic crust and lithospheric mantle) is rich in volatiles due to
51	interaction with seawater and hydrothermal fluids (e.g., Kendrick et al., 2011; Pagé et al.,
52	2016). The serpentinized lithospheric mantle is considered to be the main carrier of the
53	deep halogen cycle (e.g., Kendrick et al., 2017; Kendrick et al., 2013; Pagé and Hattori,
54	2019). The subducted halogens play an important role in controlling the diffusion,
55	viscosity, density, and phase equilibrium of silicate melts (e.g., Baasner et al., 2013;
56	Feisel et al., 2022; Filiberto and Treiman, 2009a; Filiberto and Treiman, 2009b; Thomas
57	and Wood, 2021; Zimova and Webb, 2006). On a mole by mole basis, chlorine has twice
58	the effect of water on lowering the liquidus temperature of basalt (Filiberto and Treiman,
59	2009a). Chlorine is also an important ligand in hydrothermal fluids, influencing the
60	migration and mineralization processes of economically important metals such as Cu and
61	Au (Blundy et al., 2015; Zajacz et al., 2010). Furthermore, the release of halogens from
62	the metasomatized lithospheric mantle to the terrestrial surface could affect the
63	atmosphere and hydrosphere (von Glasow et al., 2009) and even destroy the ozone layer
64	potentially contributing to mass extinctions (Broadley et al., 2018a).

65	Despite their geochemical and environmental importance, the halogen compositions
66	of samples of metasomatized lithospheric mantle have been relatively poorly studied.
67	Most studies of mantle halogens have focused on oceanic settings, including systematic
68	measurement of Cl, Br, and I concentrations of mantle-derived melts such as mid-ocean
69	ridge basalts (MORBs) and arc and back-arc lavas as well as mantle xenoliths (peridotites
70	and pyroxenites) from subduction zones (e.g., Broadley et al., 2016; Kendrick et al., 2020;
71	Kendrick et al., 2017; Kendrick et al., 2014b; Kobayashi et al., 2017; Saal et al., 2002;
72	Sumino et al., 2010). The oceanic lithospheric mantle is considered to be an important
73	halogen reservoir (Frezzotti and Ferrando, 2018). By contrast, the enrichment levels of
74	halogens in the metasomatized sub-continental lithospheric mantle (SCLM) are less
75	well-studied (e.g., Broadley et al., 2016; Broadley et al., 2018b; Burgess et al., 2002;
76	Toyama et al., 2021). Available data are mainly from continental lithospheric mantle
77	xenoliths and diamond inclusions but they show large variations in the halogen
78	concentrations (e.g., Broadley et al., 2016; Broadley et al., 2018a; Burgess et al., 2002;
79	Hecker et al., 2020; Kobayashi et al., 2019). Halogen behavior in melts and magmatic
80	fluids remains an area of limited understanding. It is generally accepted that the release of
81	halogens in magma occurs mainly at a shallow level (Harford, 2003; Lowenstern et al.,
82	2012; Wang et al., 2014), but studies on kimberlites have found that continuous volatile
83	exsolution also occurs in deep regions (Russell et al., 2012; Russell et al., 2019). Overall,

- 84 the halogen release processes during the magmatic migration remain unclear including
- 85 the release triggers, release depths, and quantities.

86	Lamprophyres are produced by preferential partial melting of metasomatized
87	portions of the SCLM (e.g., Dongre and Tappe, 2019; Maria and Luhr, 2008; Rock et al.,
88	1991; Wang et al., 2022). They are often rich in hydrous minerals (e.g., amphibole and
89	biotite), volatiles (e.g., S, Cl, and H ₂ O), alkalis, fluid-mobile incompatible elements (e.g.,
90	K, Ba, and Rb) (e.g., Rock, 1987; Rock and Groves, 1988; Wang et al., 2022). Since
91	lamprophyres are derived from relatively large regions of mantle then, in the absence of
92	significant crustal contamination and other secondary processes, they are more
93	homogeneous and representative than mantle xenoliths (Wang et al., 2022; Wang et al.,
94	2020), and could better reflect the nature of the SCLM from a broader domain, as well as
95	the mobilization of halogens during the ascent of lamprophyre melts.
96	The North China Craton (NCC) has been stable, with no extensive magmatic activity,
97	since its formation in the Archean (e.g., Wu et al., 2019). The Paleozoic kimberlites in
98	eastern NCC (e.g., Li et al., 2011) have relatively high halogen concentrations relative to
99	kimberlites from other cratons, implying that the SCLM beneath NCC is a potential
100	reservoir with high halogen concentrations (Toyama et al., 2021). During the Mesozoic,
101	the SCLM was strongly metasomatized and hydrated by subducted components (e.g., Liu
102	et al., 2019; Wang et al., 2020; Wu et al., 2019). Lamprophyre dikes derived from the

103	metasomatized lithospheric mantle are widely distributed in the Jiaodong Peninsula. (e.g.,
104	Ma et al., 2014b; Wang et al., 2020; Windley et al., 2010). In this regard, the halogen
105	compositions of lamprophyres in the eastern NCC can provide new insights into
106	metasomatized SCLM and halogen behavior during magma ascent. To address these
107	issues, here we have examined the bulk-rock compositions of heavy halogens (Cl, Br, and
108	I) and <i>in-situ</i> Cl concentrations in amphiboles of the lamprophyres originating from the
109	metasomatized mantle in Jiaodong Peninsula, eastern NCC.

110

111 GEOLOGICAL SETTING AND SAMPLE DESCRIPTION

112 Geological setting

113 The eastern NCC is one of the oldest Archean cratons in the world, with crustal rocks 114 as old as 3.8 Ga (e.g., Kusky et al., 2007; Zhao et al., 2001). It has remained relatively 115 stable since its cratonization in Archean-Paleoproterozoic until it was affected by mantle 116 metasomatism related to multi-stage subduction events in the Mesozoic (e.g., Wu et al., 117 2019). In the Triassic, the Yangtze craton collided from south to north and subducted beneath the NCC (e.g., Ernst et al., 2007). The NCC was further influenced by the 118 119 subduction of the Paleo-Pacific plate from the east in the Jurassic (e.g., Liu et al., 2019; 120 Wu et al., 2019; Zheng et al., 2018). Following these subduction events, the SCLM beneath the eastern NCC was strongly modified and hydrated by subducted slab-derived 121

122	melts/fluids (e.g., Liu et al., 2019; Wang et al., 2020). Lithospheric thinning and
123	extensive crustal extension occurred during the Late Mesozoic, which triggered partial
124	melting of the metasomatized SCLM and extensive magmatism (e.g., Lin and Wei, 2018;
125	Wu et al., 2019; Zheng et al., 2018). Lamprophyre dykes were widely present in the
126	eastern NCC and were mainly formed between 130-120 Ma, consistent with the peak
127	time of the NCC destruction (e.g., Dai et al., 2016; Guo et al., 2004; Shen et al., 2009;
128	Wang et al., 2020). Previous studies proposed that these lamprophyres were derived from
129	the metasomatized and enriched lithospheric mantle (e.g., Ma et al., 2014a; Ma et al.,
130	2014b; Wang et al., 2022; Wang et al., 2020).

131 Sample description

132 Lamprophyre samples in this study were collected from different locations of the 133 Jiaodong Peninsula, eastern NCC: Linglong, Zhaoyuan, and Qixia districts (Fig. 1). The 134 lamprophyres collected in the underground tunnel of the Linglong gold mine (Fig. 2a; 135 N=12) are far away from gold-bearing quartz veins, and there is no effect of 136 hydrothermal alteration (Wang et al., 2020). Other lamprophyres were collected from the surface outcrop in Qixia (N=3) and Zhaoyuan (N=1) districts which were far from the 137 138 gold mines (Wang et al., 2020). Chlorine is an important mineralizing agent for gold deposits and is dissolved in ore-forming fluids (Aiuppa et al., 2009; Zajacz et al., 2010). 139 140 This sampling strategy avoided the effect of secondary overprint of ore-forming fluids, as

141 emphasized by Taylor et al. (1994) and Wang et al. (2022).

142	Lamprophyres are dark green to gray-black in hand specimens. Phenocrysts are
143	mainly composed of hydrous minerals such as amphibole and biotite, comprising up to
144	20-30 vol.%, as well as a small proportion of nominally-volatile-free minerals such as
145	olivine and clinopyroxene (Fig. 2b). The groundmass includes amphibole, plagioclase,
146	alkali feldspar, biotite, and minor carbonate (Fig. 2). The presence of euhedral olivine and
147	clinopyroxene as well as hydrous minerals indicate that they crystallized from primitive
148	and hydrous magmas. The high loss on ignition (LOI: 3.5-11.3 wt.%) mainly reflects the
149	primary volatile-rich feature of lamprophyres. Secondary alteration is mainly manifested
150	by partial replacement of olivine, clinopyroxene, and even plagioclase in the matrix and a
151	certain degree of chloritization has occurred (Figs. 2e and 2f). The alteration may be
152	related to the autometasomatism occurring in water-rich lamprophyres (H ₂ O 2–4 wt.%)
153	during the late-stage magmatic process (Liang et al., 2019; Rock et al., 1991; Wang et al.,
154	2020).

The lamprophyres of this study have been studied in detail including petrology, major and trace elements, chalcophile elements (e.g., S), Sr-Nd isotopes, and ages (130– 120 Ma) (Wang et al., 2022; Wang et al., 2020). They are K-rich calc-alkaline and alkaline lamprophyres (K₂O 1.8–3.9 wt. %). The high Mg# values (molar ratio of Mg/(Mg+Fe) *100, up to 74) and transition element concentrations of Cr (262–753 μ g/g)

- 160 and Ni (113–303 μ g/g) indicate that the lamprophyres have primitive magma properties
- 161 (Wang et al., 2020). The studied samples all display island arc basalt-like trace element
- 162 patterns, which are depleted in high field strength elements (HFSEs) and enriched in
- 163 fluid-mobile large ion lithophile elements (LILEs) (Fig. 3). Combined with radiogenic
- 164 ⁸⁷Sr/⁸⁶Sr (0. 70922–0.71211) and ¹⁴³Nd/¹⁴⁴Nd (0.51167–0.51190) isotopic compositions
- 165 (Fig. 3), these lamprophyres were generated from strongly metasomatized portions of the
- 166 SCLM by slab-derived fluids during the Mesozoic (Ma et al., 2014a; Wang et al., 2020).

167

METHODS

168	During preparation, the altered surfaces of lamprophyres were removed with a rock
169	saw, and the cut surfaces were abraded with silica emery paper. Following this, samples
170	were washed with ultrapure Milli-Q water of 18.2 $M\Omega\ cm^{-1}$ before being dried and
171	processed into rock powder. All procedures avoided possible contamination of halogens
172	during sample processing.
173	Bulk-rock halogen analysis
174	Bulk-rock halogen concentrations were determined by a rapid and efficient method
175	developed for geological rock samples (He et al., 2019). This method uses ammonium
176	hydrogen fluoride (NH ₄ HF ₂) to digest rock powder at 230°C for 2 hours. The NH ₄ HF ₂
177	reagent efficiently decomposes silicate samples and also avoids the possible volatile loss
178	of halogens via the formation of ammonium halide during sample digestion (He et al.,
179	2019). Aliquots of 10 μ g L ⁻¹ Te were added to the sample supernatant solution as the
180	internal standard. The samples were then measured by high-sensitivity sector field
181	ICP-MS (Element XR) at low-resolution mode for Br and I, but medium-resolution mode
182	for Cl at the State Key Laboratory of Geological Processes and Mineral Resources, China
183	University of Geosciences, Wuhan (GPMR-CUG). The detection limits of Cl, Br, and I in
184	rocks were 5 μ g/g, 2 ng/g, and 5 ng/g, respectively.
185	An international basalt standard (USGS, BHVO-2) was processed together with

186	samples to monitor the quality of the digestion and analysis procedures. The Cl, Br, and I
187	results of BHVO-2 were 99 $\mu g/g,\ 252$ ng/g, and 42 ng/g, respectively, within the
188	previously reported range (81–104 μ g/g for Cl, 240–295 ng/g for Br, and 16–307 ng/g for
189	I) (e.g., Agnès and Villemant, 2007; Balcone-Boissard et al., 2009; Kendrick et al., 2018;
190	Sekimoto and Ebihara, 2017; Wang et al., 2010). In our lab, multiple determinations of
191	iodine concentrations in BHVO-2 displayed constant results, indicating the reliability of
192	this method (He et al., 2019).
193	Electron probe microanalyses (EPMA) of amphibole

194 Major and trace element analyses of amphibole have been performed with a JEOL 195 JXA-8230 electron probe microanalyser equipped with a 5-channel spectrometer in the 196 Laboratory of Microscopy and Microanalysis of Wuhan Microbeam Detection 197 Technology Co., LTD. Prior to acquiring the element contents, optical and electron 198 microscopy images were obtained for each amphibole grain to assess the level of any 199 alteration and zonation and to assist in selecting EPMA positions (Fig. 2). Based on these 200 results, we selected four amphiboles from the fresh lamprophyre sample 17XS26 for 201 *in-situ* analyses.

A thin section was coated by carbon film with a uniform thickness of about 20 nm,
following the experimental method by Zhang and Yang (2016). The primary acceleration
voltage was 15 kV, and a 20 nA beam current and a 10 μm beam spot diameter were used

205	for all mineral analyses. The major element content, as well as F and Cl concentrations of
206	amphiboles, were measured by EPMA. The analysis times of characteristic peaks of F,
207	C1, Na, Mg, A1, Si, K, Ca, Fe, Ni, and Cr are 10 s, while Ti and Mn are 20 s. The
208	standard samples used for testing elements were fluorite (F), sodium chloride (Cl), jadeite
209	(Na), diopside (Mg, Ca), magnesium aluminite (Fe, A1), olivine (Si), potassium feldspar
210	(K), rutile (Ti), rhodonite (Mn), nickel (Ni), and chromium oxide (Cr). The detection
211	limits for F and Cl were ~330 $\mu g/g$ and ~37 $\mu g/g,$ respectively.
212	

213

RESULTS

214 Halogen compositions

215 The 16 lamprophyre samples have similar halogen compositions (Table 1). The 216 concentrations of Cl and Br are 58–170 µg/g, and 285–559 ng/g, respectively, and the I 217 concentrations are all below the detection limit of 5 ng/g (Fig. 4). The halogen 218 concentrations do not change systematically with magmatic evolution index (MgO) or 219 other major and trace elements (Figs. 4, 5, 6a and 6b). As Fig 4 shows, the halogen compositions of lamprophyres are close to those of N-MORBs (14–225 μ g/g Cl, 35–34 220 221 ng/g Br), which are generally lower than that of E-MORBs (Cl mean of 371 µg/g, Br 222 mean of 1123 ng/g), and arc-related lavas (Cl mean of 972 µg/g, Br mean of 2825 ng/g) 223 (calculated from Kendrick et al., 2020; Kendrick et al., 2017).

224	Eight samples in this study have Br/Cl ratios of 0.002-0.004, which are within the
225	range of MORBs and OIBs (0.0028 ± 0.0008) (Kendrick et al., 2017). However, the other
226	eight samples have notably higher Br/Cl ratios of about 0.007–0.008 (Table 1).

227 Mineral chemistry

228 We performed electron probe microanalyses (N=27) on four amphiboles from the 229 fresh lamprophyre 17XS26 (Table 2). The magmatic amphiboles have similar Mg# 230 ranging from 64 to 66. They display a magnesiohastingsite composition characterized by 231 TiO₂ and CaO contents ranging from 2.4 to 3.0 wt.% and from 11.3 to 11.5 wt.% 232 respectively (Leake and Elgey, 1997). The Cl concentrations of amphiboles are similarly 233 low, ranging between 0.01 and 0.04 wt.% with an average value of 0.02 wt.%. 234 Physiochemical parameters (P, T, H_2O_{melt}) at the time of amphibole crystallization were 235 estimated using the empirical formulations provided by Ridolfi and Renzulli (2012) 236 based on amphibole composition. These amphiboles record similar pressure, temperature, 237 and melt water content estimates of 340–420 MPa, 907–925°C, and 6.18 ± 0.1 wt.%, 238 respectively. The corresponding crystallization depth is 12.8–15.9 km with an average of 239 14.2 km (Table 2). The details are presented in Table S2. Based on the EPMA data of 240 clinopyroxenes provided by Wang et al. (2020), the crystallization temperature and 241 pressure of clinopyroxenes were further estimated using the method proposed by Putirka 242 (2008). The crystallization depth of clinopyroxene is about 20 km, except for one sample

243 (17QX20C, 10.5 km). The crystallization temperature of clinopyroxene is about 1200 °C.

244 The Mg# is about 84 on average, which is higher than amphibole indicating the earlier

- crystallization (Table S3).
- 246
- 247

DISCUSSION

248 Heavy halogens in the lithospheric mantle beneath the NCC

249 The incompatible behavior of volatiles during magmatic processes leads to their 250 depletion from the mantle and the enrichment in the crust (e.g., Hilton et al., 2002). 251 Whether volatiles can be recycled back into the mantle through subduction zones has 252 been widely discussed (e.g., Barnes et al., 2018a; Kendrick et al., 2020; Schilling et al., 253 1978; Wallace, 2005). Numerous studies have shown that the subducted volatiles are 254 effectively released in the forearc or sub-arc region during subduction (Dixon et al., 2002; 255 Ito et al., 1983; Schilling et al., 1978; Wallace, 2005). Mass balance calculations indicate 256 that the predominant fraction of slab-derived Cl is returned to the Earth's surface (e.g., 257 Barnes et al., 2018; Ito et al., 1983; Ruscitto et al., 2012). However, up to 10% of the 258 total subducted Cl may survive into the deep mantle (e.g., Kendrick et al., 2014a; 259 Kendrick et al., 2020). Similarly, Br and I can also be added to the mantle (e.g., Barnes et 260 al., 2018; Pyle and Mather, 2009). Deep Cl recycling is also evidenced by Br/Cl, I/Cl, and 261 Cl/K ratios and chlorine isotope compositions of plume-related basalts (e.g., John et al.,

262	2010; Kendrick et al., 2014b; Stroncik and Haase, 2004; Workman et al., 2006). It has
263	also been reported that the diamonds from the deep mantle captured slab-derived highly
264	saline fluid inclusions (Johnson et al., 2000; Tomlinson et al., 2006; Weiss et al., 2015). It
265	is further suggested that the SCLM beneath the continental subduction zone is rich in
266	halogens because of the continuous addition of halogens from the subducted plate (e.g.,
267	Broadley et al., 2016; Broadley et al., 2018a). These results convincingly indicate that
268	subducted halogens can be recycled into the mantle and enriched at the base of the
269	SCLM.
270	Paleozoic kimberlites in the NCC at Shandong (Jining and Mengyin) and Liaoning
271	(Wafangdian) regions () were emplaced at approximately 480 Ma (Fig. 1a; Li et al., 2011).
272	Although their isotopic features suggested different magma sources (Fig. 3), all of them
273	show noticeably high halogen concentrations (Figs. 4c and 4d). The concentrations of Cl,
274	Br, and I of these kimberlites are 640–2150 $\mu g/g,$ 4.6–30.1 $\mu g/g,$ and 0.028–0.083 $\mu g/g,$
275	respectively (Table S4); higher by an order of magnitude than kimberlites from South
276	Africa, Greenland, and Brazil, while the degree of incipient melting in the kimberlite
277	source region would not be significantly different (Toyama et al., 2021). The results from
278	kimberlites indicate high abundances of halogens stored in the lithospheric mantle
279	beneath the NCC in the Paleozoic (Toyama et al., 2021). The lithospheric mantle was
280	further strongly metasomatized and hydrated by aqueous melts and/or fluids from the

281	subducted continental and oceanic plates during the Mesozoic (see Geological Setting
282	section). Clinopyroxenes in Feixian basalts which erupted in the early Cretaceous (~120
283	Ma) (Fig. 1a), suggest high H ₂ O contents of > 1000 μ g/g for the metasomatized SCLM of
284	the eastern NCC (Xia et al., 2019; Xia et al., 2013). Such values are dramatically higher
285	than the MORB source region (50–200 $\mu g/g~H_2O)$ and suggest abundant water and other
286	volatiles retained at the base of the NCC's lithospheric mantle, possibly added during
287	multi-stage subduction of oceanic plates since the Paleozoic (Xia et al., 2013). It is
288	suggested that some fluids released by dehydration of subducted plates during subduction
289	are highly saline (Kent et al., 2002; Manning and Frezzotti, 2020). The Cl/H2O ratios
290	preserved in undegassed melt inclusions from primitive arc basalts imply fluid salinities
291	typically ranging between 5 and 15 wt.% NaCl (Métrich and Wallace, 2008), consistent
292	with fluid inclusion data from high-pressure metamorphic rocks and mantle xenoliths
293	from subduction zones (Frezzotti and Ferrando, 2015; Kawamoto et al., 2013). The
294	generally high salinity of subduction-zone fluids provides favorable evidence for the
295	addition of large amounts of Cl (and presumably Br and I) to the SCLM together with the
296	water. In conclusion, the high halogens in the kimberlites from the NCC and intense
297	mantle metasomatism and hydration very likely indicate that the lithospheric mantle
298	beneath the NCC is a potential reservoir with high halogen concentrations.

299

300 Strong depletion of heavy halogens in lamprophyres

301	The lamprophyres in this study were formed coevally with the Feixian basalts.
302	Importantly, they also were derived from the SCLM of the eastern NCC which was
303	strongly metasomatized by aqueous fluid and share similar island arc-like trace element
304	patterns (strong enrichment of fluid-mobile LILEs such as K, Rb, and Ba) and radiogenic
305	Sr-Nd isotopes (Fig. 3 and Table S1). Based on the model proposed by Rustioni et al.
306	(2021), we estimate saline fluids with at least 7 wt.% NaCl are required to be released
307	from the basaltic slab to the zone of melting in order to reproduce the trace element
308	enrichment pattern of lamprophyres in this study, since the fluid/eclogite partition
309	coefficients of the LILEs increase with salinity (Rustioni et al., 2021). Olivine-hosted
310	glass inclusions in lamprophyres in Mexico showed high Cl concentrations of 0.15-0.28
311	wt.% (Fig. 4a), suggesting high halogen abundance in primitive magmas of lamprophyres
312	(Maria and Luhr, 2008). However, the halogen compositions of lamprophyres in this
313	study are similar to those of N-MORBs and generally much lower than arc-related lavas
314	which have also experienced subduction-related metasomatism in their source regions
315	(Fig. 4). The results indicate that heavy halogen concentrations in the lamprophyres are
316	relatively low. Chlorine, Br, I, and Nb are similarly incompatible during partial melting
317	(Kendrick et al., 2017). Therefore, positive correlations exist among Cl, Br, I, and Nb of
318	MORBs and OIBs (Fig. 5). The enrichment of Cl, Br, and I relative to Nb in arc-related
319	lavas reflects the addition of subduction components which are rich in fluid-mobile $18/50$

halogens but depleted in fluid-immobile Nb (Kendrick et al., 2020). However, the Cl, Br,
and I concentrations in lamprophyres are similar to MORB at given Nb concentrations
(Fig. 5).

323 Due to the similar incompatibility of Cl, Br, I, and K, they are not easily fractionated 324 by mantle melting processes, thus in the absence of shallow-level assimilation (involving 325 contamination by seawater, altered oceanic crust, or brines), the ratios of these elements 326 in mantle-derived melts can represent the mantle source (Kendrick et al., 2017). The Cl/K 327 ratios of MORB and OIB which are free from seawater assimilation are within a small 328 range (0.02-0.14) with a median of 0.06 ± 0.01 (Kendrick et al., 2017) (Fig. 6c). The 329 relative abundances of Cl, Br, and K are also used as important tracers for 330 subduction-related processes (e.g., Kendrick et al., 2017; Stroncik and Haase, 2004). The 331 Cl/K ratios of arc and back-arc glasses (0.05-0.54) are slightly higher than those of 332 MORB and OIB, indicating fluid-related enrichment of Cl in subduction-zone magmas which can be attributed to the addition of a Cl-rich component in subduction zones 333 334 (Kendrick et al., 2020; Pyle and Mather, 2009) (Fig. 6c). However, the Cl/K ratios of 335 lamprophyres are one order of magnitude lower than those of MORB and OIB, as well as 336 Br/K and I/K ratios (Fig. 6c, d and Fig. S1b). Such strong depletion can also be identified 337 from the ratios of halogens and fluid-mobile elements (e.g., K and Ba) to fluid-immobile 338 elements with similar incompatibility (e.g., Nb). Cl-Br-K-Ba elements exhibit similar

339	mobility during subduction processes and can be effectively added to the source regions
340	of arc magma, resulting in the enrichment of these elements in island arc samples (e.g.,
341	Barnes et al., 2018; Kendrick et al., 2020). For arc-related lavas, with progressive
342	metasomatism, the ratios of Cl/Nb, Br/Nb, K/Nb, and Ba/Nb are elevated relative to
343	MORBs (Fig. 7). The good correlations between lithophile elements (Ba/Nb and K/Nb)
344	and volatile elements (Cl/Nb and Br/Nb) (Fig. 7) also indicate negligible halogen-loss
345	during submarine eruption. However, the Cl/Nb and Br/Nb of lamprophyres remain low
346	at the MORB level, although they display high K/Nb and Ba/Nb ratios (Fig. 7). In
347	addition to lamprophyres with relatively low Cl, Br, and I abundances and low
348	halogen/Nb ratios, halogens are also decoupled from K and Ba (Fig. 7 and Fig. S1). Since
349	K, Ba, K/Nb, and Ba/Nb values do not vary so much for lamprophyres with different
350	degrees of alteration (see Alternation section), we exclude the possibility that these values
351	were increased by secondary alteration and advocate that elevated K/Nb and Ba/Nb
352	reflecting the original characteristics of lamprophyres. Overall, the results indicate strong
353	depletion of heavy halogens in lamprophyres.
354	The Cl concentrations of amphiboles in basaltic magma can reach several thousand

 $\mu g/g$ and even 1 wt.% (Webster et al., 2018), given relatively high amphibole/melt partition coefficients for Cl in the hydrous basaltic melts (Dalou et al., 2014). Chlorine concentrations for amphiboles in Andean basaltic-andesite volcanic rocks range from

358	0.15 wt.% to 0.24 wt.% (Chambefort et al., 2013; Webster et al., 2018); extremely
359	high-Cl amphiboles (3-5 wt.% Cl) were also found in mafic intrusion rocks of the
360	Kusa-Kopan complex (Shagalov et al., 2021). However, EPMA data of the amphiboles in
361	the lamprophyre in this study indicate very low Cl concentrations of $0.01-0.04$ wt.%
362	(Table 2) which are consistent with amphiboles of calc-alkaline lamprophyres in Western
363	Australia (≤ 0.03 wt.%) (Choi et al., 2019). Consequently, the low halogens abundances
364	present in both amphibole and bulk-rock support the strong depletion of halogens in the
365	lamprophyres.
366	There is a good correlation between Cl, Br, I, and K of MORBs and some arc lavas
367	(Fig. 6a, b, and Fig. S1a), the latter being variably higher than that of MORBs. Using the
368	median values of Cl/K (0.091), Br/K (2.5×10 ⁻⁴), and I/K (5.3×10 ⁻⁶) of MORB and
369	measured K contents of lamprophyres (1.47-3.21 wt.%) in this study, the estimated
370	halogen concentrations of primary lamprophyre melts are 1332–2907 $\mu g/g$ Cl, 3673–
371	8019 ng/g Br, and 78-170 ng/g I, respectively. The calculations indicate that
372	lamprophyres in this study have lost > 90% Cl, Br, and I (Table 1). Below we will discuss
373	the possible reasons for the strong depletion of heavy halogens in these lamprophyres.
374	

375 **Possible causes for heavy halogen depletions in lamprophyres**

376 Negligible effect of crustal contamination and secondary alteration. Previous

377	studies have shown that crustal contamination has minimal effect on the Jiaodong mafic
378	dike magmas during their rapid ascent along the trans-lithospheric fault (Deng et al.,
379	2017; Liang et al., 2018). Limited crustal contamination of the studied lamprophyres is
380	indicated by constant ${}^{87}\text{Sr/}{}^{86}\text{Sr}$ and ϵ Nd(t) with increasing SiO ₂ (Wang et al., 2020).
381	However, the lamprophyre dikes contain some inherited zircons (Wang et al., 2020),
382	raising the possibility of crustal-derived halogens being incorporated during melt
383	emplacement. Zircon U-Pb geochronology shows that the inherited zircons were mainly
384	incorporated from surrounding granites and Archean basement rocks of the Jiaobei
385	terrane which are mainly composed of tonalite-trondhjemite-granodiorite (TTG) gneisses,
386	amphibolites, and mafic granulites (Wang et al., 2020). If the strong depletion of halogens
387	in lamprophyres (>90%) is caused by crustal contamination, then it can only be
388	accounted for by a dilution effect of adding a large volume of low-halogen crustal
389	components.

However, Cl concentrations in granitoid rocks, amphibolites, and gneisses are overall high, ranging from 50-1000 μ g/g (e.g., Gao et al., 1998; Hanley and Koga, 2018; Teiber et al., 2014; Tripathi et al., 2021). The halogen compositions of the bulk continental crust are 244 μ g/g for Cl, 0.88 μ g/g for Br, and 0.71 μ g/g for I (Rudnick and Gao, 2003). The Cl/Nb and Br/Nb ratios of the bulk continental crust (31 and 0.11, respectively) are also higher than those of the lamprophyre samples of this study (mean 17 and 0.06,

396 respectively). Thus, crustal contamination would have the opposite effect of increasing 397 the halogen concentrations and ratios (Cl/Nb and Br/Nb) of lamprophyres. Therefore, 398 crustal contamination is excluded as a process to account for the halogen abundances of 399 lamprophyres.

400 Although the lamprophyres chosen in this study are very fresh in hand specimen, 401 variable degrees of alteration are still observed at the microscopic scale, mainly 402 manifested as chloritization of mafic minerals (Fig. 2). According to the degree of 403 chloritization observed under the microscope, we arbitrarily divided the samples into three sub-types for comparison: fresh, with negligible chloritization (17QX20B, 404 405 17QX20C, 17XS26); those with intense chloritization (17QX21, 17ZY26, 17XS16); and 406 the rest as slight chloritization. K, Ba, K/Nb, and Ba/Nb values are relatively consistent 407 for lamprophyres with different degrees of alteration. Nevertheless, as shown in Fig. 8a, 408 secondary low-temperature alteration tends to decrease Cl concentrations but slightly 409 increase Br concentrations. The alteration explains the higher Br/Cl ratios of altered 410 lamprophyres which is unrelated to melt evolution (Fig. 8b) and mantle metasomatism 411 (Fig. 8c). Since crustal contamination cannot be completely ruled out, it is also possible 412 that the addition of very small amounts of high Br/Cl crustal components could result in 413 high Br/Cl ratios in some lamprophyres. However, strong chloritization does not change 414 the halogen concentrations of lamprophyres by more than a factor of 3. Importantly, the

least altered lamprophyres still show low contents of heavy halogens (Table 1). Moreover,
the amphiboles in fresh, high Mg# lamprophyres also contain low Cl concentrations
(Table 2). Therefore, chloritization is not the main factor causing the depletion of
halogens of lamprophyres.

419 Negligible effect of surficial degassing. Due to the strong volatility and fluid 420 mobility of Cl and Br, degassing of the magma could be an important mechanism for 421 halogen depletion (e.g., Bureau et al., 2000; Spilliaert et al., 2006; Webster et al., 1999). 422 Magma degassing involves the partitioning of volatiles into the gas phases and exsolution 423 into the aqueous phases (Aiuppa et al., 2009). Partitioning halogens into the gas phase 424 mainly depends on the pressure of magma eruption. Typically, Cl and Br do not tend to 425 partition into the gas phase under high-pressure conditions (Aiuppa et al., 2009; Cadoux 426 et al., 2018). For instance, a significant loss of halogens does not occur in submarine 427 eruptions. Unni and Schilling (1978) proposed that Cl-loss by volcanic degassing only becomes important for samples that erupted under less than ~500 m water depth. The 428 429 consistency of Cl concentrations in glass and melt inclusions of Tonga arc rear lavas 430 (dredged below water depths of 1300 to 1900 m) indicates the negligible effect of 431 halogen degassing during the submarine eruption (Park et al., 2015). Under continental 432 crust conditions, experiments show that the CO_2 vapor phase begins to release from 433 kimberlite melts at shallow depths of < 3 km in the upper crust (Hoare et al., 2021;

434 Moussallam et al., 2015).

435	The emplacement and crystallization pressure of the Jiaodong Peninsula granites (the
436	host rocks of lamprophyres) is about 400 MPa (depth > 10 km), which may represent the
437	minimum depth of lamprophyre emplacement (e.g., Dou et al., 2018; Wang et al., 2022).
438	The crystallization depth of amphibole may represent the emplacement depth of mafic
439	magmas. Due to the relatively deep crystallization depth of amphibole (depth ~ 15 km)
440	(Table 2) and high confining pressure, it is unlikely that there was sufficient surficial
441	degassing to account for the halogen loss from lamprophyres. In addition, sulfur is often
442	considered to be more volatile than Cl (Lesne et al., 2011; Webster et al., 2018), but most
443	of the lamprophyres did not experience significant sulfur degassing (Wang et al., 2022).
444	Therefore, the less volatile heavy halogens of deep emplaced lamprophyres are unlikely
445	to have been lost from the melts into the gas phase in large quantities. Combined with the
446	characteristics of early crystallized but Cl-poor amphiboles (Table 2), we conclude that a
447	large amount of halogen loss must have occurred at a relatively deep level, and prior to
448	amphibole crystallization.

Deep volatile exsolution of lamprophyre magmas. The intense metasomatism by aqueous fluid led to volatile-bearing minerals, including amphiboles and minor phlogopites, being formed in the lamprophyre source region (Fig. 9a) (Wang et al., 2020), and are the main halogen carriers in the SCLM (Frezzotti and Ferrando, 2018). As

453 low-degree partial melting products from an amphibole-bearing peridotite source, 454 lamprophyres should have elevated halogen concentrations. However, our results indicate 455 lamprophyres of this study are strongly depleted in halogens (see Section 5.1). As 456 discussed above, secondary alteration and surficial degassing processes are unable to 457 account for the observed low halogen concentrations. Due to their overall high 458 electronegativity and propensity to form hydrogen halides, Cl and Br have high solubility 459 in aqueous fluids and readily exsolve from volatile-saturated melts during magmatic 460 degassing (e.g., Teiber et al., 2014; Webster et al., 2018). Therefore, we propose that 461 volatile exsolution at depth is the most plausible cause for the significant halogen 462 depletion in lamprophyres. The process is described below and shown schematically in 463 Fig. 9.

464 This mechanism should not be related to first boiling (degassing caused by 465 decompression; e.g., Webster et al., 1999) since the solubility of exsolved 466 chlorine-containing liquids is less affected by pressure (Webster and De Vivo, 2002). The 467 primary lamprophyre magmas are rich in water and other volatiles, as reflected by 468 abundant amphibole and biotite and high-water contents in amphibole (Fig. 2 and Table 469 2). During the ascent of lamprophyre magma, the continuous interaction with 470 surrounding mantle rocks causes SiO₂-enrichment of the melt which in turn decreases 471 volatile solubility, as observed in volatile-rich kimberlites (Russell et al., 2012; Russell et

472 al., 2019). The crystallization of nominally-volatile-free minerals (olivine, pyroxene, 473 plagioclase, etc.) in silicate melts could increase the total volatile concentration and 474 volatile activities of the residual melts (De Vivo et al., 2005; Webster, 2004). The 475 crystallization of these minerals also results in the decreasing abundances of Ca, Mg, and 476 Fe in the residual melt induced which further reduces the solubility of Cl dramatically 477 (Webster and De Vivo, 2002). These chemical-driven processes are distinguished from 478 physical changes (i.e., decompression) which would lead to the volatiles reaching 479 saturation and exsolving from the melts into aqueous phases even under relatively 480 high-pressure conditions.

Water is the most abundant volatile component in silicate melts, and the volatile exsolution process is largely controlled by aqueous fluid. The water content (~ 6 wt.%) of lamprophyre melt during amphibole crystallization is close to the water saturation curve of basaltic melt (Table 2 and Fig. S2). Therefore, it is possible that the samples in our study had reached fluid saturation and exsolved saline fluid before amphibole crystallization (Fig. S2).

Present studies show that the partitioning of Cl and Br between aqueous fluid and melt is mainly influenced by the melt composition (Cadoux et al., 2018). Waelkens et al. (2021) found that fluid-melt partition coefficients for Cl and Br are 30 and 41, respectively, and fluid exsolution is responsible for most of the halogen release in a

491	rhyolitic super-volcanic system. Values of $D_{Cl}^{\ fm}$ and $D_{Br}^{\ fm}$ for mafic melts are usually
492	lower than those for intermediate (andesitic and phonolitic) and silicic melts, however, it
493	is observed that $D_{Cl}^{f/m}$ ranges between 8 and 34 in a trachybasaltic melt system (Cadoux
494	et al., 2018 and references therein). The elevated $D_{Cl}^{f/m}$ is also strongly affected by the
495	higher Cl concentration in the melt (Cadoux et al., 2018; Webster et al., 1999).
496	Experiments for the basalt suggest $D_{Br}^{f/m}$ is about 5.0 at 1200 °C-100 MPa (Cadoux et al.,
497	2018). Based on experimental data, Bureau et al. (2000) suggested for albite melt at 200
498	MPa and 900°C the partition coefficients (D $^{\rm f/m}$) of Cl, Br, and I are 8.1±0.2, 17.5±0.6,
499	and 104±7, respectively. We can conclude that due to the relatively high $D_{Cl}^{f/m}$, $D_{Br}^{f/m}$,
500	and $D_I^{f/m}$ for mafic melts, heavy halogens strongly partition into the exsolved aqueous
501	volatile phases and eventually separate from the melts which result in the loss of most
502	halogens (Fig. 9b). On the basis of our estimated theoretical values (Table 1) (i.e., the
503	halogen concentrations of the primitive melts) and the halogen concentrations of
504	lamprophyres (Table 1) (i.e., the halogen concentrations of the residual melt), we
505	calculated the apparent partition coefficients of three fresh ones which were 11-13, 8-9
506	and 15–17 for $D_{Cl}^{f/m}$, $D_{Br}^{f/m}$ and $D_{I}^{f/m}$, respectively. These values are consistent with
507	experimental ranges supporting the possibility of fluid exsolution as a mean to deplete
508	heavy halogens from lamprophyre melts. However, the volatile exsolution did not
509	significantly affect sulfur which was mainly retained in the melts as sulfide (Wang et al.,

510	2022). The Cl ion in the exsolved saline fluid would bond to metal or metalloid cations
511	such as K, Na, and Ba, taking away part of these elements from primary melts. However,
512	fluid exsolution may not necessarily reduce the abundances of these metal cations at
513	similar levels to halogens, as is widely observed in brine fluids exsolved from
514	magmatic-hydrothermal systems (Pokrovski et al., 2013). For example, the fluid/melt
515	partition coefficients for alkali metals (e.g., $D_K^{f/m} < 0.5$) are much lower than those for Cl,
516	which implies that these cations would not necessarily partition into fluid phases
517	(Pokrovski et al., 2013; Zajacz et al., 2008).
518	Given the presence of Cl-poor amphibole, we speculate that the fluid exsolution of
519	lamprophyres would have occurred at a depth of more than 15 km prior to amphibole
520	crystallization. Interestingly, this is close to the minimum depth range of fluid exsolution
521	(20-25 km) observed in volcanic systems (e.g., Longpré et al., 2017; Maria and Luhr,
522	2008; Roberge et al., 2007; Ubide et al., 2022). The F and Cl concentrations of
523	volatile-bearing minerals in plutonic systems are similar to those in volcanic systems
524	(Zhang et al., 2012). These results imply that the evolution of Cl in melts at depth
525	(plutonic systems) is similar to that observed in volcanic systems during magma ascent
526	and degassing.

527

IMPLICATIONS

528	Lamprophyre dikes were widely emplaced at 130–120 Ma in the Jiaodong Peninsula,
529	eastern NCC, and they were derived from lithospheric mantle strongly metasomatized by
530	subduction components. Given the relatively high halogen abundances of kimberlites
531	emplaced in the eastern NCC during the Paleozoic and the strong enrichment of
532	fluid-mobile trace elements of lamprophyres, the mantle sources of these lamprophyres
533	should have been rich in heavy halogens (Cl, Br, and I). However, the lamprophyres
534	display very low abundances of heavy halogens. Based on the depletion of Cl/Nb and
535	Br/Nb ratios relative to Ba/Nb and K/Nb, the heavy halogens likely underwent a
536	significant loss of > 90% during the ascent of lamprophyre magmas. The amphiboles
537	crystallized from high Mg# lamprophyres were poor in Cl but rich in water, suggesting
538	that the halogen loss would have occurred before amphibole crystallization at crustal
539	depths of > 15 km rather than during surficial degassing at low-pressure conditions. We
540	propose that the volatile-rich primitive lamprophyre melts likely experienced volatile
541	saturation and exsolution (partitioning into the exsolved aqueous volatile phases),
542	resulting in a significant loss of heavy halogens.
543	Previous studies have suggested that shallow processes such as surface or

revious studies have suggested that shanow processes such as surface of
 near-surface crystallization or degassing often lead to intense loss of halogens (e.g.,
 Lowenstern et al., 2012; Wang et al., 2014). Our present work on hydrous lamprophyres

546	further reveals that a large amount of halogen loss occurs during magma ascent at deep
547	crustal depth. Consequently, volatile-rich magmatic products such as lamprophyres
548	probably do not retain a record of the primary halogen characteristics of the source region,
549	and the Br/Cl ratios of the lamprophyres will not necessarily represent the SCLM source.
550	This study also implies the possibility that the lithospheric mantle of the eastern NCC
551	might represent an important halogen reservoir. Future studies combined with peridotite
552	xenoliths in eastern NCC may help illuminate the nature of this reservoir.
553	
553 554	ACKNOWLEDGEMENTS AND FUNDING
553 554 555	ACKNOWLEDGEMENTS AND FUNDING The study was financially supported by the National Natural Science Foundation of
553 554 555 556	ACKNOWLEDGEMENTS AND FUNDING The study was financially supported by the National Natural Science Foundation of China (42273023, 41722302) and Chinese National Key Research and Development
 553 554 555 556 557 	ACKNOWLEDGEMENTS AND FUNDING The study was financially supported by the National Natural Science Foundation of China (42273023, 41722302) and Chinese National Key Research and Development Program (2016YFC0600103). We thank Jinhao Zheng and Haihong Chen for their
 553 554 555 556 557 558 	ACKNOWLEDGEMENTS AND FUNDING The study was financially supported by the National Natural Science Foundation of China (42273023, 41722302) and Chinese National Key Research and Development Program (2016YFC0600103). We thank Jinhao Zheng and Haihong Chen for their support in the laboratory and Zhe Xu and Zongqi Zou for their kind suggestions when
 553 554 555 556 557 558 559 	ACKNOWLEDGEMENTS AND FUNDING The study was financially supported by the National Natural Science Foundation of China (42273023, 41722302) and Chinese National Key Research and Development Program (2016YFC0600103). We thank Jinhao Zheng and Haihong Chen for their support in the laboratory and Zhe Xu and Zongqi Zou for their kind suggestions when writing the first draft. We also appreciate two reviewers for their detailed and constructive

561	References
562 563 564	Agnès, M., and Villemant, B. (2007) Determination of Halogens (F, Cl, Br, I), Sulfur and Water in Seventeen Geological Reference Materials. Geostandards Newsletter, 27, 163-171.
565 566	Aiuppa, A., Baker, D.R., and Webster, J.D. (2009) Halogens in volcanic systems. Chemical Geology, 263(1-4), 1-18.
567 568	Baasner, A., Schmidt, B.C., and Webb, S.L. (2013) The effect of chlorine, fluorine and water on the viscosity of aluminosilicate melts. Chemical Geology, 357, 134-149.
569 570 571	Balcone-Boissard, H., Agnès, M., and Villemant, B. (2009) Simultaneous Determination of Fluorine, Chlorine, Bromine and Iodine in Six Geochemical Reference Materials Using Pyrohydrolysis, Ion Chromatography and Inductively Coupled
572	Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 33,
573	477-485.
574 575 576 577 578	 Barnes, J.D., Manning, C.E., Scambelluri, M., and Selverstone, J. (2018) The Behavior of Halogens During Subduction-Zone Processes. In D.E. Harlov, and L. Aranovich, Eds. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle, p. 545-590. Springer International Publishing.
579 580 581 582	 Bekaert, D.V., Turner, S.J., Broadley, M.W., Barnes, J.D., Halldórsson, S.A., Labidi, J., Wade, J., Walowski, K.J., and Barry, P.H. (2021) Subduction-Driven Volatile Recycling: A Global Mass Balance. Annual Review of Earth and Planetary Sciences, 49(1), 37-70.
583 584 585	Blundy, J., Mavrogenes, J., Tattitch, B., Sparks, S., and Gilmer, A. (2015) Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs. Nature Geoscience, 8(3), 235-240.
586 587 588 589	Broadley, M.W., Ballentine, C.J., Chavrit, D., Dallai, L., and Burgess, R. (2016) Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle. Geochimica et Cosmochimica Acta, 176(8), 139-156.
590 591	Broadley, M.W., Barry, P.H., Ballentine, C.J., Taylor, L.A., and Burgess, R. (2018a) End-Permian extinction amplified by plume-induced release of recycled 32/50

- 592 lithospheric volatiles. Nature Geoscience, 11(9), 682-687.
- Broadley, M.W., Kagi, H., Burgess, R., Zedgenizov, D., Mikhail, S., Almayrac, M.,
 Ragozin, A., Pomazansky, B., and Sumino, H. (2018b) Plume-lithosphere
 interaction, and the formation of fibrous diamonds. Geochemical Perspectives
 Letters, 8, 26-30.
- Bureau, H., Keppler, H., and Metrich, N. (2000) Volcanic degassing of bromine and
 iodine: Experimental fluid/melt partitioning data and applications to stratospheric
 chemistry. Earth and Planetary Science Letters, 183(1-2), 51-60.
- Burgess, R., Layzelle, E., Turner, G., and Harris, J.W. (2002) Constraints on the age and
 halogen composition of mantle fluids in Siberian coated diamonds. Earth and
 Planetary Science Letters, 197(3-4), 193-203.
- Cadoux, A., Iacono-Marziano, G., Scaillet, B., Aiuppa, A., Mather, T.A., Pyle, D.M.,
 Deloule, E., Gennaro, E., and Paonita, A. (2018) The role of melt composition on
 aqueous fluid vs. silicate melt partitioning of bromine in magmas. Earth and
 Planetary Science Letters, 498(40), 450-463.
- 607 Chambefort, I., Dilles, J.H., and Longo, A.A. (2013) Amphibole geochemistry of the
 608 Yanacocha Volcanics, Peru: Evidence for diverse sources of magmatic volatiles
 609 related to gold ores. Journal of Petrology, 54(5), 1017-1046.
- Choi, E., Fiorentini, M., Giuliani, A., Foley, S., Maas, R., and Taylor, W. (2019)
 Subduction-related petrogenesis of Late Archean calc-alkaline lamprophyres in
 the Yilgarn Craton (Western Australia). Precambrian Research, 338(105550),
 1-17.
- Dai, L.Q., Zheng, Y.F., and Zhao, Z.F. (2016) Termination time of peak decratonization in
 North China: Geochemical evidence from mafic igneous rocks. Lithos, 240,
 327-336.
- Dalou, C., Koga, K.T., Le Voyer, M., and Shimizu, N. (2014) Contrasting partition
 behavior of F and Cl during hydrous mantle melting: implications for Cl/F
 signature in arc magmas. Progress in Earth and Planetary Science, 1(1), 26.
- De Vivo, B., Lima, A., and Webster, J.D. (2005) Volatiles in Magmatic-Volcanic Systems.
 Elements, 1(1), 19-24.
- 622 Deng, J., Liu, X., Wang, Q., Dilek, Y., and Liang, Y. (2017) Isotopic characterization and

623 petrogenetic modeling of Early Cretaceous mafic diking-Lithospheric extension 624 in the North China craton, eastern Asia. GSA Bulletin, 129(11-12), 1379-1407. 625 Deng, J., Wang, Q., Santosh, M., Liu, X., Liang, Y., Yang, L., Zhao, R., and Yang, L. 626 (2020) Remobilization of metasomatized mantle lithosphere: a new model for the 627 Jiaodong gold province, eastern China. Mineralium Deposita, 55(2), 257-274. 628 Dixon, J.E., Leist, L., Langmuir, C., and Schilling, J.-G. (2002) Recycled dehydrated 629 lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature, 630 420(6914), 385-389. 631 Dongre, A., and Tappe, S. (2019) Kimberlite and carbonatite dykes within the Premier 632 diatreme root (Cullinan Diamond Mine, South Africa): New insights to 633 mineralogical-genetic classifications and magma CO₂ degassing. Lithos, 338-339, 634 155-173. 635 Dou, J.-Z., Zhang, H.-F., Tong, Y., Wang, F., Chen, F.-K., and Li, S.-R. (2018) 636 Application of geothermo-barometers to Mesozoic granitoids in the Jiaodong 637 Peninsula, eastern China: Criteria for selecting methods of pressure estimation 638 and implications for crustal exhumation. Journal of Asian Earth Sciences, 160, 639 271-286. 640 Ernst, W., Tsujimori, T., Zhang, R., and Liou, J. (2007) Permo-Triassic Collision, 641 Subduction-Zone Metamorphism, and Tectonic Exhumation Along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35, 73-110. 642 643 Feisel, Y., Castro, J.M., Helo, C., and Dingwell, D.B. (2022) The effect of halogens (F, Cl) 644 on the near-liquidus crystallinity of a hydrous trachyte melt. American 645 Mineralogist, 107(6), 1007-1017. 646 Filiberto, J., and Treiman, A.H. (2009a) The effect of chlorine on the liquidus of basalt: 647 First results and implications for basalt genesis on Mars and Earth. Chemical 648 Geology, 263(1), 60-68. 649 -. (2009b) Martian magmas contained abundant chlorine, but little water. Geology, 37(12), 650 1087-1090. 651 Frezzotti, M.L., and Ferrando, S. (2015) The chemical behavior of fluids released during 652 deep subduction based on fluid inclusions. American Mineralogist, 100(2-3), 653 352-377.

Frezzotti, M.L., and Ferrando, S. (2018) The Role of Halogens in the Lithospheric
Mantle. In D.E. Harlov, and L. Aranovich, Eds. The Role of Halogens in
Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle,
p. 805-845. Springer International Publishing.

- Gaffney, A.M., Blichert-Toft, J., Nelson, B.K., Bizzarro, M., Rosing, M., and Albarède, F.
 (2007) Constraints on source-forming processes of West Greenland kimberlites
 inferred from Hf–Nd isotope systematics. Geochimica et Cosmochimica Acta,
 71(11), 2820-2836.
- Gao, S., Luo, T.C., Zhang, B.R., Zhang, H.F., Han, Y.W., Zhao, Z.D., and Hu, Y.K. (1998)
 Chemical composition of the continental crust as revealed by studies in East
 China. Geochimica Et Cosmochimica Acta, 62(11), 1959-1975.
- Gao, S., Rudnick, R.L., Xu, W.-L., Yuan, H.-L., Liu, Y.-S., Walker, R.J., Puchtel, I.S., Liu,
 X., Huang, H., Wang, X.-R., and Yang, J. (2008) Recycling deep cratonic
 lithosphere and generation of intraplate magmatism in the North China Craton.
 Earth and Planetary Science Letters, 270(1), 41-53.
- Guo, F., Fan, W.M., Wang, Y.J., and Zhang, M. (2004) Origin of early Cretaceous
 calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications
 for enrichment processes beneath continental collisional belt. Lithos, 78(3),
 291-305.
- Hanley, J.J., and Koga, K.T. (2018) Halogens in Terrestrial and Cosmic Geochemical
 Systems: Abundances, Geochemical Behaviors, and Analytical Methods. In D.E.
 Harlov, and L. Aranovich, Eds. The Role of Halogens in Terrestrial and
 Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle, p. 21-121.
 Springer International Publishing.
- Harford, C.L. (2003) Degassing at the Soufriere Hills Volcano, Montserrat, Recorded in
 Matrix Glass Compositions. Journal of Petrology, 44(8), 1503-1523.
- He, T., Hu, Z., Zhang, W., Chen, H., Liu, Y., Wang, Z., and Hu, S. (2019) Determination
 of Cl, Br, and I in Geological Materials by Sector Field Inductively Coupled
 Plasma Mass Spectrometry. Anal Chem, 91(13), 8109-8114.
- Hecker, J.G., Marks, M.A.W., Wenzel, T., and Markl, G. (2020) Halogens in amphibole
 and mica from mantle xenoliths: Implications for the halogen distribution and
 halogen budget of the metasomatized continental lithosphere. American
 Mineralogist, 105(6), 781-794.

- Hilton, D.R., Fischer, T.P., and Marty, B. (2002) Noble Gases and Volatile Recycling at
 Subduction Zones. Reviews in Mineralogy and Geochemistry, 47(1), 319-370.
- Hoare, B.C., Tomlinson, E.L., Barnes, J.D., Tappe, S., Marks, M.A.W., Epp, T., Caulfield,
 J., and Riegler, T. (2021) Tracking halogen recycling and volatile loss in
 kimberlite magmatism from Greenland: Evidence from combined F-Cl-Br and
 692 δ37Cl systematics. Lithos, 105976, 384-385.
- Ito, E., Harris, D.M., and Anderson, A.T. (1983) Alteration of Oceanic-Crust and
 Geologic Cycling of Chlorine and Water. Geochimica Et Cosmochimica Acta,
 47(9), 1613-1624.
- John, T., Layne, G.D., Haase, K.M., and Barnes, J.D. (2010) Chlorine isotope evidence
 for crustal recycling into the Earth's mantle. Earth and Planetary Science Letters,
 298(1-2), 175-182.
- Johnson, L.H., Burgess, R., Turner, G., and Harris, J.W. (2000) Noble gas and halogen
 geochemistry of mantle fluids: Comparison of African and Canadian diamonds.
 Geochimica Et Cosmochimica Acta, 64(4), 717-732.
- Kawamoto, T., Yoshikawa, M., Kumagai, Y., Mirabueno, M.H.T., Okuno, M., and
 Kobayashi, T. (2013) Mantle wedge infiltrated with saline fluids from dehydration
 and decarbonation of subducting slab. Proceedings of the National Academy of
 Sciences, 110(24), 9663-9668.
- Kendrick, M., D'Andres, J., Holden, P., and Ireland, T. (2018) Halogens (F, Cl, Br, I) in
 Thirteen USGS, GSJ and NIST International Rock and Glass Reference Materials.
 Geostandards and Geoanalytical Research, 42.
- Kendrick, M.A., Arculus, R.J., Danyushevsky, L.V., Kamenetsky, V.S., Woodhead, J.D.,
 and Honda, M. (2014a) Subduction-related halogens (Cl, Br and I) and H₂O in
 magmatic glasses from Southwest Pacific Backarc Basins. Earth and Planetary
 Science Letters, 400, 165-176.
- Kendrick, M.A., Danyushevsky, L.V., Falloon, T.J., Woodhead, J.D., Arculus, R.J., and
 Ireland, T. (2020) SW Pacific arc and backarc lavas and the role of slab-bend
 serpentinites in the global halogen cycle. Earth and Planetary Science Letters, 530,
 1-12.
- Kendrick, M.A., Hémond, C., Kamenetsky, V.S., Danyushevsky, L., Devey, C.W.,
 Rodemann, T., Jackson, M.G., and Perfit, M.R. (2017) Seawater cycled

- throughout Earth's mantle in partially serpentinized lithosphere. NatureGeoscience, 10(3), 222-228.
- Kendrick, M.A., Honda, M., Pettke, T., Scambelluri, M., Phillips, D., and Giuliani, A.
 (2013) Subduction zone fluxes of halogens and noble gases in seafloor and
 forearc serpentinites. Earth and Planetary Science Letters, 365, 86-96.
- Kendrick, M.A., Jackson, M.G., Kent, A.J.R., Hauri, E.H., Wallace, P.J., and Woodhead, J.
 (2014b) Contrasting behaviours of CO₂, S, H₂O and halogens (F, Cl, Br, and I) in
 enriched-mantle melts from Pitcairn and Society seamounts. Chemical Geology,
 370(7), 69-81.
- Kendrick, M.A., Scambelluri, M., Honda, M., and Phillips, D. (2011) High abundances of
 noble gas and chlorine delivered to the mantle by serpentinite subduction. Nature
 Geoscience, 4(11), 807-812.
- Kent, A., Peate, D., Newman, S., Stolper, E., and Pearce, J. (2002) Chlorine in submarine
 glasses from the Lau Basin: Seawater contamination and constraints on the
 composition of slab-derived fluids. Earth and Planetary Science Letters, 202(2),
 361-377.
- Kobayashi, M., Sumino, H., Burgess, R., Nakai, S.i., Iizuka, T., Nagao, J., Kagi, H.,
 Nakamura, M., Takahashi, E., Kogiso, T., and Ballentine, C.J. (2019) Halogen
 heterogeneity in the lithosphere and evolution of mantle halogen abundances
 inferred from intraplate mantle xenoliths. Geochemistry, Geophysics, Geosystems,
 20(2), 952-973.
- Kobayashi, M., Sumino, H., Nagao, K., Ishimaru, S., Arai, S., Yoshikawa, M., Kawamoto,
 T., Kumagai, Y., Kobayashi, T., Burgess, R., and Ballentine, C.J. (2017)
 Slab-derived halogens and noble gases illuminate closed system processes
 controlling volatile element transport into the mantle wedge. Earth and Planetary
 Science Letters, 457(10), 106-116.
- Kusky, T., Li, J., and Santosh, M. (2007) The Paleoproterozoic North Hebei Orogen:
 North China craton's collisional suture with the Columbia supercontinent.
 Gondwana Research, 12(1-2), 4-28.
- Leake, and Elgey, B. (1997) Nomenclature of amphiboles; Report of the Subcommittee
 on Amphiboles of the International Mineralogical Association, Commission on
 New Minerals and Mineral Names. Springer Berlin Heidelberg, 82(9-10),
 1019-1037.

752	Lesne, P., Kohn, S.C., Blundy, J., Witham, F., Botcharnikov, R.E., and Behrens, H. (2011)
753	Experimental Simulation of Closed-System Degassing in the System Basalt–
754	H ₂ O–CO ₂ –S–Cl. Journal of Petrology, 52(9), 1737-1762.
755	Li, QL., Wu, FY., Li, XH., Qiu, ZL., Liu, Y., Yang, YH., and Tang, GQ. (2011)
756	Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic
757	constraints on the evolution of the subcontinental lithospheric mantle. Lithos,
758	126(1), 127-134.
759 760 761 762 763	Liang, Y., Deng, J., Liu, X., Wang, Q., Ma, Y., Gao, T., and Zhao, L. (2019) Water contents of early cretaceous mafic dikes in the Jiaodong Peninsula, Eastern North China Craton: Insights into an enriched lithospheric mantle source metasomatized by Paleo–Pacific Plate subduction–related fluids. The Journal of Geology, 127(3), 343-362.
764	Liang, Y., Deng, J., Liu, X., Wang, Q., Qin, C., Li, Y., Yang, Y., Zhou, M., and Jiang, J.
765	(2018) Major and trace element, and Sr isotope compositions of clinopyroxene
766	phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China
767	Craton: Insights into magma mixing and source metasomatism. Lithos, 302,
768	480-495.
769	Lin, W., and Wei, W. (2018) Late Mesozoic extensional tectonics in the North China
770	Craton and its adjacent regions: a review and synthesis. International Geology
771	Review, 62(7-8), 811-839.
772	Liu, J., Cai, R., Pearson, D.G., and Scott, J.M. (2019) Thinning and destruction of the
773	lithospheric mantle root beneath the North China Craton: A review. Earth-Science
774	Reviews, 196, 102873.
775 776 777	Longpré, MA., Stix, J., Klügel, A., and Shimizu, N. (2017) Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands. Earth and Planetary Science Letters, 460, 268-280.
778	Lowenstern, J.B., Bleick, H., Vazquez, J.A., Castro, J.M., and Larson, P.B. (2012)
779	Degassing of Cl, F, Li, and Be during extrusion and crystallization of the rhyolite
780	dome at Volcán Chaitén, Chile during 2008 and 2009. Bulletin of Volcanology,
781	74(10), 2303-2319.
782 783 784	 Ma, L., Jiang, SY., Hofmann, A.W., Dai, BZ., Hou, ML., Zhao, KD., Chen, LH., Li, JW., and Jiang, YH. (2014a) Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric 38/50

- thinning beneath the North China Craton? Geochimica et Cosmochimica Acta,124, 250-271.
- Ma, L., Jiang, S.-Y., Hou, M.-L., Dai, B.-Z., Jiang, Y.-H., Yang, T., Zhao, K.-D., Pu, W.,
 Zhu, Z.-Y., and Xu, B. (2014b) Geochemistry of Early Cretaceous calc-alkaline
 lamprophyres in the Jiaodong Peninsula: Implication for lithospheric evolution of
 the eastern North China Craton. Gondwana Research, 25(2), 859-872.
- Manning, C.E., and Frezzotti, M.L. (2020) Subduction-Zone Fluids. Elements, 16(6),
 395-400.
- Maria, A.H., and Luhr, J.F. (2008) Lamprophyres, Basanites, and Basalts of the Western
 Mexican Volcanic Belt: Volatile Contents and a Vein–Wallrock Melting
 Relationship. Journal of Petrology, 49(12), 2123-2156.
- Mcdonough, W.F., and Sun, S.S. (1995) The composition of the Earth. Chemical Geology,
 120(3-4), 223-253.
- Métrich, N., and Wallace, P.J. (2008) Volatile Abundances in Basaltic Magmas and Their
 Degassing Paths Tracked by Melt Inclusions. Reviews in Mineralogy and
 Geochemistry, 69(1), 363-402.
- Moussallam, Y., Morizet, Y., Massuyeau, M., Laumonier, M., and Gaillard, F. (2015) CO₂
 solubility in kimberlite melts. Chemical Geology, 418, 198-205.
- Pagé, L., and Hattori, K. (2019) Abyssal serpentinites: Transporting halogens from
 Earth's surface to the deep mantle. Minerals, 9(1), 61.
- Pagé, L., Hattori, K., de Hoog, J.C.M., and Okay, A.I. (2016) Halogen (F, Cl, Br, I)
 behaviour in subducting slabs: A study of lawsonite blueschists in western Turkey.
 Earth and Planetary Science Letters, 442, 133-142.
- Park, J.-W., Campbell, I.H., Kim, J., and Moon, J.-W. (2015) The Role of Late Sulfide
 Saturation in the Formation of a Cu- and Au-rich Magma: Insights from the
 Platinum Group Element Geochemistry of Niuatahi–Motutahi Lavas, Tonga Rear
 Arc. Journal of Petrology, 56(1), 59-81.
- Pokrovski, G., Borisova, A., and Bychkov, A. (2013) Speciation and Transport of Metals
 and Metalloids in Geological Vapors, 76, 165-218.
- Putirka, K.D. (2008) Thermometers and Barometers for Volcanic Systems. Reviews in
 Mineralogy and Geochemistry, 69(1), 61-120.

Pyle, D.M., and Mather, T.A. (2009) Halogens in igneous processes and their fluxes to
the atmosphere and oceans from volcanic activity: A review. Chemical Geology,
263(1-4), 110-121.

Ridolfi, F., and Renzulli, A. (2012) Calcic amphiboles in calc-alkaline and alkaline
magmas: thermobarometric and chemometric empirical equations valid up to
1,130°C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163(5),
877-895.

- Roberge, J., Delgado-Granados, H., Wallace, P., and Kent, A. (2007) Pre-eruptive volatile
 contents of mafic magma at Popocatépetl Volcano, Mexico, from olivine hosted
 melt Inclusions. AGU Fall Meeting Abstracts.
- Rock, N.M.S. (1991) Nature, Origin and Evolution of Lamprophyre Melts. In N.M.S.
 Rock, Ed. Lamprophyres, p. 125-149. Springer US, Boston, MA.
- Rock, N.M.S. (1987) The nature and origin of lamprophyres: an overview. Geological
 Society, London, Special Publications, 30(1), 191-226.
- Rock, N.M.S., and Groves, D.I. (1988) Do lamprophyres carry gold as well as diamonds?
 Nature, 332(6161), 253-255.
- Rudnick, R.L., and Gao, S. (2003) 3.01 Composition of the Continental Crust. In H.D.
 Holland, and K.K. Turekian, Eds. Treatise on Geochemistry, p. 1-64. Pergamon,
 Oxford.
- Ruscitto, D., Wallace, P., Cooper, L., and Plank, T. (2012) Global variations in H₂O/Ce: 2.
 Relationships to arc magma geochemistry and volatile fluxes. Geochemistry,
 Geophysics, Geosystems, 13, 3025.
- Russell, J.K., Porritt, L.A., Lavallee, Y., and Dingwell, D.B. (2012) Kimberlite ascent by
 assimilation-fuelled buoyancy. Nature, 481(7381), 352-6.
- Russell, J.K., Sparks, R.S.J., and Kavanagh, J.L. (2019) Kimberlite Volcanology:
 Transport, Ascent, and Eruption. Elements, 15(6), 405-410.
- Rustioni, G., Audetat, A., and Keppler, H. (2021) The composition of subduction zone
 fluids and the origin of the trace element enrichment in arc magmas.
 Contributions to Mineralogy and Petrology, 176(7),1-19.
- Saal, A., Hauri, E., Langmuir, C., and Perfit, M. (2002) Vapor Undersaturation in
 Primitive MORBs and the Volatile Content of the Earth's Upper Mantle. Nature, 40/50

847 66(15A), 451-455.

- Schilling, J.G., Unni, C.K., and Bender, M.L. (1978) Origin of chlorine and bromine in
 the oceans. Nature, 273(5664), 631-636.
- 850 Sekimoto, S., and Ebihara, M. (2017) Accurate Determination of Chlorine, Bromine and
 851 Iodine in U.S. Geological Survey Geochemical Reference Materials by
 852 Radiochemical Neutron Activation Analysis. Geostandards and Geoanalytical
 853 Research, 41(2), 213-219.
- Shagalov, E., Holodnov, V., Sustavov, S., and Kiseleva, D. (2021) Cl-rich amphiboles and
 micas in rocks of the Middle Riphean Kusa-Kopan complex of mafic layered
 intrusions (southern Urals, Russia). Mineralogy and Petrology, 115, 1-19.
- Shen, L., Hu, R., Shan, G., Feng, C., Yu, B., Feng, G., Qi, Y., Tao, W., and Coulson, I.M.
 (2009) Petrogenesis of Late Mesozoic mafic dykes in the Jiaodong Peninsula,
 eastern North China Craton and implications for the foundering of lower crust.
 Lithos, 113(3-4), 621-639.
- Spilliaert, N., Métrich, N., and Allard, P. (2006) S–Cl–F degassing pattern of water-rich
 alkali basalt: Modelling and relationship with eruption styles on Mount Etna
 volcano. Earth and Planetary Science Letters, 248(3), 772-786.
- 864 Stroncik, N.A., and Haase, K.M. (2004) Chlorine in oceanic intraplate basalts:
 865 Constraints on mantle sources and recycling processes. Geology, 32(11), 945.
- Sumino, H., Burgess, R., Mizukami, T., Wallis, S.R., Holland, G., and Ballentine, C.J.
 (2010) Seawater-derived noble gases and halogens preserved in exhumed mantle
 wedge peridotite. Earth and Planetary Science Letters, 294(1-2), 163-172.
- Taylor, W.R., Rock, N.M.S., Groves, D.I., Perring, C.S., and Golding, S.D. (1994)
 Geochemistry of Archean shoshonitic lamprophyres from the Yilgarn Block,
 Western Australia: Au abundance and association with gold mineralization.
 Applied Geochemistry, 9(2), 197-222.
- Teiber, H., Marks, M.A.W., Wenzel, T., Siebel, W., Altherr, R., and Markl, G. (2014) The
 distribution of halogens (F, Cl, Br) in granitoid rocks. Chemical Geology, 374-375,
 92-109.
- Thomas, R.W., and Wood, B.J. (2021) The chemical behaviour of chlorine in silicate
 melts. Geochimica et Cosmochimica Acta, 294, 28-42.

- Tomlinson, E.L., Jones, A.P., and Harris, J.W. (2006) Co-existing fluid and silicate
 inclusions in mantle diamond. Earth and Planetary Science Letters, 250(3),
 581-595.
- Toyama, C., Muramatsu, Y., Yamamoto, J., Nakai, S., rsquo, Ichi, and Kaneoka, I. (2012)
 Sr and Nd isotope ratios and trace element concentrations in kimberlites from
 Shandong and Liaoning (China) and the Kimberley area (South Africa).
 GEOCHEMICAL JOURNAL, 46(1), 45-59.
- Toyama, C., Sumino, H., Okabe, N., Ishikawa, A., Yamamoto, J., Kaneoka, I., and
 Muramatsu, Y. (2021) Halogen heterogeneity in the subcontinental lithospheric
 mantle revealed by I/Br ratios in kimberlites and their mantle xenoliths from
 South Africa, Greenland, China, Siberia, Canada, and Brazil. American
 Mineralogist, 106(12), 1890-1899.
- Tripathi, P., Pandey, O.P., Srivastava, J.P., Sachan, H.K., Subbarao, D.V., Satyanabueanan,
 M., Krishna, A.K., Vedanti, N., Reddy, G.K., Rasheed, K., Dwivedi, S.K., and
 Parthasarathy, G. (2021) Amphibolite-granulite facies mid-crustal basement in
 Deccan Large Igneous Province and its implication on Precambrian crustal
 evolution: evidence from Killari borehole studies. International Journal of Earth
 Sciences, 110(8), 2661-2683.
- Ubide, T., Larrea, P., Becerril, L., and Galé, C. (2022) Volcanic plumbing filters on
 ocean-island basalt geochemistry. Geology, 50(1), 26-31.
- 898 Unni, C., and Schilling, J.-G. (1978) Cl and Br degassing by volcanism along the
 899 Reykjanes Ridge and Iceland. Nature, 272(5648), 19-23.
- von Glasow, R., Bobrowski, N., and Kern, C. (2009) The effects of volcanic eruptions on
 atmospheric chemistry. Chemical Geology, 263(1), 131-142.
- Waelkens, C.M., Stix, J., Monteleone, B., and Burckel, P. (2021) Efficient release of
 bromine by super-eruptions. Geology, 49(12), 1416-1420.
- Wallace, P.J. (2005) Volatiles in subduction zone magmas: concentrations and fluxes
 based on melt inclusion and volcanic gas data. Journal of Volcanology and
 Geothermal Research, 140(1), 217-240.
- Wang, L.-X., Marks, M.A.W., Keller, J., and Markl, G. (2014) Halogen variations in
 alkaline rocks from the Upper Rhine Graben (SW Germany): Insights into F, Cl
 and Br behavior during magmatic processes. Chemical Geology, 380(13),

910 133-144.

Wang, Q., Makishima, A., and Nakamura, E. (2010) Determination of Fluorine and
Chlorine by Pyrohydrolysis and Ion Chromatography: Comparison with Alkaline
Fusion Digestion and Ion Chromatography. Geostandards and Geoanalytical
Research, 34, 175-183.

- Wang, X., Wang, Z., Cheng, H., Zong, K., Wang, C.Y., Ma, L., Cai, Y.-C., Foley, S., and
 Hu, Z. (2022) Gold endowment of the metasomatized lithospheric mantle for
 giant gold deposits: Insights from lamprophyre dykes. Geochimica et
 Cosmochimica Acta, 316, 21-40.
- Wang, X., Wang, Z.C., Cheng, H., Foley, S., Xiong, L., and Hu, Z.C. (2020) Early
 cretaceous lamprophyre dyke swarms in Jiaodong Peninsula, eastern North China
 Craton, and implications for mantle metasomatism related to subduction. Lithos,
 368, 105593.
- Webster, J., Kinzler, R., and Mathez, E.A. (1999) Chloride and water solubility in basalt
 and andesite melts and implications for magma degassing. Geochimica et
 Cosmochimica Acta, 63(5), 729-738.
- Webster, J.D. (2004) The exsolution of magmatic hydrosaline chloride liquids. Chemical
 Geology, 210(1-4), 33-48.
- Webster, J.D., Baker, D.R., and Aiuppa, A. (2018) Halogens in Mafic and
 Intermediate-Silica Content Magmas. In D.E. Harlov, and L. Aranovich, Eds.
 Isotopic characterization and petrogeneti Geochemical Processes: Surface, Crust,
 and Mantle, p. 307-430. Springer International Publishing.
- Webster, J.D., and De Vivo, B. (2002) Experimental and modeled solubilities of chlorine
 in aluminosilicate melts, consequences of magma evolution, and implications for
 exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. American
 Mineralogist, 87(8-9), 1046-1061.
- Weiss, Y., McNeill, J., Pearson, D.G., Nowell, G.M., and Ottley, C.J. (2015) Highly
 saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature,
 524(7565), 339-342.
- Windley, B.F., Maruyama, S., and Xiao, W.J. (2010) Delamination/thinning of
 sub-continental lithospheric mantle under Eastern China: The role of water and
 multiple subduction. American Journal of Science, 310(10), 1250–1293.

- Workman, R.K., Hauri, E., Hart, S.R., Wang, J., and Blusztajn, J. (2006) Volatile and
 trace elements in basaltic glasses from Samoa: Implications for water distribution
 in the mantle. Earth and Planetary Science Letters, 241(3), 932-951.
- Wu, F.Y., Yang, J.H., Xu, Y.G., Wilde, S.A., and Walker, R.J. (2019) Destruction of the
 North China Craton in the Mesozoic. Annual Review of Earth and Planetary
 Sciences, Vol 47, 47(1), 173-195.
- Xia, Q.-K., Liu, J., Kovács, I., Hao, Y.-T., Li, P., Yang, X.-Z., Chen, H., and Sheng, Y.-M.
 (2019) Water in the upper mantle and deep crust of eastern China: concentration,
 distribution and implications. National Science Review, 6(1), 125-144.
- Xia, Q.-K., Liu, J., Liu, S.-C., Kovács, I., Feng, M., and Dang, L. (2013) High water
 content in Mesozoic primitive basalts of the North China Craton and implications
 on the destruction of cratonic mantle lithosphere. Earth and Planetary Science
 Letters, 361, 85-97.
- Zajacz, Z., Halter, W.E., Pettke, T., and Guillong, M. (2008) Determination of fluid/melt
 partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt
 inclusions: Controls on element partitioning. Geochimica et Cosmochimica Acta,
 72(8), 2169-2197.
- Zajacz, Z., Seo, J.H., Candela, P.A., Piccoli, P.M., Heinrich, C.A., and Guillong, M.
 (2010) Alkali metals control the release of gold from volatile-rich magmas. Earth
 and Planetary Science Letters, 297(1-2), 50-56.
- Zhang, C., Holtz, F., Ma, C., Wolff, P.E., and Li, X. (2012) Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case
 study from the Liujiawa pluton (Dabie orogen, China). Contributions to Mineralogy and Petrology, 164(5), 859-879.
- Zhang, R.X., and Yang, S.Y. (2016) A Mathematical Model for Determining Carbon
 Coating Thickness and Its Application in Electron Probe Microanalysis. Microsc
 Microanal, 22(6), 1374-1380.
- Zhao, G., Wilde, S.A., Cawood, P.A., and Sun, M. (2001) Archean blocks and their
 boundaries in the North China Craton: lithological, geochemical, structural and P–
 T path constraints and tectonic evolution. Precambrian Research, 107(1-2), 45-73.
- Zheng, Y., Xu, Z., Zhao, Z., and Dai, L. (2018) Mesozoic mafic magmatism in North
 China: Implications for thinning and destruction of cratonic lithosphere. Science

- 974 China Earth Sciences, 61(4), 353-385.
- Zimova, M., and Webb, S. (2006) The effect of chlorine on the viscosity of
 Na₂O-Fe₂O₃-Al₂O₃-SiO₂ melts. American Mineralogist, 91(2-3), 344-352.

977

Figure captions

978	Fig. 1. Simplified geological map showing the distribution of the Early Cretaceous
979	lamprophyres, basalts, and Paleozoic kimberlites in the eastern North China Craton. (a)
980	The location of the Jiaodong Peninsula and the spatial distribution of kimberlites and
981	basalts in Shandong (Mengyin, Jining, and Feixian) and Liaoning (Wafangdian). (b) The
982	location of studied lamprophyres, modified from Deng et al. (2020) and Wang et al.
983	(2022).
984	
985	Fig. 2. Field and microphotographs of lamprophyre dykes in the Jiaodong Peninsula. (a)
986	Lamprophyre dykes (130–120 Ma) intruding into the Linglong granite in an underground
987	shaft. (b) Clinopyroxene phenocrysts in lamprophyre. (c, d) Representative
988	microphotographs of fresh lamprophyres of this study. Volatile-rich minerals (amphibole
989	and biotite) occur widely. (e, f) Representative microphotographs of altered lamprophyres.
990	The phenocrysts are chloritized to variable degrees. Microphotographs were under
991	plane-polarized transmitted light. (g, h) Backscattered electron images of amphiboles in
992	fresh lamprophyres (17XS26). The circles are analysis spots for electron microprobe
993	analysis. Cpx - clinopyroxene; Pl - plagioclase; Amp - amphibole; Bt - biotite; Ap -
994	Apatite.

995

996	Fig. 3. Trace elements and Sr-Nd isotopic characteristics of lamprophyres, kimberlites,
997	and basalts. Primitive mantle-normalized trace element patterns for lamprophyres and
998	basalts are similarly arc-like. Kimberlites are enriched in incompatible elements and
999	depleted in Sr. Data for lamprophyres, kimberlites, and Feixian basalts were obtained
1000	from Wang et al. (2020), Toyama et al. (2012), and Gao et al. (2008), respectively;
1001	Primitive mantle data from Mcdonough and Sun (1995); Compositional range of MORB
1002	and OIB from Wang et al. (2020) and the references therein.
1003	
1004	Fig. 4. Halogen concentrations of the lamprophyres in this study. (a, b) Bulk-rock Cl and
1005	Br concentrations versus MgO contents. (c, d) Comparison of Br, Cl, and I concentrations.
1006	Note the I concentrations are below the detection limit of 5 ng/g. Lamprophyres have
1007	relatively low halogen contents and there is no correlation among halogens and between
1008	halogens and MgO for lamprophyres. Database for comparison: MORBs and OIBs

1010 Kimberlites (Gaffney et al., 2007; Hoare et al., 2021; Toyama et al., 2012; Toyama et al.,

- 1011 2021); Glass inclusions in olivine of lamprophyres from Mexico (Maria and Luhr, 2008).
- 1012
- 1013 Fig. 5. Comparison of fluid-mobile halogen concentrations with fluid-immobile Nb.
- 1014 MORBs and OIBs show good positive correlations of Cl, Br, I, and Nb, indicating their

- similar incompatibility during mantle melting and fractional crystallization. The higher
 halogen concentrations of arc-related lavas reflect the addition of fluid-mobile Cl, Br, and
 I by subduction. The halogen concentrations in lamprophyres are similar to MORB at a
 given Nb concentration. Data for comparison are the same as in Fig. 4.
 Fig. 6. Comparison of Cl and Br concentrations with K. (a, b) MORBs, OIBs, and arc
- lava data show good positive correlations of Cl, Br, and K, indicating their similar
 behavior during magmatic processes and subduction. However, the Cl and Br
 concentrations in lamprophyres are much lower at given K contents indicating strong
- 1024 depletion of Cl and Br. (c, d) Cl/K and Br/K ratios of lamprophyres are also obviously
- 1025 lower than those of MORBs, OIBs, and arc-related lavas.
- 1026

1027 Fig. 7. Halogens, Ba, and K relative to the fluid immobile lithophile element of similar

- 1028 incompatibility (Nb). The Cl/Nb and Br/Nb of the arc-related lavas show positive
- 1029 correlations with K/Nb and Ba/Nb, suggesting that Cl, Br, K, and Ba are added into the
- 1030 source regions effectively during subduction and negligible degassing during eruption.
- 1031 However, at given K/Nb and Ba/Nb, the ratios of Cl/Nb and Br/Nb in lamprophyres are
- 1032 lower than arc lavas, indicating volatile loss of Cl and Br.
- 1033

1034	Fig. 8. Halogen concentrations and Br/Cl ratios of lamprophyres with different degrees of
1035	alteration. (a) Average halogen compositions of fresh and chloritized samples. (b) Br/Cl
1036	vs MgO content, showing melt evolution is not responsible for the variable Br/Cl ratios.
1037	(c) Br/Cl vs Ba/Nb, showing elevated Br/Cl ratios are unrelated to mantle metasomatism.
1038	

1039 Fig. 9. Synoptic diagram showing the generation, transport, and exsolution of 1040 halogen-rich fluid in ascending primitive magmas of lamprophyre from the 1041 metasomatized lithospheric mantle to the middle crust. The metasomatic portions of the 1042 lithospheric mantle are rich in halogens and other fluid-mobile elements. Crystallization 1043 of nominally-volatile-free minerals and reaction with surrounding mantle rocks induced 1044 fluid exsolution which led to significant loss of volatile halogens.

1045

1046 Table 1. Halogen compositions of lamprophyres from Jiaodong Peninsula.

1047 Table 2. Chemical composition of amphiboles and clinopyroxenes in lamprophyres from

1048 Jiaodong Peninsula.

1049

1050 Supplementary Figure 1–2

1051 - Fig. S1: Comparison of I concentrations with Nb and K.

1052 -Fig. S2: The pressures and water contents of melts at the time of amphibole

- 1053 crystallization. The solubility curves represent the maximum concentrations of H₂O in the
- 1054 basaltic melts at a given pressure. Modified from (Newman and Lowenstern, 2002)
- 1055 Supplementary Table 1–4
- 1056 Table S1: Major (wt.%), trace element (µg/g), and Sr-Nd isotopes data for the
- 1057 lamprophyres from Jiaodong Peninsula.
- 1058 Table S2: Compositions (wt.% averages $\pm 1\sigma$ standard deviations) of representative
- 1059 fresh amphibole in lamprophyres from Jiaodong Peninsula.
- 1060 Table S3: Compositions (wt.% averages $\pm 1\sigma$ standard deviations) of representative
- 1061 fresh clinopyroxene in lamprophyres from Jiaodong Peninsula.
- 1062 Table S4: Trace element (μ g/g) and Sr-Nd isotopes data for the kimberlites from Eastern
- 1063 China.

	Mg# ^d	LOI ^e wt.%	Cl	Br ng/g	I ng/g	Cl/K ×10 ⁻³	Br/K ×10 ⁻³	Ba/Nb	Cl/Nb	Br/Nb	Br/Cl	Cl recalc f	Br ^f ng/g	I _{recalc} f ng/g	Cl loss	Br loss	I loss ^g
17XS26 ^a	69	4.65	168 ± 2.5	362 ± 36	< 5	10	0.02	192	22	0.05	0.002	1581	4362	93	89	92	95
17QX20B ^a	72	5.62	145 ± 2.5	321 ± 36	< 5	9	0.02	404	29	0.06	0.002	1490	4109	88	90	92	94
17QX20C ^a	74	5.73	150 ± 2.5	285 ± 36	< 5	9	0.02	385	29	0.05	0.002	1453	4008	85	90	93	94
17XS06 ^b	73	11.27	74 ± 3.0	322 ± 36	< 5	4	0.02	261	15	0.06	0.004	1635	4510	96	95	93	95
17XS08 ^b	67	8.38	136 ± 2.4	379 ± 35	< 5	7	0.02	170	16	0.04	0.003	1711	4719	100	92	92	95
17XS09 ^b	66	8.60	118 ± 2.5	447 ± 35	< 5	6	0.02	188	14	0.05	0.004	1745	4813	102	93	91	95
17XS11 ^b	66	8.04	111 ± 2.5	386 ± 35	< 5	8	0.02	196	13	0.04	0.003	1332	3673	78	92	89	94
17XS12 ^b	66	9.88	62 ± 3.4	495 ± 36	< 5	3	0.02	282	7	0.05	0.008	1943	5359	114	97	91	96
17XS14 ^b	69	6.10	170 ± 2.5	325 ± 36	< 5	10	0.02	153	26	0.05	0.002	1360	3750	80	88	91	94
Replicate ^h			172 ± 2.6	370 ± 38	< 5												
17XS18 ^b	71	8.28	78 ± 3.0	450 ± 36	< 5	4	0.02	281	17	0.1	0.005	1732	4778	101	95	91	95
17XS23 ^b	70	6.91	67 ± 3.3	502 ± 37	< 5	4	0.03	321	14	0.1	0.007	1399	3858	82	95	87	94
17XS25 ^b	68	9.00	81 ± 2.8	559 ± 35	< 5	5	0.03	268	18	0.1	0.007	1569	4327	92	95	87	95
17XS27 ^b	71	3.53	160 ± 2.7	411 ± 38	< 5	9	0.02	302	26	0.06	0.002	1709	4715	100	91	91	95
17XS16 [°]	69	10.67	60 ± 3.9	518 ± 36	< 5	3	0.02	328	13	0.1	0.008	1782	4914	104	97	89	95

Table 1. Halogen compositions of lamprophyres from Jiaodong Peninsula

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

17QX21 °	73	9.78	58 ± 3.5	496 ± 37	< 5	2	0.01	368	6	0.05	0.008	2907	8019	170	98	94	97
17ZY26 ^c	66	8.72	71 ± 3.1	528 ± 36	< 5	3	0.02	269	9	0.06	0.007	2493	6878	146	97	92	97
BHVO-2			99 ± 2.8	252 ± 36	42 ± 2.1												

Notes: Errors are standard deviation of repeated analyses (n = 3). The major and trace element contents and Sr-Nd isotopes have been published before (Wang et al., 2020), and see Supplementary Table S1 for details.

^{a, b, c} represent fresh, slight chloritization, and intense chloritization, respectively.

^d Mg# = $100 \times$ Mg/ (Mg + Fe) in molar fraction.

^e LOI=loss on ignition.

^f Halogens with recacle subscript are estimates of the original magma composition assuming a Cl/K ratio of 0.091, a Br/K ratio of 2.5×10^{-4} and a I/K ratio of 5.3×10^{-6} (see text).

^g The loss ratio of I is calculated based on the detection limit (5 ng/g). The calculated theoretical I concentration and the actual loss ratio should be higher.

^h The replicate from different aliquot of sample powder (17XS14).

Lamprophyres	Mineral	SiO ₂	TiO ₂	Al ₂ O ₃	FeO ^a	MgO	CaO	Na ₂ O	K ₂ O	F	Cl	Total	Mg# ^b	X _F ^c	X _{Cl} ^c	X _{OH} ^c	P ^d	T ^d	H ₂ O _{melt} ^d	Depth
		wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%					Mpa	°C	wt.%	km
17XS26	Amp-1	42.33	3.06	11.98	12.59	13.71	11.51	1.62	1.10	0.98	0.02	98.42	66	0.44	0.00	1.54	420	924	6.27	15.9
	Amp-2	43.03	2.81	11.41	12.59	13.93	11.42	1.62	1.04	1.03	0.02	98.52	66	0.47	0.00	1.55	360	911	6.05	13.6
	Amp-3	43.06	2.42	11.33	13.34	13.59	11.29	1.62	0.99	1.07	0.02	98.05	64	0.49	0.01	1.50	340	907	6.18	12.8
	Amp-4	42.78	2.86	11.65	12.70	13.78	11.37	1.63	1.06	1.01	0.02	98.45	66	0.47	0.01	1.52	387	915	6.21	14.6
17QX20C	Cpx	51.88	0.67	3.60	5.38	15.37	22.22	0.22	0.00	—	—	99.81	84			—	278	1169		10.5
17XS18	Срх	52.49	0.37	2.99	5.27	16.47	20.50	0.27	0.00	_	_	99.04	85			_	524	1214		19.8
17XS26	Срх	50.68	0.71	4.44	5.62	14.95	21.23	0.29	0.00		_	98.88	83		_	_	542	1200		20.5
17XS27	Срх	51.97	0.45	3.58	5.62	16.05	20.35	0.31	0.00			99.01	84		_		594	1215		22.4

Table 2. Chemical composition of amphiboles and clinopyroxenes in lamprophyres from Jiaodong Peninsula

^a Total iron expressed as FeO.

^b Mg# = $100 \times Mg / (Mg + Fe)$ in molar fraction.

^c X_F , X_{Cl} , X_{OH} represent mole fractions of corresponding volatile components in amphibole formula, calculated with methods of Zhang et al. (2012).

 d P, T, H₂O_{melt} represent the pressure, temperature conditions and water contents at the time of amphibole crystallization, calculated according to Ridolfi and Renzulli (2012) and Putirka (2008) for amphiboles and clinopyroxenes, respectively. The electron microprobe data of clinopyroxenes are from Wang et al. (2022).

^e The average crustal density used in depth calculations is 2.7 g/cm^3 .

See details for amphiboles and clinopyroxenes chemical compositions in Supplementary Table S2 and Table S3.

Fig. 1
Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Fig. 3

Fig. 4

Fig. 5 Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Fig. 6

Fig. 7

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press.
(a) DOI: https://doi.org/10.2138/am-2022-8693. http://www.minsocam.org/
DOI: https://doi.org/10.2138/am-2022-8693. http://www.minsocam.org/

Progressive alteration of lamprophyres

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Fig. 8

Fig. 9