1 2 3	(Revision 1) Tetrahedrite-(Ni), Cu ₆ (Cu ₄ Ni ₂)Sb ₄ S ₁₃ , the first nickel member of tetrahedrite group mineral from Luobusa chromite deposits, Tibet, China
4 5 6 7	Yanjuan Wang ^{1,3} , Rujun Chen ² , Xiangping Gu ^{2,} *, Fabrizio Nestola ^{3,} *, Zengqian Hou ^{1,4} , Zhusen Yang ⁵ , Guochen Dong ¹ , Guo Hu ⁶ and Kai Qu ^{6,7}
 8 9 10 11 12 13 14 15 16 17 18 	 ¹ School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China. ² School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China. ³ Department of Geosciences, University of Padova, Padova 35131, Italy. ⁴ Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. ⁵ Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China ⁶ Tianjin Center, China Geological Survey, Tianjin 300170, China. ⁷ School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China *E-mail: guxp2004@163.com; fabrizio.nestola@unipd.it
19	
20	ABSTRACT
21	Tetrahedrite-(Ni) (IMA2021-031), ideally Cu ₆ (Cu ₄ Ni ₂)Sb ₄ S ₁₃ , is the first natural Ni-
22	member of tetrahedrite group mineral found in Luobusa chromite deposit, Tibet, China.
23	The new species occurs as anhedral grains 2 to 20 μ m in size, associated with gersdorffite,
24	vaesite, and chalcostibite, which are disseminated in a matrix of dolomite, magnesite,
25	quartz, Cr-rich mica and Cr-bearing clinochlore. Tetrahedrite-(Ni) is black in colour with
26	a reddish black streak and metallic luster. It is brittle with uneven fractures and has a
27	calculated density of 5.073 g·cm ⁻³ . The mean values of 9 electron microprobe
28	analyses(wt%) are: Cu 39.83, Ni 5.67, Fe 1.45, Sb 21.69, As 5.45, S 25.39, total 99.48, and
29	the empirical formula calculated on the basis of cation = $16 apfu$ is
30	$M^{(2)}Cu_{6.00}M^{(1)}[Cu_{4.03}(Ni_{1.55}Fe_{0.42})_{\Sigma 1.97}]_{\Sigma 6.00}X^{(3)}$ (Sb _{2.85} As _{1.16}) _{\Substact 4.01} S _{12.67} . Tetrahedrite-(Ni) is
31	cubic, with space group $I\bar{4}3m$, $a = 10.3478(4)$ Å, $V = 1108.00(14)$ Å ³ , and $Z = 2$. Its crystal
32	structure has been solved by X-ray single-crystal diffraction on the basis of 188

33	independent reflections, with a final $R_1 = 0.0327$. Tetrahedrite-(Ni) is isostructural with
34	tetrahedrite group minerals. It represents the first natural tetrahedrite-group mineral with
35	Ni-dominated charge-compensating constituent. Tetrahedrite-(Ni) may be the product of
36	late-serpentinization at moderately high-temperature conditions around 350 °C. In this case
37	tetrahedrite-(Ni) and its mineral paragenesis record an entire geological process of nickel
38	enrichment, migration, activation, precipitation, and alteration from deep mantle to shallow
39	crust.
40	

Keywords: Tetrahedrite-(Ni), new mineral, tetrahedrite group, crystal structure,
serpentinization, listvenite, Luobusa chromitite

- 43
- 44

INTRODUCTION

45 Tetrahedrite-group minerals are the frequent sulfosalts in different types of ore 46 worldwide (Johnson et al. 1988). with the general formula deposits ${}^{M(2)}A_6{}^{M(1)}(B_4C_2){}^{X(3)}D_4{}^{S(1)}Y_{12}{}^{S(2)}Z$, where $A = Cu^+$, Ag^+ , \Box [vacancy], and $[Ag_6]^{4+}$ clusters; 47 $B = Cu^+$, and Ag^+ ; $C = Zn^{2+}$, Fe^{2+} , Hg^{2+} , Cd^{2+} , Mn^{2+} , Cu^{2+} , Cu^+ , and Fe^{3+} ; $D = Sb^{3+}$, As^{3+} , 48 Bi³⁺, and Te⁴⁺; Y = S²⁻ and Se²⁻; and Z = S²⁻, Se²⁻, and \Box (Biagioni et al. 2020a). They 49 50 are considered as the most complex isotypic series among the sulfosalts, owing to the 51 multiplicity of iso- and heterovalent substitutions (Moëlo et al. 2008). The special M(1) is 52 a tetrahedrally coordinated site with a valency-imposed double site-occupancy of 2/3 B⁺ and 1/3 C²⁺ cations. The different charge-compensating constituents (C constituents) are 53 54 usually represented by divalent transition elements, using a hyphenated suffix between 55 parentheses to make explicit the species belonging to these series (Biagioni et al. 2020a).

56 As a transition element, nickel (Z = 28) is both siderophile (i.e., associated with iron) and 57 chalcophile (i.e., associated with sulfur). So, it seems to be easy to form nickel-rich 58 tetrahedrite according to the substitution mechanism of equivalent elements [i.e., Fe (Z =59 26), Cu (Z = 29), Zn (Z = 30)]. However, nickel end-member tetrahedrite had not been 60 reported for more than 200 years after tennantite was discovered [now renamed to 61 tennantite-(Fe), Biagioni et al. 2020a, the first mineral in the ancient group described by 62 the brothers R. Phillips and W. Phillips in 1819]. Although D'Achiardi (1881) reported a 63 Ni dominant tetrahedrite from the Frigido mine, latter studies revealed that that sample was 64 actually an intergrowth of tetrahedrite-(Fe) and Ni-bearing minerals (Carrozzini et al. 65 1991). Some minor nickel-bearing tennantite-(Zn) in copper-rich rubané ore from the 66 Corvo deposit was also reported by Serranti et al. (2002), but its nickel content is below 67 0.1%. Despite the lack of documented natural analogs, synthetic nickel tetrahedrite phase 68 with 2 Ni (apfu) was studied by Makovicky and Karup-Møller (1994). In the last decade, 69 due to the potential large-scale thermoelectric (TE) application in the field of waste heat 70 recovery in the power-producing, processing, and automobile industries (Lu et al. 2015), 71 the structural stability and thermoelectric properties of the synthesized Ni-bearing 72 tetrahedrite phase have been described and discussed by Barbier et al. (2015), Lu et al. 73 (2015), and Suekuni et al. (2013). During a systematic investigation of sulfosalts from the 74 Luobusa chromite deposit, some mineral inclusions characterized by nickel-rich 75 tetrahedrite phase corresponding to potential Cu₆(Cu₄Ni₂)Sb₄S₁₃ were found. Further 76 chemical and crystallographic studies confirmed that it's the first natural Ni-dominance 77 tetrahedrite group mineral, allowing the proposal of new mineral species tetrahedrite-(Ni). 78 The new mineral and its name have been approved by the Commission on New Minerals,

79	Nomenclature and Classification of the International Mineralogical Association (IMA-
80	CNMNC) (IMA2021-031, Wang et al. 2021). Type material is deposited at the Geological
81	Museum of China, No. 16, Yangrou Hutong, Xisi, Beijing 100031, People's Republic of
82	China, under catalogue number M16118.
83	In this paper, the description of tetrahedrite-(Ni) is reported and the origin of nickel,
84	forming temperature, and geological significance of the new species are discussed.
85	
86	GEOLOGICAL BACKGROUND
87	Tetrahedrite-(Ni) was found in the Luobusa ophiolite-hosted chromite deposit
88	(29°10'58.0" N, 92°17'47.6" E), which is about 16 km northeast of Qusum County, Tibet,
89	China. The Luobusa ophiolite, which hosts the largest known chromite deposit in China,
90	is located in the eastern part of the nearly 2000 km E-W trending Indus-Yarlung Zangbo
91	suture zone (ITSZ). The ITSZ separates the Indian Subcontinent to the south from the
92	Lhasa Block in the north (Fig. 1a) (Nicolas et al. 1981). There are two regions, ductile to
93	ductile-brittle thrust faults within this belt: the North Luobusa-Zedang thrust (NLZT) and
94	the South Luobusa–Zedang thrust (SLZT) (Liang et al. 2011; Xu et al. 2015) (Fig. 1b).
95	The Luobusa–Kangjinla ophiolite extends about 25 km long and 2–4 km wide. From
96	the west to the east, three districts are named Luobusa, Xiangkashan, and Kangjinla. The
97	ophiolites include a mantle sequence, a transition zone, and a serpentinite mélange zone
98	(Zhou et al. 1996). The mantle peridotite mainly consists of harzburgite and clinopyroxene-
99	bearing harzburgite, with minor lherzolite and dunite. About 100-200 m of thick transition-
100	zone dunite underlying the entire sequence occurs along the northern boundary fault, and
101	previous pseudostratigraphy studies suggest that the ophiolite is overturned (Malpas et al.

102 2003). The ophiolitic mélange zone contains dismembered pillow lava, gabbro, pyroxenite, 103 and chert blocks cropping out north of the cumulates (Xiong et al. 2015; Yang et al. 2004). 104 Listvenites extend discontinuously 2–3 km long and 5–30 m wide in the southern part of 105 the ophiolite, where light brown and orange-brown rocks form steep ridges along the SLZT 106 (Liang et al. 2011). A Triassic flysch unit that weakly metamorphosed but intensely 107 deformed is thrust over the ophiolitic massifs along the SLZT (Xu et al. 2015). The Triassic 108 flysch unit consists of shale, siltstone, sandstone, and blocks of marble. Zhang et al. (2015) 109 identified three alteration zones of listvenites, where the characteristics from south (thrust 110 fault) to north (fresh harzburgite body) are silica-rich listvenites, talc-rich listvenites, and 111 serpentine, respectively (Fig.1c). Their mineralogical analysis results of chromites further 112 indicate that the parental rock of listvenites was shell-like dunite, which surrounded 113 harzburgite. Most of the chromitite orebodies lie in the harzburgite near the contact with 114 the transition zone dunite (Wang et al. 2010; Xiong et al. 2015). Individual chromitite 115 bodies are lenticular, planar, podiform or irregular, mainly hosted in harzburgite, where 116 they are commonly surrounded by dunite envelopes which are transitional to the peridotites 117 (Wang et al. 1983; Zhou et al. 1996). The harzburgites are fresh, coarse-grained rocks with 118 well-developed porphyroclastic textures, consisting mainly of forsterite (60–80 modal%) 119 and orthopyroxene (10-30%) with minor clinopyroxene, magnesiochromite, and magnetite. 120 The dunite envelopes are moderately fresh with massive textures, consisting mainly of 95 121 modal% forsterite, and < 5% magnesiochromite (Xu et al. 2009). 122 Previous mineralogical and geochemical studies indicate that the Luobusa mantle

124 chromitites formed from hydrous boninitic magmas in a suprasubduction zone (SSZ)

123

peridotites originally had a mid-ocean ridge basalt (MORB) affinity but that the podiform

125 environment (Zhou et al. 1996). Geochronological studies suggest that the two stages of 126 development, forming originally at a Tethyan spreading center at 177 ± 31 Ma (Zhou et al. 127 2002), followed by modification in the suprasubduction zone at ~126 Ma (Malpas et al. 128 2003). The SSZ ophiolites southward emplacement onto the proto-Indian continental 129 margin during the trench-continent collision around 110-90Ma (Xu et al. 2015). The only 130 known granitic rocks occurring in the northern part of the region belong to the Gangdese 131 batholith of the Lhasa block, which has a zircon U-Pb age of 91.5 ± 0.6 Ma (Zhang et al. 132 2015). The ophiolite was further displaced to this region during the India–Asia continental 133 collision and terminal closure of the Neotethyan basin from 55 to 35 Ma (Xu et al. 2015), 134 which clearly postdates the above plutonic activity around 90 Ma (Robinson et al. 2005).

- 135
- 136

OCCURRENCE AND PARAGENESIS

137 Tetrahedrite-(Ni) was found in silica-rich listvenites from the southern part of 138 Kangjinla district. The type material-hosted hand specimen is light blue to greyish green, 139 and almost all of the original minerals have disappeared except for the residual fragmented 140 magnesiochromite. Dolomite, magnesite, Cr-rich mica, Cr-bearing clinochlore, and quartz 141 are the most abundant secondary minerals as groundmass, with a small amount of 142 disseminated Ni-bearing aqueous arsenate (i.e., annabergite-hörnesite series, Ni-rich 143 hureaulite group minerals); Ni-bearing serpentine (i.e., antigorite-népouite series); Ni-rich 144 sulfosalts (i.e., gersdorffite, chalcostibite, vaesite, millerite, nickeline, tetrahedrite-(Ni), 145 tennantite-(Ni), Ni-rich tetrahedrite-(Fe), and Co-rich tetrahedrite-(Fe)) (Fig. 2).

146 The tetrahedrite-(Ni)-bearing listvenites have undergone at least two stages of 147 alteration. The first stage of alteration is serpentinization. At this stage, antigorite-népouite

148 series minerals and nickel-bearing sulfosalts were formed due to the alteration of olivine. 149 They were mostly obliterated during the superimposed transformation of late alterations, 150 metasomatic residues are only locally visible (Fig. 2b, d). The second stage is characterized 151 by the deposition of carbonate, Cr-rich mica, Cr-bearing clinochlore, and Ni-bearing 152 aqueous arsenate minerals. They occur in the two commonly observed mineral 153 assemblages: magnesite + dolomite ± quartz + Cr-rich mica + Cr-bearing clinochlore + 154 magnesiochromite + secondary chromite (Fig. 2a); and nickel-bearing sulfosalts + Ni-155 bearing aqueous arsenate minerals \pm magnesite \pm quartz \pm Cr-rich mica. They are 156 commonly formed along the edges of the first-stage mineral grains (Fig. 2b, c, d).

157 Tetrahedrite-(Ni) occurs as small composite inclusions in gersdorfite, consisting of tetrahedrite-(Ni) + chalcostibite or tetrahedrite-(Ni) + vaesite. The anhedral-subhedral 158 159 granular crystals are commonly around 2–20 µm in size (Fig. 2e-h). Tetrahedrite-(Ni) is 160 black in colour and with a reddish black streak, the luster is metallic. Mohs hardness was 161 not measured, owing to the small size of the grain studied, but it should be $3-3\frac{1}{2}$, close to 162 associated tetrahedrite-(Fe). It is brittle, with an indistinct cleavage and a conchoidal fracture. Due to the small amount of available material and intergrowth of other phases, 163 164 density was not measured. The calculated density, based on the empirical formula and 165 single-crystal unit-cell parameters, is 5.073 g/cm³. Tetrahedrite-(Ni) is opaque in 166 transmitted light and shows a steel grey colour in reflected light. Internal reflections were 167 not observed. Reflectance values measured in air using the SiC standard with Leica 168 microscope with a 20× objective and the four COM wavelengths (R) for tetrahedrite-(Ni) 169 are: 29.9 (470 nm), 29.2 (546 nm), 28.2 (589 nm) and 26.7 (650 nm). The full set of 170 reflectance values is given in Table 1, and the reflectivity curve is shown in Fig. 3.

171

172 RAMAN SPECTROSCOPY

173 The Raman spectrum of tetrahedrite-(Ni) was collected at Tianjin Center, China 174 Geological Survey, using a Renishaw in Via micro-Raman system with a laser with a frequency of 532 nm (power: 4 mW, spatial resolution: 1 µm), and equipped with a 175 176 motorized x-y stage and a Leica microscope with a 50^{\times} objective. The back-scattered 177 Raman signal was collected and the spectra were obtained from the polished thin section. The typical tetrahedrite-(Ni) Raman spectrum from 150 to 1500 cm^{-1} is shown in Fig. 4. 178 179 In general, the major bands observed at 357 cm⁻¹ can be attributed to vibrations of Sb-S 180 bonds. The antisymmetric bending mode is medium band, which occurs at 297 cm⁻¹ and 302 cm^{-1} . The weak band assigned to lattice vibrations occurs at 267 cm⁻¹. 181

182

183

CHEMICAL COMPOSITION

184Quantitative chemical analyses were carried out at Central South University using185a Shimadzu1720 electron probe microanalyzer. Analytical conditions were 15 kV186accelerating voltage, 10 nA beam current, and a beam diameter of 1 μ m. Standards187(element, emission line) were: pure Cu (CuKa), Ni (NiKa), FeS2 (FeKa and SKa), Sb2S3188(SbLa), and FeAsS (AsLa). The ZAF correction was applied. Electron microprobe analysis189data is given in Table 2.

The empirical formula calculated on the basis of 16 cations per formula unit, yielding the empirical formula ${}^{M(2)}Cu_6{}^{M(1)}[Cu_{4.03}(Ni_{1.55}Fe_{0.42})_{\Sigma 1.97}]_{\Sigma 6.00}{}^{X(3)}(Sb_{2.85}As_{1.16})_{\Sigma 4.01}$ S_{12.67}, which can be simplified as Cu₆[Cu₄(Ni,Fe)₂](Sb,As)₄S₁₃. The ideal formula is Cu₆(Cu₄Ni₂)Sb₄S₁₃, which requires Cu 38.36, Ni 7.08, Sb 29.40, S 25.16, Total 100 wt.%. 194

195 X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION

196 The crystal for single XRD was extracted from the polished thin section by using 197 an FEI Helios NanoLab 600i dual beam system equipped with Focused Ion beam (FIB) 198 and scanning electron microscope (SEM). Single-crystal X-ray studies were carried out at 199 Central South University, with a Rigaku XtaLAB Synergy diffractometer equipped with a 200 Hybrid Pixel Array Detector and CuKa radiation at 50 kV and 1 mA from a nearly equi-201 dimensional crystal (about $4 \times 3 \times 3$ µm). The intensity data were corrected for X-ray 202 absorption using the multi-scan method, and empirical absorption correction was 203 performed using CrysAlisPro program spherical harmonics (Rigaku Oxford Diffraction, 204 2021), which was implemented in SCALE3 ABSPACK scaling algorithm. The refined 205 unit-cell edge is a = 10.3478(4) Å and V = 1108.00(14) Å³; the space group is $I\overline{4}3m$. The 206 crystal structure was determined and refined using SHELX (Sheldrick 2015) and Olex2 207 software (Dolomanov et al. 2009).

208 The structure refinement revealed that the M(2)-site with triangular coordination, 209 the tetrahedrally coordinated site S(1), and the octahedrally coordinated S(2)-site are fully 210 occupied by Cu and S, respectively, while the tetrahedrally coordinated site M(1) is 211 occupied by $Cu_{0.67}Ni_{0.24}Fe_{0.09}$, manually refined toward a minimum R_1 value and good 212 agreement with the chemical data. The X(3) site with trigonal pyramidal coordination was 213 refined to a joint occupancy of Sb_{0.97}As_{0.03}. After several cycles of anisotropic refinement 214 for all the atoms, the R_1 converged to 0.0327 for 188 independent reflections with $F_0 > 4\sigma$ 215 (F_{o}) and 18 refined parameters. The details of the data collection and the final structure 216 refinement are given in Table 3, the fractional atomic coordinates, occupation factors, and

217	displacement parameters in Table 4, anisotropic displacement parameters are listed in
218	Table 5, selected bond distances in Table 6, and the bond-valence sums (BVS) obtained
219	using the bond-valence parameters of Brese and O'Keeffe (1991) in Table 7 (CIF and table
220	of structure factors and observations are available ¹ .)
221	Powder X-ray diffraction data were not measured due to the extremely small size
222	of sample around 3 μ m. Consequently, powder X-ray diffraction data, given in Table 8,
223	were calculated using the software VESTA (Momma and Izumi 2011) on the basis of the
224	structural model.
225	
226	Results and Discussion
227	Crystal structure
228	Tetrahedrite-(Ni) is isostructural with other tetrahedrite group minerals with the
229	general structural formula ${}^{M(2)}A_6{}^{M(1)}(B_4C_2){}^{X(3)}D_4{}^{S(1)}Y_{12}{}^{S(2)}Z$ (Biagioni et al. 2020 <i>a</i>). The
230	tetrahedrally coordinated $M(1)S(1)_4$ forms a framework with large cavities. The $S(2)M(2)_6$
231	octahedrons are hosted in the cavities, and the cations at the $M(2)$ site are coordinated as
232	$M(2)S(1)_2S(2)$. The $X(3)$ site is pyramidally coordinated $X(3)S(1)_3$, which forms the Laves
233	polyhedron truncations (Foit Jr and Hughes 2004; Johnson et al. 1988; Moëlo et al. 2008).
234	Because the ionic radius of $^{\rm IV}Ni^{2+}(0.53$ Å) is smaller than that of $^{\rm IV}Fe^{2+}(0.66$ Å) (Shannon
235	1981), a relatively short average bond distance (2.32 Å) of $M(1)$ -S(1) for tetrahedrite-(Ni)
236	has been observed, which decreased by 0.02 Å with the values for tetrahedrite-(Fe)
237	determined by Johnson and Burnham (1985) (site occupied $Cu_{0.53}Fe_{0.24}$ with the bond
238	length of M(1)-S(1) 2.34 Å). The calculated bond-valence sum (BVS) for $M(1)$ site, given
239	a 1.457 valence unit (vu), showed a little deviation from the theoretical value (1.333 vu),

240	which seems like a common phenomenon in the tetrahedrite group minerals (Biagioni et
241	al. 2020b, 2021, 2022; Mauro et al. 2021; Sejkora et al. 2021, 2022). As Biagioni et al.
242	(2020b) explained, for tetrahedrite-(Hg), due to the inaccuracy of the bond parameters for
243	the Hg-S pair or to a small shift of the S positions when the $M(1)$ site is occupied by Hg.
244	The $M(2)$ crystallographic position is occupied by monovalent cations that are bonded
245	to three S anions, forming a triangular "spinner blade" as described by Wuensch (1964). In
246	tetrahedrite-(Ni), M (2)- S (1) and M (2)- S (2) have an average bond distance of 2.265 Å
247	and 2.251 Å, respectively. The calculated BVS of $M(2)$ site is 1.005 vu, which is perfectly
248	in agreement with the presence of monovalent cations. The $M(2)$ sites at (1/2, Y, 1/2), as
249	shown in Table 5, anisotropic displacement parameters (ADP) $U_{11} = U_{33} = 0.084(3)$ Å are 4
250	times larger than that of $U_{22}=0.019(3)$ Å, and U_{13} has a large negative value of -0.058(3)
251	Å. The abnormal ADP at M (2) site indicated that the Cu atoms vibrate with a large
252	amplitude along the -x+z direction perpendicular to the $M(2)S(2)2S(1)$ triangular plane,
253	where x and z represent the crystal axes. We attempted to split the $M(2)$ position, but it
254	did not significantly improve the structure refinement result, and the disorder was not
255	resolved in the refinement. This is a common feature, which is consistent with previous
256	studies on tetrahedrites (Biagioni et al. 2020 <i>b</i> ; Foit Jr and Hughes 2004; Welch et al. 2018).
257	The X (3) site has an average bond distance of 2.437 Å, and the value can be
258	comparable to the reported bond distance of the tetrahedrite series minerals (Biagioni et al.
259	2020b; Johnson and Burnham 1985; Rozhdestvenskaya et al. 1993). Some minor
260	differences due to the small amount of As ³⁺ cations mixed occupancy at this site. The bond-
261	valence sum at $X(3)$ site is 3.057 vu, which is consistent with the presence of (Sb, As) ³⁺ .
262	The $S(1)$ site is four-fold coordinated, being bonded to two $M(1)$, one $M(2)$, and one

263 X(3). S(2) is octahedrally coordinated by atoms hosted at M(2) sites. No vacancies were 264 observed at S(2) during the structure refinement. The BVS of the two S sites is 2.082 vu 265 and 2.008 vu, respectively.

266

Formation temperature of tetrahedrite-(Ni)

267 Tetrahedrite group minerals are extremely common in a variety of deposits worldwide. 268 Sack and Ebel (1993) concluded that the natural tetrahedrite-tennantite series minerals 269 crystallized over the 200–350 °C temperature range. The synthetic phase Cu_{10.4}Ni_{1.6}Sb₄S₁₃, 270 which is very close to the composition of our studied material, is stable up to 588 °C (e.g., 271 at 607 °C it is no longer present, Barbier et al. 2015). Previous synthetic experiments 272 showed that the decomposition of the $Cu_{12}Sb_4S_{13}$ phase can lead to the formation of some 273 other phases at high temperature (Skinner et al. 1972; Pfitzner et al. 1997; Barbier et al. 274 2015). The mineral assemblages present for our tetrahedrite-(Ni)-bearing composite 275 inclusions (Figs. 2 e-g) indicate a complex Cu-Ni-Sb-As-S system. According to the 276 above synthetic observations, the paragenesis with chalcostibite ($CuSbS_2$) and the absence 277 of skinnerite (Cu₃SbS₃) suggest that tetrahedrite-(Ni) and its associated chalcostibite could 278 coexist stably at around 300-450 °C (Fig. 6). Although natural vaesite (NiS₂) from Katanga 279 yields a temperature of formation of 390 °C (Clark and Kullerud 1963), synthetic 280 experiments showed that vacuum input partially decompose into $Ni_{1-x}S$ and millerite (NiS) 281 phases at a temperature above 340 °C (Ferreira et al. 2019). In this study, we didn't find 282 millerite-bearing composite inclusions with tetrahedrite-(Ni). However, some euhedral 283 millerite and nickeline are often disseminated or have hydrous arsenate rings alone in 284 quartz and magnesite grains, so it seems to be formed later than tetrahedrite-(Ni), probably 285 during the listvenitization stage. Consequently, the mineral assemblages and synthesis

experiment results would suggest an approximate temperature of ~350 °C for the first
tetrahedrite-(Ni) found in nature.

288 **Geological significance**

289 Nickel occurs extensively in the earth's crust, mantle, and core. As a siderophile, 290 nickel prefers to form metals and thus was concentrated as Fe-Ni alloy in the core during 291 the core-mantle differentiation process in the early history of the planet (McDonough and 292 Sun 1995). While the concentration of nickel in the upper mantle and lower mantle can 293 reach 0.15% and 0.20%, respectively, it is less than 100 ppm in the crust (Taylor and 294 McLennan 1985; McDonough and Sun 1995; Barnes and Maier 1999). It is well known 295 that Ni is a compatible element as long as Co and Cr, preferentially enter the crystalline 296 mineral phase or residual phases under the conditions of phase equilibrium during partial 297 melting or crystallization. Olivine has the largest nickel partition coefficient of any mantle 298 silicate (Beattie et al. 1991), hosting almost 90% of all nickel in the mantle peridotites (Hoog et al. 2010). The ionic radius of ^{VI}Ni²⁺(0.69 Å) is similar to ^{VI}Mg²⁺(0.72 Å) 299 300 (Shannon 1976), there can exist partial substitution between Ni and Mg atoms at the 301 octahedral site in olivine. The Ni concentration in olivine derived from typical mantle 302 peridotites is about 0.2%-0.3% (Herzberg et al. 2013).

Tetrahedrite-(Ni) was found in listvenite, and its parental rock was considered to be dunite envelopes (Zhang et al. 2015). The fresh dunite envelopes from Luobusa mantle peridotites, consist mainly of 95 modal% olivine (forsterite), and < 5% magnesiochromite. Previous whole-rock chemical analyses revealed that hosting peridotite contains 0.33 % NiO and forsterite has an average Ni concentration of 0.40% (Xu et al. 2009). Therefore, it is not surprising that 95 modal % of the forsterite in the original dunite were completely

altered and the Ni released from the octahedral site subsequently formed quite a few Ni-bearing serpentine and Ni-rich sulfosalts.

311 As described by Boskabadi et al. (2020), transformation of mantle peridotites to 312 listvenites usually starts with lizardite serpentinization, and is followed by 313 contemporaneous carbonation and antigorite serpentinization, antigorite-talc-magnesite 314 alteration, finally producing typical listvenite with the characteristical minerals [Cr-bearing 315 muscovite (illite) ± Cr-bearing chlorite, Halls and Zhou 1995]. Serpentinites originate from 316 the hydration of olivine-dominated ultramafic rocks (with H₂O content up to 15–16 wt.%) 317 (Evans et al. 2013; Guilot and Hattori 2013), and oxygen isotope fractionation suggests 318 that serpentinization starts at a high temperature, in the range of 300–500 °C (Mével 2003). 319 It has been known for some time that all serpentinites play essential roles not only in 320 incorporating water but also in substantially enriching fluid-mobile elements (such as Sb 321 and As), regardless of their origin (MORB or SSZ) or eventual geological location 322 (Deschamps et al. 2012, 2013; Guilot and Hattori 2013). Since ultrabasic rocks themselves 323 have few of these fluid-mobile elements, the Sb/As-bearing fluids resulting from the 324 dehydration of metasediments could be a good candidate for the source of the Sb/As 325 enrichments in the Luobusa serpentinites.

Ferenc et al. (2016) found gersdorffite and millerite in the listvenite from Muránska Zdychava, which is similar to what we found in Luobusa listvenite, and they suggested these sulfosalts form during the serpentinization stage and precipitation of Ni and Co sulphoarsenides is typical of advanced serpentinization to listvenitization. Previous studies show that, differently from the mineral assemblage of low-temperature listvenites, in the higher-temperature related listvenites, different lithological zones composed of distinctive

332 mineral assemblages (serpentine \pm magnesite, magnesite + talc, and magnesite + quartz) 333 commonly record the stepwise carbonation reactions of serpentinites (Menzel et al. 2018). 334 The presence of the unusual Cr-rich chlorite and Cr-bearing mica (illite) in particular 335 indicates the conditions under which listvenite are formed correspond to temperatures 336 ranging from 270 to 340 °C and pressures ranging from 0.10 to 0.30 GPa (Halls and Zhou 337 1995; Spiridonov 1991). These mineral assemblages and temperature range are very 338 consistent with our case (Fig. 2) and similar to the P-T conditions (350 °C, 0.20 GPa) of 339 Muránska Zdychava listvenite assumed by Ferenc et al. (2016). For the further alteration, 340 the SLZT structure from the southern part of Kangjinla district plays a key role during the 341 process of listvenitization as it could be the channel of the CO₂-rich fluids that transform 342 the serpentinite into the carbonate-quartz listvenite. The aqueous arsenates around the 343 gersdorffite in the Luobusa listvenite, possibly formed by the metasomatism of primary 344 Ni-containing sulfosalts by atmospheric water entering along the deep SLZT fault in the 345 shallow crust lever under a low temperature condition after the listvenite emplacement.

Consequently, previous geochemical studies and this study of mineralogical characteristics suggest that the listvenite body from the Luobusa chromitite deposit formed in three principal evolution stages:

(1) peridotite stage: nickel, as a compatible element, enters the octahedral site of forsteritethrough partial substitution from the deep earth;

(2) serpentinization stage: this stage may occur in the SSZ environment, with strong
serpentinization, Ni²⁺ cations released by the dissolution of forsterite react with the Sb/As
containing fluid to form tetrahedrite-(Ni) and associated sulfosalts;

354 (3) listvenitization stage: the most likely environment for listvenitization is a prograde

355 metamorphic event post-dating serpentinization, possibly related to further displacement 356 of the Luobusa ophiolites caused by the closure of the Neotethyan basin and the hard 357 collision of Greater India with Asia.

- 358
- 359

Implications

Tetrahedrite-(Ni), as the first natural nickel end-member mineral of the tetrahedrite group, formed in the post-serpentinization associated stage at a moderately high temperature of around 350 °C. According to its special formation process and its mineral assemblage, tetrahedrite-(Ni) could be considered as a potential geothermometer of ultrabasic rock serpentinization environments.

The temperature of formation of tetrahedrite-(Ni) appears to be slightly higher than other tetrahedrites (< 350 °C) in epithermal deposits, which may be the main reason why tetrahedrite-(Ni) is rarely found in nature. According to the geochemical properties of nickel, post-serpentinized peridotite may be a potential rock to host other nickelendmember series of tetrahedrite minerals.

The nickel-rich tetrahedrite phases with low production cost, large *ZT* and environmentally friendly components, have been considered as a good candidate for largescale TE material applications (Barbier et al.2015; Lu et al. 2015; Suekuni et al. 2013), while the naturally occurring tetrahedrite-(Ni) may serve as an important reference in this field.

375

376

377

Acknowledgements

Jiří Sejkora, an anonymous reviewer, associate editor Oliver Tschauner, and editor

16

378	Hongwu Xu are thanked for their constructive comments on the manuscript. This study
379	was supported by the Natural Science Foundation of China (42072054), National Key
380	R&D Programmes (92062105) and China Scholarship Council (CSC) 202106400047,
381	202108575009).
382	References cited
383	Barbier, T., Lemoine, P., Gascoin, S., Lebedev, O. I., Kaltzoglou, A., Vaqueiro, P., Powell,
384	A.V., Smith, R.I., and Guilmeau, E. (2015) Structural stability of the synthetic
385	thermoelectric ternary and nickel-substituted tetrahedrite phases. Journal of Alloys
386	and Compounds, 634, 253–262.
387	Barnes, S.J., and Maier, W.D. (1999) The fractionation of Ni, Cu and the noble metals in
388	silicate and sulphide liquids. Geological Society Canada Mineralogical Society
389	Canada, short course notes, 13, 69–106.
390	Beattie, P., Ford, C., and Russell, D. (1991) Partition coefficients for olivine-melt and
391	orthopyroxene-melt systems. Contributions to Mineralogy and Petrology, 109,
392	212–224.
393	Biagioni, C., George, L.L., Cook, N.J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J.,
394	Stanley, C.J., Welch, M.D., and Bosi, F. (2020a) The tetrahedrite group:
395	Nomenclature and classification. American Mineralogist, 105, 109-122.
396	Biagioni, C., Sejkora, J., Musetti, S., Velebil, D., and Pasero, M. (2020b). Tetrahedrite-
397	(Hg), a new 'old'member of the tetrahedrite group. Mineralogical Magazine, 84,
398	584–592.
399	Biagioni, C., Sejkora, J., Raber, T., Roth, P., Moëlo, Y., Dolníček, Z., and Pasero, M. (2021)
400	Tennantite-(Hg), Cu ₆ (Cu ₄ Hg ₂)As ₄ S ₁₃ , a new tetrahedrite-group mineral from the

401	Lengenbach quarry	. Binn.	Switzerland.	. Mineral	logical Ma	agazine. 8	5.744-751.
		· · · · · · · · · · · · · · · · · · ·					/ / · · · / · · ·

- 402 Biagioni, C., Kasatkin, A., Sejkora, J., Nestola, F., and Škoda, R. (2022) Tennantite-(Cd),
- 403 Cu₆(Cu₄Cd₂)As₄S₁₃, from the Berenguela mining district, Bolivia: the first Cd404 member of the tetrahedrite group. Mineralogical Magazine, DOI:
 405 10.1180/mgm.2022.61.
- 406 Boskabadi, A., Pitcairn, I. K., Leybourne, M.I., Teagle, D. A., Cooper, M.J., Hadizadeh,
- 407 H., Bezenjani, R.N., and Bagherzadeh, R.M. (2020) Carbonation of ophiolitic
 408 ultramafic rocks: Listvenite formation in the Late Cretaceous ophiolites of eastern
 409 Iran. Lithos, 352–353, 105307.
- Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
 Crystallographica, B47, 192–197.
- Brown, I.D. (1977) Predicting bond lengths in inorganic crystals. Acta Crystallographica
 Section B: Structural Crystallography and Crystal Chemistry, 33, 1305–1310.
- 414 Carrozzini, B., Garavelli, C.L., and Vurro, F. (1991) Tetrahedrite (supposed "Frigidite")
- 415 and associated Ni minerals from Frigido mine (Apuane Alps). Periodico di
 416 Mineralogia, 60, 5–14.
- 417 Charlat, M., and Lévy, C. (1976) Influence des principales substitutions sur les propriétés
 418 optiques dans la série tennantite-tétraédrite. Bulletin de la Société française de
 419 Minéralogie et de Cristallographie, 99, 29–37.
- 420 Clark, L.A., and Kullerud, G. (1963) The sulfur-rich portion of the Fe-Ni-S system.
 421 Economic Geology, 58, 853–885.
- 422 D'Achiardi, A. (1881) Su di alcuni minerali della miniera del Frigido presso Massa nelle
- 423 Alpi Apuane. Atti della Società Toscana di Scienze Naturali, Processi Verbali, 2,

424 171–178.

425	Deschamps, F., Godard, M., Guillot, S., Chauvel, C., Andreani, M., Hattori, K., Wuder, B.,
426	and France, L. (2012) Behavior of fluid-mobile elements in serpentines from
427	abyssal to subduction environments: Examples from Cuba and Dominican Republic.
428	Chemical Geology, 312, 93–117.
429	Deschamps, F., Godard, G., Guillot S., and Hattori, K. (2013) Geochemistry of subduction
430	zone serpentinites: a review. Lithos, 178, 96–127.
431	Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H. (2009)
432	A complete structure solution, refinement and analysis program. Journal of Applied
433	Crystallography, 42, 339–341.
434	Evans, B.W., Hattori, K., and Baronnet, A. (2013) Serpentinite: what, why, where?.
435	Elements, 9, 99–106.
436	Ferenc, S., Uher, P., Spišiak, J., and Šimonová, V. (2016) Chromium-and nickel-rich micas
437	and associated minerals in listvenite from the Muránska Zdychava, Slovakia:
438	products of hydrothermal metasomatic transformation of ultrabasic rock. Journal of
439	Geosciences, 61, 239–254.
440	Ferreira, H.M., Lopes, E.B., Malta, J.F., Ferreira, L.M., Casimiro, M.H., Santos, L., Pereira,
441	M.F.C., and Gonçalves, A.P. (2019) Preparation, thermal stability and electrical
442	transport properties of vaesite, NiS2, PeerJ Materials Science, 1, e2.
443	Foit Jr, F.F., and Hughes, J.M. (2004) Structural variations in mercurian tetrahedrite.
444	American Mineralogist, 89, 159–163.
445	Guillot, S., and Hattori, K. (2013) Serpentinites: essential roles in geodynamics, arc
446	volcanism, sustainable development, and the origin of life. Elements, 9, 95–98.

- 447 Herzberg, C., Asimow, P.D., Ionov, D.A., Vidito, C., Jackson, M.G., and Geist, D. (2013)
- 448 Nickel and helium evidence for melt above the core-mantle boundary. Nature, 493,
 449 393–397.
- Halls, C., and Zhao, R. (1995) Listvenite and related rocks: perspectives on terminology
 and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo,
 Republic of Ireland. Mineralium Deposita, 30, 303–313.
- 453 Hoog, J.C.M.D., Gall, L., and Cornell, D.H. (2010) Trace-element geochemistry of mantle
- 454 olivine and application to mantle petrogenesis and geothermobarometry. Chemical
 455 Geology, 270, 196–215.
- Johnson, M.L., and Burnham, C.W. (1985) Crystal structure refinement of an arsenicbearing argentian tetrahedrite. American Mineralogist, 70, 165–170.
- Johnson, N.E., Craig, J.R., and Rimstidt, J.D. (1988) Crystal chemistry of tetrahedrite.
 American Mineralogist, 73, 389–397.
- 460 Liang, F.H., Xu, Z.Q., Ba, D.Z., Xu, X.Z., Liu, F., Xiong, F.H., and Jia, Y. (2011) Tectonic
- 461 occurrence and emplacement mechanism of ophiolite from Luobusha-Zedang,
- 462 Tibet. Acta Petrologica Sinica 27, 3255–3268 (in Chinese with English abstract).
- 463 Lu, X., Morelli, D.T., Xia, Y., and Ozolins, V. (2015) Increasing the Thermoelectric Figure
- 464 of Merit of Tetrahedrites by Co-Doping with Nickel and Zinc. ChemInform, 46,
 465 408–413.
- 466 Makovicky, E., and Karup-Møller, S. (1994) Exploratory studies on substitution of minor
- 467 elements in synthetic tetrahedrite. Part I. Substitution by Fe, Zn, Co, Ni, Mn, Cr, V
- 468 and Pb. Unit-cell parameter changes on substitution and the structural role of " Cu^{2+} ".
- 469 Neues Jahrbuch für Mineralogie Abhandlungen, 167, 89–123.

470	Malpas, J., Zhou, M.F., Robinson, P.T., and Reynolds, P. (2003) Geochemical and
471	geochronological constraints on the origin and emplacement of the Yarlung-
472	Zangbo ophiolites, Southern Tibet. In: Dilek, Y., Robinson, P.T. (ed.), Ophiolites
473	Through Earth History. Geological Society, London, Special Publications, 218,
474	191–206.
475	Mauro, D., Biagioni, C., and Zaccarini, F. (2021) New data on gersdorffite and associated
476	minerals from the Peloritani Mountains (Sicily, Italy). European Journal of
477	Mineralogy, 33, 717–726.
478	McDonough, W.F., and Sun, S.S. (1995) The composition of the Earth. Chemical Geology,
479	120, 223–253.
480	Menzel, M.D., Garrido, C.J., Sánchez-Vizcaíno, V.L., Marchesi, C., Hidas, K., Escayola,
481	M.P., and Huertas, A.D. (2018) Carbonation of mantle peridotite by CO ₂ -rich fluids:
482	the formation of listvenites in the Advocate ophiolite complex (Newfoundland,
483	Canada). Lithos, 323, 238–261.
484	Mével, C. (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes
485	Rendus Geoscience, 335, 825–852.
486	Moëlo, Y., Makovicky, E., Mozgova, N. N., Jambor, J. L., Cook, N., Pring, A., Paar, W.,
487	Nickel, E.H., Graeser, S., Karup-Møller, Žunic, T.B., Mumme, W.G., Vurro, F.,
488	Topa, D., Bindi, L., Bente, K., and Shimizu, M. (2008) Sulfosalt systematics: a
489	review. Report of the sulfosalt sub-committee of the IMA Commission on Ore
490	Mineralogy. European Journal of Mineralogy, 20, 7–46.
491	Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,
492	volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-

- 493 1276.
- 494 Nicolas, A., Girardeau, J., Marcoux, J., Duprè, B., Wang, X.B., Cao, Y.G., Zeng, H.X.,
- 495 and Xiao, X.C. (1981) The Xigaze ophiolite (Tibet): A peculiar oceanic lithosphere.
- 496 Nature, 294, 414–417.
- 497 Pfitzner, A., Evain, M., and Petricek, V. (1997) Cu₁₂Sb₄S₁₃: A temperature-dependent
- 498 structure investigation. Acta Crystallographica Section B: Structural Science, 53,
 499 337–345.
- 500 Phillips, R. (1819) Analysis of the copper ore, described in the preceding paper. The
 501 Quarterly Journal of Science, Literature and the Arts, 7, 100–102.
- 502 Phillips, W. (1819) Description of an ore of copper from Cornwall. The Quarterly Journal
- 503 of Science, Literature and the Arts, 7, 95–100.
- 504 Rigaku Oxford Diffraction. (2021) CrysAlisPro Software system, version 1.171.41.96a.
 505 Rigaku Corporation.
- 506 Robinson, P.T., Malpas, J., Zhou, M.F., Ash, C., Yang, J.S., and Bai, W.J. (2005)
- 507 Geochemistry and Origin of Listwanites in the Sartohay and Luobusa Ophiolites,
 508 China. International Geology Review, 47, 177–202.
- Rozhdestvenskaya, I.V., Zayakina, N.V., and Samusikov, V.P. (1993) Crystal structure
 features of minerals from a series of tetrahedrite-freibergite. Mineralogiceskij
- 511 Zhurnal, 15, 9–17.
- 512 Sack, R.O., and Ebel, D.S. (1993). As-Sb exchange energies in tetrahedrite-tennantite
- 513 fahlores and bournonite-seligmannite solid solutions. Mineralogical Magazine, 57,
 514 635–642.
- 515 Sejkora, J., Biagioni, C., Vrtiška, L., and Moëlo, Y. (2021) Zvěstovite-(Zn), Ag₆(Ag₄Zn₂)

- 516 As₄S₁₃, a new tetrahedrite-group mineral from Zvěstov, Czech Republic.
 517 Mineralogical Magazine, 85, 716–724.
- 518 Sejkora, J., Biagioni, C., Števko, M., Raber, T., Roth, P., and Vrtiška, L. (2022)
- 519 Argentotetrahedrite-(Zn), Ag₆(Cu₄Zn₂)Sb₄S₁₃, a new member of the tetrahedrite 520 group. Mineralogical Magazine, 86, 319–330.
- 521 Serranti, S., Ferrini, V., Masi, U., and Cabri, L.J. (2002) Trace-element distribution in
- 522 cassiterite and sulfides from rubané and massive ores of the Corvo deposit, Portugal.
- 523 The Canadian Mineralogist, 40, 815–835.
- 524 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
- 525 distances in halides and chalcogenides. Acta crystallographica section A: crystal 526 physics, diffraction, theoretical and general crystallography, 32, 751–767.
- 527 Shannon, R.D. (1981) Bond distances in sulfides and a preliminary table of sulfide crystal
 528 radii. Structure and Bonding in Crystals, 2, 53–70.
- 529 Sheldrick, G.M. (2015) SHELXT–Integrated space-group and crystal structure 530 determination. Acta Crystallographica, A71, 3–8.
- 531 Skinner, B.J., Luce, F.D., and Makovicky, E. (1972) Studies of the sulfosalts of copper III;
- 532 Phases and phase relations in the system Cu-Sb-S. Economic Geology, 67, 924–
 533 938.
- 534 Spiridonov, E.M. (1991) Listvenites and zodites. International geology review, 33, 397–
 535 407.
- Suekuni, K., Tsuruta, K., Kunii, M., Nishiate, H., Nishibori, E., Maki, S., Ohta, M.,
 Yamamoto, A., and Koyano M. (2013) High-performance thermoelectric mineral
 Cu_{12-x}Ni_xSb₄S₁₃ tetrahedrite. Journal of Applied Physics, 113, 536.

- 539 Taylor, S.R., and McLennan, S.M. (1985) The continental crust: its composition and
- 540 evolution. Blackwell, London, 312 pp.
- 541 Wang, H.S., Bai, W.J., Wang, B.X., and Chai, Y.C. (1983) Chromite Deposits in China
- 542 and Their Origin. Science Press, Beijing, 227 pp. (in Chinese).
- 543 Wang, X.B., Zhou, X., and Hao, Z.G. (2010) Some opinions on further exploration for
- chromite deposits in the Luobusa area, Tibet, China. Geological Bulletin of China,
 29, 105–114 (in Chinese with English abstract).
- 546 Wang, Y.J., Chen, R.J., Gu, X.P., Hou, Z.Q., Yang, Z.Q., Dong, G.C., Guo, H., and Qu, K.
- 547 (2021) Tetrahedrite-(Ni), IMA2021-031. CNMNC Newsletter 62. Mineralogical
 548 Magazine, 85, 637.
- 549 Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85,
 550 291–320.
- 551 Welch, M.D., Stanley, C.J., Spratt, J., and Mills, S.J. (2018) Rozhdestvenskayaite 552 $Ag_{10}Zn_2Sb_4S_{13}$ and argentotetrahedrite $Ag_6Cu_4(Fe^{2+},Zn)_2Sb_4S_{13}$: two Ag-dominant
- 553 members of the tetrahedrite group. European Journal of Mineralogy, 30, 1163–1172.
- 554 Wuensch, B. J. (1964) The crystal structure of tetrahedrite, Cu12Sb4S18. Zeitschrift für
- 555 Kristallographie-Crystalline Materials, 119, 437–453.
- 556 Xiong, F.H., Yang, J.S., Ba, D.Z., Liu, Z., Xu, X.Z., Feng, G.Y., Niu, X.L., and Xu J.F.
- 557 (2014) Different type of chromitite and genetic model from Luobusa ophiolite,
 558 Tibet. Acta Petrologica Sinica, 30, 2137–2163 (in Chinese with English Abstracts).
- 559 Xiong, F.H., Yang, J.S., Robinson, P. T., Xu, X.Z., Liu, Z., Li, Y., Li, J.Y., and Chen, S.Y.
- 560 (2015) Origin of podiform chromitite, a new model based on the Luobusa ophiolite,
- 561 Tibet. Gondwana Research, 27, 525–542.

- 562 Xu, X.Z. (2009) Origin of the Kangjinla podiform chromite deposit and mantle peridotite,
- 563 South Tibet. Ph.D. Dissertation. Beijing: Chinese Academy of Geological Sciences,
- 564 1–165 (in Chinese with English Abstracts).
- 565 Xu, Z.Q., Dilek, Y., Yang, J.S., Liang, H.F., Liu, F., Ba, D.Z., Cai, Z.H., Li, G.W., Dong,
- 566 H.W., and Ji, S.C. (2015) Crustal structure of the Indus–Tsangpo suture and its 567 ophiolites in southern Tibet. Gondwana Research, 27, 507–524.
- Yang, J.S., Bai, W.J., Fang, Q.S., Yan, B.G., Rong, He., and Chen, S.Y. (2004) Coesite
 discovered from the podiform chromitite in the Luobusa ophiolite, Tibet. Earth
 Science: Journal of China University of Geosciences, 29, 651–660 (in Chinese with
 English abstract).
- 572 Zhang, L., Yang, J.S., Robinson, P.T., Xiong, F.H., Chen, Y.H., Lai, S.M., and Chen, M.
- 573 (2015) Origin of listwanite in the Luobusa ophiolite, Tibet, implications for
 574 chromite stability in hydrothermal systems. Acta Geologica Sinica-English Edition,
 575 89, 402–417.
- Zhou, M.F., Robinson, P.T., Malpas, J., and Li, Z. (1996) Podiform chromitites from the
 Luobusa ophiolite (southern Tibet): implications for melt–rock interaction and
 chromite segregation. Journal of Petrology, 37, 3–21.
- Zhou, S., Mo, X.X., Mahony, J.J., Zhang, S.Q., Guo, T.Y., and Zhao, Z.D. (2002)
 Geochronology and Nd and Pb isotope characteristics of gabbro dikes in the
 Luobusha ophiolite, Tibet. Chinese Science Bulletin, 47, 143–146 (in Chinese with
 English abstract).

583

25

Table Captions
TABLE 1 – Reflectance data for tetrahedrite-(Ni) from Luobusa chromite deposit
TABLE 2 – Chemical data (wt. %) for tetrahedrite-(Ni)
TABLE 3 – Information on structural refinement for tetrahedrite-(Ni)
TABLE 4 – Site, Wyckoff position, site occupancy factors (s.o.f.), fractional atomic
coordinates and equivalent isotropic displacement parameters (in Å ²) for tetrahedrite-(Ni)
TABLE 5 – Anisotropic displacement parameters (in $Å^2$) for tetrahedrite-(Ni)
TABLE 6 – Selected bond distances (Å) for tetrahedrite-(Ni)
TABLE 7 – Bond-valence (vu) calculation for tetrahedrite-(Ni)
TABLE 8 – Caluculated X-ray powder diffraction data (d in Å) for tetrahedrite-(Ni)
Figure Captions
FIGURE 1 - Simplified geological map of the Luobusa ophiolite, Tibet (modified after
FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015)
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III;
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III; 9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity;
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III; 9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity; 13. Fault; 14. Thrust contact; 15. Sampling location
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III; 9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity; 13. Fault; 14. Thrust contact; 15. Sampling location FIGURE 2 – Back scattered electron (a-d) and plane-polarized reflected light images (e-h)
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III; 9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity; 13. Fault; 14. Thrust contact; 15. Sampling location FIGURE 2 – Back scattered electron (a-d) and plane-polarized reflected light images (e-h) of the occurrence and mineral association of tetrahedrite-(Ni). Mineral symbols are quoted
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III; 9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity; 13. Fault; 14. Thrust contact; 15. Sampling location FIGURE 2 – Back scattered electron (a-d) and plane-polarized reflected light images (e-h) of the occurrence and mineral association of tetrahedrite-(Ni). Mineral symbols are quoted from Warr (2021).
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III; 9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity; 13. Fault; 14. Thrust contact; 15. Sampling location FIGURE 2 – Back scattered electron (a-d) and plane-polarized reflected light images (e-h) of the occurrence and mineral association of tetrahedrite-(Ni). Mineral symbols are quoted from Warr (2021). (a) Fragmented residual magnesiochromite (Mchr) with secondary Cr-rich mica (Cr-Mc),
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III; 9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity; 13. Fault; 14. Thrust contact; 15. Sampling location FIGURE 2 – Back scattered electron (a-d) and plane-polarized reflected light images (e-h) of the occurrence and mineral association of tetrahedrite-(Ni). Mineral symbols are quoted from Warr (2021). (a) Fragmented residual magnesiochromite (Mchr) with secondary Cr-rich mica (Cr-Mc), Cr-rich clinochlore (Cr-Clc) and magnesite (Mgs)
 FIGURE 1 – Simplified geological map of the Luobusa ophiolite, Tibet (modified after Xiong et al. 2014; Zhang et al. 2015) 1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III; 9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity; 13. Fault; 14. Thrust contact; 15. Sampling location FIGURE 2 – Back scattered electron (a-d) and plane-polarized reflected light images (e-h) of the occurrence and mineral association of tetrahedrite-(Ni). Mineral symbols are quoted from Warr (2021). (a) Fragmented residual magnesiochromite (Mchr) with secondary Cr-rich mica (Cr-Mc), Cr-rich clinochlore (Cr-Clc) and magnesite (Mgs) (b) Residual gersdorffite (Gdf) and népouite (Npo) with secondary annabergite (Anb) and

- 609 (c) Annabergite formed along the edges of the primary gersdorffite (top left), partially
- 610 metasomatic alteration of gersdorffite by annabergite (down right)
- 611 (d) Gersdorffite was almost completely replaced by annabergite, dolomite and quartz, a
- small amount of népouite residues is on the edge, but the euhedral crystal morphology of
- 613 the original gersdorffite is still clear
- 614 (e) Tetrahedrite-(Ni) (Ttr-Ni) and chalcostibite (Ccsb) inclusions within gersdorffite in
- 615 dolomite matrix
- 616 (**f-h**) Tetrahedrite-(Ni) and vaesite (Va) inclusions within gersdorffite in dolomite matrix
- 617 FIGURE 3 Reflectance curves of tetrahedrite-(Ni) in air. For comparison, the reflectance
- 618 curves of other members of the tetrahedrite series are shown: tetrahedrite-(Hg), Buca della
- 619 Vena (Biagioni et al. 2020b); tetrahedrite-(Fe), T18 and tetrahedrite-(Zn), M12 (Charlat
- 620 and Lévy 1976).
- 621 **FIGURE 4** Raman spectrum of tetrahedrite-(Ni)
- 622 FIGURE 5 Crystal structure of tetrahedrite-(Ni) plotted using Olex2 (Dolomanov et al.
- 623 2009)
- 624 **FIGURE 6** Temperature dependence of the weight fraction of each phase in the Cu-Sb-S
- 625 system, modified after Barbier et al. (2015)
- 626

610	Table Captions
611	TABLE 1 – Reflectance data for tetrahedrite-(Ni) from Luobusa chromite deposit
612	TABLE 2 – Chemical data (wt. %) for tetrahedrite-(Ni)
613	TABLE 3 – Information on structural refinement for tetrahedrite-(Ni)
614	TABLE 4 – Site, Wyckoff position, site occupancy factors (s.o.f.), fractional atomic
615	coordinates and equivalent isotropic displacement parameters (in Å ²) for tetrahedrite-(Ni)
616	TABLE 5 – Anisotropic displacement parameters (in $Å^2$) for tetrahedrite-(Ni)
617	TABLE 6 – Selected bond distances (Å) for tetrahedrite-(Ni)
618	TABLE 7 – Bond-valence (vu) calculation for tetrahedrite-(Ni)
619 620	TABLE 8 – Caluculated X-ray powder diffraction data (d in Å) for tetrahedrite-(Ni)
621	Figure Captions
622	FIGURE 1 - Simplified geological map of the Luobusa ophiolite, Tibet (modified after
623	Xiong et al. 2014; Zhang et al. 2015)
624	1. Granite; 2. Tertiary Luobusa Formation; 3. Upper Triassic Flysch; 4. Upper Cretaceous
625	Zedang Formation; 5. Cumulate rock; 6. Dunite; 7. Harzburgite; 8. Serpentinite Zone III;
626	9. Listvenite Zone II; 10. Listvenite Zone I; 11. Podiform chromitite; 12. Unconformity;
627	13. Fault; 14. Thrust contact; 15. Sampling location
628	FIGURE 2 – Back scattered electron (a-d) and plane-polarized reflected light images (e-h)
629	of the occurrence and mineral association of tetrahedrite-(Ni). Mineral symbols are
630	quoted from Warr (2021).
631	(a) Fragmented residual magnesiochromite (Mchr) with secondary Cr-rich mica (Cr-Mc),
632	Cr-rich clinochlore (Cr-Clc) and magnesite (Mgs)
633	(b) Residual gersdorffite (Gdf) and népouite (Npo) with secondary annabergite (Anb) and
634	Ni-dominant irhtemite in magnesite, dolomite (Dol), and quartz (Qz) matrix
	28

- 635 (c) Annabergite formed along the edges of the primary gersdorffite (top left), partially
- 636 metasomatic alteration of gersdorffite by annabergite (down right)
- 637 (d) Gersdorffite was almost completely replaced by annabergite, dolomite and quartz, a
- 638 small amount of népouite residues is on the edge, but the euhedral crystal morphology of
- 639 the original gersdorffite is still clear
- 640 (e) Tetrahedrite-(Ni) (Ttr-Ni) and chalcostibite (Ccsb) inclusions within gersdorffite in
- 641 dolomite matrix
- 642 (f-h) Tetrahedrite-(Ni) and vaesite (Va) inclusions within gersdorffite in dolomite matrix
- 643 FIGURE 3 Reflectance curves of tetrahedrite-(Ni) in air. For comparison, the reflectance
- 644 curves of other members of the tetrahedrite series are shown: tetrahedrite-(Hg), Buca
- 645 della Vena (Biagioni et al. 2020b); tetrahedrite-(Fe), T18 and tetrahedrite-(Zn), M12
- 646 (Charlat and Lévy 1976).
- 647 **FIGURE 4** Raman spectrum of tetrahedrite-(Ni)
- 648 FIGURE 5 Crystal structure of tetrahedrite-(Ni) plotted using Olex2 (Dolomanov et al.
- 649 2009)
- 650 FIGURE 6 Temperature dependence of the weight fraction of each phase in the Cu-Sb-S
- 651 system, modified after Barbier et al. (2015)
- 652

R	λ (nm)	R	λ (nm)
28.2	400	28.9	560
29.0	420	28.4	580
29.5	440	28.2	589 (COM)
29.8	460	27.9	600
29.9	470 (COM)	27.4	620
29.9	480	26.9	640
29.9	500	26.7	650 (COM)
29.6	520	26.5	660
29.3	540	26.1	680
29.2	546 (COM)	25.9	700

TABLE 1. Reflectance data for tetrahedrite-(Ni) from Luobusa chromite deposit

TABLE 2. Chemical data (wt. %) for tetrahedrite-(Ni)

Element	Mean	Range	Stand. Dev. (o)	apfu
Cu	39.83	37.38-42.52	2.02	10.03
Ni	5.67	4.10-7.90	1.65	1.55
Fe	1.45	0.40-2.36	0.72	0.42
Sb	21.69	19.09-24.44	2.3	2.85
As	5.45	3.36-6.57	1.13	1.16
S	25.39	24.10-26.61	0.69	12.67
Total	99.48			

1

Crystal data	× /
Structural formula	$Cu_{10.02}Ni_{1.44}Fe_{0.54}Sb_{3.85}As_{0.15}S_{13}$
Formula weight	1647.66
Crystal size/µm	4×3×3
Crystal system	cubic
Space group	<i>I</i> 43m (#217)
Unit cell dimensions	a = 10.3478(4) Å
Volume	1108.00(14) Å ³
Ζ	2
Data collection and refinement	
Instrument	Rigaku Synergy
Radiation, wavelength, temperature	Cu Kα, 1.54184 Å, 293(2) K
<i>F</i> (000)	1508
2θ range (°)	12.096 to 130.01
Total reflections	1881
Unique ref (all)	200
Unique ref $[I > 4\sigma(I)]$	188
$R_{ m int}$	0.1116
R_{σ}	0.0563
Range of <i>h</i> , <i>k</i> , <i>l</i>	$-6 \le h \le 12; -12 \le k \le 12; -12 \le l \le 11$
$R_{1,} w R_2 \left[I > 4\sigma(I) \right]$	$R_1 = 0.0327, wR_2 = 0.0598$
$R_{1,} w R_2$ [all data]	$R_1 = 0.0389$, $wR_2 = 0.0614$
Goodness-of-fit	1.182
No. of parameters, restraints	18, 0
Maximum and minimum residual peak (e $Å^{-3}$)	0.62 [1.47Å from <i>X</i> (3)] -0.73[0.41 Å from S(2)]

TABLE 3. In	formation or	n structural	refinement	for	tetrahedrite-(Ni))

	(/				
Site	Wyck.	s.o.f	x/a	y/b	z/c	$U_{ m eq}$
<i>M</i> (2)	12e	Cu _{1.00}	0	0.2176(7)	0	0.062 (2)
<i>M</i> (1)	12 <i>d</i>	$Cu_{0.67}Ni_{0.24}Fe_{0.09}$	3/4	1/2	0	0.0204(15)
<i>X</i> (3)	8 <i>c</i>	$Sb_{0.96(4)}As_{0.04(4)}$	0.73152(11)	0.26848(11)	0.73152(11)	0.0166(7)
<i>S</i> (1)	24 <i>g</i>	S _{1.00}	0.8842(3)	0.3627(4)	0.8842(3)	0.0166(12)
<i>S</i> (2)	2a	S _{1.00}	0	0	0	0.018(3)

TABLE 4. Site, Wyckoff position, site occupancy factors (s.o.f.), fractional atomic coordinates and equivalent isotropic displacement parameters (in $Å^2$) for tetrahedrite-(Ni)

TABLE 5. Anisotropic displacement parameters (in Å²) for tetrahedrite-(Ni)

Site	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
<i>M</i> (2)	0.084(3)	0.019(3)	U_{11}	0	-0.058(3)	0
<i>M</i> (1)	0.026(3)	0.0175(17)	U_{22}	0	0	0
<i>X</i> (3)	0.0166(7)	U_{11}	U_{11}	0.0026(5)	-0.0026(5)	U_{23}
<i>S</i> (1)	0.0167(15)	0.016(3)	U_{11}	-0.0012(12)	-0.0018(17)	-0.0012(12)
<i>S</i> (2)	0.018(3)	U_{11}	U_{11}	0	0	0

TABLE 6. Selected bond distances (Å) for tetrahedrite-(Ni)

Cu2—S1 ^{$\times 2$}	2.265(5)	$Cu1-S1^{\times 4}$	2.320(3)
$-S2^{\times 1}$	2.251(7)		
Mean	2.260	$Sb-S1^{\times 3}$	2.437(5)

 TABLE 7. Bond-valence (vu) calculation for tetrahedrite-(Ni)

Site	<i>M</i> (2)	<i>M</i> (1)	<i>X</i> (3)	Sum	Theor	
	(Cu)	$(Cu_{0.67}Ni_{0.24}Fe_{0.09})$	$(Sb_{0.96}As_{0.04})$	Sum.	Theor.	
<i>S</i> (1)	$0.335^{\times 2\downarrow}$	$0.364^{\times 4\downarrow \times 2 \rightarrow}$	$1.019^{\times 3\downarrow}$	2.082	2.000	
<i>S</i> (2)	0.335 ^{6→}			2.008	2.000	
Sum.	1.005	1.457	3.057			
Theor.	1.000	1.333	3.000			

Notes: Bond valence sums were calculated with the site-occupancy factors given in Table 4. Calculations were using the equation and constants of Brown (1977), $S = \exp[(R_0-d_0)/b]$.

Ical	$d_{ m calc}$	h k l	Ical	$d_{ m calc}$	h k l
1.30	7.317	011	5.80	1.679	235
3.70	5.174	002	1.60	1.636	026
2.70	4.224	112	1.20	1.597	145
9.80	3.659	022	20.90	1.560	226
100.00	2.987	222	2.30	1.526	136
9.00	2.766	123	2.30	1.494	444
21.20	2.587	004	1.60	1.463	345
8.20	2.439	114	1.40	1.408	336
2.60	2.314	024	3.60	1.293	008
2.20	2.206	233	3.20	1.237	356
2.10	2.112	224	3.30	1.203	138
5.60	2.029	134	4.90	1.187	266
5.60	1.889	125	1.40	1.172	257
41.20	1.829	044	1.30	1.157	048
2.10	1.775	334	1.70	1.091	457

TABLE 8. Caluculated X-ray powder diffraction data (*d* in Å) for tetrahedrite-(Ni)

*Intensity and d_{hkl} were calculated using the software VESTA (Momma and Izumi, 2011) on the basis of the structural model given in Table 4. The five strongest reflections are given in bold.

Figure 1

Figure 2

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 4

Figure 6

