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Abstract 13 

 A centimeter-sized fragment of dunite, the first recognized fragment of Moon 14 
mantle material, has been discovered in the lunar highlands breccia meteorite 15 
Northwest Africa (NWA) 11421.  The dunite consists of 95% olivine (Fo83), with low-Ca 16 
and high-Ca pyroxenes, plagioclase, and chrome spinel. Mineral compositions vary little 17 
across the clast, and are consistent with chemical equilibration. Mineral 18 
thermobarometry implies that the dunite equilibrated at 980±20°C and 0.4±0.1 19 
Gigapascal (GPa) pressure. The pressure at the base of the Moon’s crust (density 2550 20 
kg/m3) is 0.14-0.18 GPa, so the dunite equilibrated well into the Moon’s upper mantle. 21 
Assuming a mantle density of 3400 kg/m3, the dunite equilibrated at a depth of 88±22 22 
km. Its temperature and depth of equilibration are consistent with the calculated 23 
present-day lunar geotherm (i.e., selenotherm). 24 
 The dunite’s composition, calculated from mineral analyses and proportions, 25 
contains less Al, Ti etc. than chondritic material, implying that it is of a differentiated 26 
mantle (including cumulates from a lunar magma ocean). The absence of phases 27 
containing P, Zr, etc. suggests minimal involvement of a KREEP component, and the 28 
low proportion of Ti suggest minimal interaction with late melt fractionates from a lunar 29 
magma ocean. The Mg/Fe ratio of the dunite (Fo83) is significantly lower than models of 30 
an overturned unmixed mantle would suggest, but is consistent with estimates of the 31 
bulk composition of the Moon’s mantle.  32 
 33 
Key words: Moon, mantle, dunite, meteorite, thermobarometry, NWA 11421, 34 
selenotherm 35 
 36 
  37 
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Introduction 38 

 The Moon’s mantle forms the greatest portion (by volume and mass) of the 39 
Moon, and figures prominently in all models of the Moon’s origin and evolution (Shearer 40 
and Papike, 1999; Elkins-Tanton et al., 2002b; Wieczorek et al., 2006; Wieczorek et al., 41 
2013). Until now, understanding of the lunar mantle has been hindered by the absence 42 
of samples of mantle material. Lacking lunar mantle material to examine, the 43 
composition and physical state of the Moon’s mantle have been inferred from 44 
geophysical data and physico-chemical models: Apollo-era seismology (Kuskov and 45 
Kronrod, 2009; Zhao et al., 2012; Matsumoto et al., 2015; Garcia et al., 2019); GRAIL 46 
measurements of gravity (Wieczorek et al., 2006; Matsuyama et al., 2016); and 47 
theoretical models based on those constraints and estimates of the Moon’s bulk 48 
composition (Elkins-Tanton et al., 2002a; Wieczorek et al., 2006; Elkins-Tanton et al., 49 
2011). Here, we present the first undisputable sample of the lunar mantle, and its 50 
implications for its origin. 51 

Lunar Evolution: Background 52 

The standing model of the evolution of the lunar mantle starts as a planet-53 
encompassing lunar magma ocean (LMO), produced during a collision between the 54 
proto-Earth and a planetesimal (Wieczorek et al., 2006; Elkins-Tanton et al., 2011). As 55 
the LMO cooled, it crystallized mafic minerals, olivine followed by low-Ca pyroxene and 56 
then augite, which sank to form cumulate igneous rocks at the base of the ocean. The 57 
minerals became more ferroan (less magnesian) as crystallization proceeded. The mafic 58 
minerals accumulated in a chemically and mineralogically layered pile. Plagioclase was 59 
among the last minerals to crystallize, and it floated on the remaining LMO to form an 60 
anorthositic crust (Wood et al., 1970; Elkins-Tanton et al., 2011; Wieczorek et al., 61 
2013). The last dregs of the LMO were rich in incompatible elements, titanium, and iron 62 
(the KREEP component), and were denser than the underlying mafic cumulates 63 
(Srivastava et al., 2022). The whole mantle was gravitationally unstable, with denser, 64 
ferroan material overlying lighter, magnesian material. Under the influence of gravity, 65 
the mantle overturned, bringing magnesian cumulates toward the surface and ferroan 66 



4 
 

and Ti-rich materials to depth (Hess and Parmentier, 1995; Elkins-Tanton et al., 2011). 67 
The overturned mantle could have been chemically layered, with the original 68 
stratigraphy essentially intact but inverted (Elkins-Tanton et al., 2011). Alternatively, 69 
the overturned mantle could have been mixed to various degrees (Boukaré et al., 2018; 70 
Zhao et al., 2019; Moriarty et al., 2021; Schwinger and Breuer, 2022). For a detailed 71 
summary see Gross and Joy (2016). 72 
 The lunar crust, originally the plagioclase flotation cumulates, is less than 45 km 73 
thick as calculated from gravity and seismic data (Wieczorek et al., 2013). It is 74 
reasonable that larger impact basins would have penetrated the crust and exposed 75 
and/or excavated lunar mantle material (Morrison, 1998; Potter et al., 2012; Vaughan 76 
et al., 2013; Miljković et al., 2015; Moriarty et al., 2021). Many outcrops of olivine rich 77 

material have been identified around lunar basins, and could represent uplifted mantle 78 
material (Nakamura et al., 2009; Yamamoto et al., 2010; Klima et al., 2011; Kramer et 79 
al., 2013; Moriarty et al., 2013; Corley et al., 2018; Gou et al., 2019; Lemelin et al., 80 
2019; Li et al., 2019; Bretzfelder et al., 2020; Gou et al., 2020; Moriarty III et al., 81 
2021). However, mineralogy and mineral compositions determined by remote sensing 82 
do not permit determination of pressures and temperatures of equilibration.  83 

Lunar Dunites:  84 

Returned Samples 85 

 There are few dunites and peridotites in the returned lunar sample collection. 86 
Only one macroscopic dunite was collected by the Apollo astronauts, 72415 (and its 87 
pairs), and peridotitic fragments are known in only a few lunar breccia rocks.  88 

The only large sample of lunar dunite, 72415 to 72418, was a clast in a 89 
fragmental melt breccia, exemplified by sample 72435 (Meyer Jr, 2012). 72415 is a 90 
cataclastic breccia, composed primarily of olivine fragments (up to 10 mm across) in a 91 
matrix of granulated olivine with small proportions of high- and low-Ca pyroxenes, 92 
plagioclase, chromite, and others (Dymek et al., 1975). 72415 has been interpreted as 93 
nearly monomict, with rare fragments of chromite-pyroxene symplectites and impactites 94 
(Dymek et al., 1975). Olivine in 72415 has a small range in composition, Fo86-89 (the Fo 95 
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number is atomic Mg/(Mg+Fe) in %, see Table 1), and two-pyroxene thermometry 96 
implies equilibration at 1120°C (Ishii et al., 1976). The source of 72415 (mantle or 97 
crust) is discussed below. 98 

Approximately a dozen fragments of dunite and peridotite have been recognized 99 
in Apollo 14 breccias (Taylor and Marvin, 1971; Lindstrom et al., 1984; Shervais et al., 100 
1984; Goodrich et al., 1986; Warren et al., 1987; Morris et al., 1990; Snyder et al., 101 
1995; Shervais and McGee, 1999). These olivine-rich rocklets are all magnesian and 102 
variably enriched in KREEP component. For the most part, they have been interpreted 103 
as crustal cumulates from Mg-suite magmas. The Apollo 14 breccias also contain a few 104 
complex peridotitic fragments, one of which is interpreted as asteroidal (Shervais et al., 105 
1984). The others are likely to be fragments of crustal cumulate rocks (Taylor and 106 
Marvin, 1971; Morris et al., 1990).  107 
 A few dunite fragments are reported from Apollo 15 regolith breccias (Marvin et 108 
al., 1989b, a, 1991). Marvin and colleagues suggested that these fragments formed at 109 
significant depth, but did not distinguish between a crustal and mantle origin.  110 

Finally, the Apollo 17 basalt 74275 contains xenoliths of dunite (Shearer et al., 111 
2015a). The xenoliths’ olivines’ cores retain igneous-like zoning patterns in Al, Ti, and P; 112 
this zoning led Shearer et al. to infer a shallow crustal origin. However, similar chemical 113 
zoning has recently been recognized in the troctolite 76535 (Nelson et al., 2021), which 114 
is inferred to have formed at depth and cooled slowly, see Fig. 4 here and McCallum 115 
and Schwartz (2001).  116 

Meteorites 117 

 Among lunar meteorites, only a few dunitic and peridotitic clasts have been 118 
reported in regolith or melt breccias; no lunar meteoritic dunites (or dunitic peridotites) 119 
are known. In meteorite ALH 81005, despite extensive study of many thin sections, only 120 
a few peridotitic fragments have been reported (Kurat and Brandstätter, 1983; Warren 121 
et al., 1983; Brum, 2022; Brum et al., 2022). Dunitic and peridotitic material are absent 122 
to uncommon in other lunar meteorites (Warren et al., 1983; Arai et al., 2002; Nazarov 123 
et al., 2004; Sugihara et al., 2004; Hudgins et al., 2007; Bischoff et al., 2010; Mercer et 124 
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al., 2013; Cao et al., 2020; Bechtold et al., 2021). Many of these fragments have 125 
moderate Mg*, and are likely related to the lunar Mg-suite (Shearer et al., 2015b).  126 

NWA 8046 Clan  127 

Here, we present a clast of dunite in lunar meteorite Northwest Africa (NWA) 128 
11421, which is a member of the NWA 8046 clan of lunar highlands breccias, the 129 
“Algerian Megafind” (Korotev, 2022). These tens of named meteorites are paired, being 130 
either all fragments of the same meteoroid fall, or being ‘source paired’ in coming from 131 
the same site on the Moon. The most detailed published description of NWA 8046 132 
meteorite is for NWA 11460 by Cao et al. (2021). Their description is consistent with 133 
our observations of NWA 11421.  134 

A dunite clast is also present in NWA 14900 (Sheikh et al., 2022), a member of 135 
the NWA 8046 clan (Korotev, 2022). This fragment consists only of olivine (Fo91) with a 136 
miniscule proportion of chromite. No other studies of NWA 8046 meteorites mention 137 
clasts of dunite, peridotite, or other ultramafic materials (Lunning and Gross, 2019; 138 
Fagan and Gross, 2020; Zeng et al., 2020; Treiman and Semprich, 2021; Saini et al., 139 
2022).  140 

Samples and Methods 141 

Samples 142 

 A piece of NWA 11421, 11.67 gram, was purchased from M. Cimala of 143 
Polandmet.com (Figure 1). The properties of this fragment are consistent with the 144 
official description of the meteorite (Gattacceca et al., 2018). NWA 11421 a member of 145 
the NWA 8046 clan of impact melt breccias, which consist of mineral and lithic 146 
fragments (mostly anorthositic troctolite or lherzolite) in dense black glass, see Figure 1 147 
(Treiman and Coleff, 2018; Cao et al., 2021; Korotev, 2022). The dunite clast studied 148 
here, D1 (Fig. 1), was noted on a weathered surface by its color, and its extent 149 
determined with X-ray computed tomography, XCT, see Figure 2 (Treiman and Coleff, 150 
2018). Based on the XCT, the sample was cut to produce two thick sections (labelled 151 
NWA 11421_lpi1 and _lpi2) that expose the dunite clast (NWA 11421_lpi1_D1), leaving 152 
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a significant portion of it remaining in the meteorite fragment. The results here are all 153 
from NWA 11421_lpi1. 154 

Methods 155 

Electron Microbeam. The dunite D1 and its surroundings in thick section NWA 156 
11421_lpi1 were imaged in backscattered electron (BSE) mode using the JEOL 7600F at 157 
the Astromaterials Research and Exploration Science (ARES) Division, Johnson Space 158 
Center, Houston TX and with the PhenomXL© SEM at the Lunar and Planetary Institute 159 
(USRA), Houston TX. Qualitative maps of element abundances (by energy dispersive 160 
spectrometry, EDS), were acquired with the same instruments. Based on these element 161 
mappings, selected spots were chosen for quantitative chemical analysis using the JEOL 162 
8530 FEG electron microprobe (EMP) at ARES. Analytical conditions were nominal for 163 
the instrument and laboratory. Peak intensities were measured for K radiation of these 164 

elements using well-characterized standards: Si, diopside; Ti, rutile; Al, oligoclase; Cr, 165 
chromite; Fe, fayalite; Ni, NiO; Mn, rhodonite; Mg, diopside or forsterite; Ca, diopside; 166 
Na, oligoclase; K, orthoclase; and S, anhydrite. The incident electron beam was at 15 167 
kV and 10 nA (for plagioclase) or 25 nA (for other minerals) measured into a Faraday 168 
cup, and was focused on surfaces of standards and samples. Peak X-ray intensities 169 
were counted for 30-60 seconds, and backgrounds were counted for the same total 170 
durations. Analytical standards were run as unknowns to validate the calibrations.  171 

All mineral analyses and their locations on the thick section are given in the 172 
Supplemental Material. 173 

Mineral proportions, Densities, & Bulk composition. Mineral proportions in 174 
the dunite clast D1 were calculated using a supervised classification routine on element 175 
abundance images from the SEM. The classification was done using the Multispec© 176 
program (Landgrebe and Biehl, 2011) following the protocols of Maloy and Treiman 177 
(2007). X-ray element images were masked to include only the D1 clast; mineral 178 
classification training was based on EMP quantitative point analyses. Mineral densities 179 
(at 1 bar) were calculated assuming linear mixing from the densities of end-member 180 
compositions. 181 
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D1’s bulk composition was calculated from the area proportion of each phase in 182 
it (olivine, orthopyroxene, clinopyroxene, plagioclase, chromite), the point EMP analyses 183 
of each phase, and the calculated densities of each.  184 

X-ray Computed Tomography (XCT). An X-ray tomography image stack of 185 
the whole meteorite piece was acquired at the ARES division of Johnson Space Center 186 
in May 2018 (Treiman and Coleff, 2018). The XCT instrumentation and methods are as 187 
described in Zeigler et al. (2017) and Eckley et al. (2020); see Appendix I.  188 

Thermobarometry. Details of the thermobarometry calculations, including 189 
mineral analyses on which they are based, are given in the text below and in Appendix 190 
II.  191 

Results 192 

 The analyzed section of NWA 11421 is a lunar highlands melt breccia (Figs. 1, 2, 193 
3) consistent with its classification (Gattacceca et al., 2018) and its pairing into the 194 
NWA 8046 clan (Korotev, 2022). Most of the lithic fragments in the section are 195 
troctolitic or lherzolithic anorthosites (Fig. 2d, 3a); there are also clasts of anorthositic 196 
impact melt and breccia. No basaltic or KREEPy fragments have been noted, although 197 
the rock contains rare small fragments of evolved, silica-rich material (Treiman and 198 
Semprich, 2019). Mineral grains include those from the anorthositic and dunitic 199 
lithologies, and other types including exsolved low-Ca and high-Ca pyroxenes, Fe-200 
sulfide, Fe-metal, and Mg-Al spinel (Fig. 3a).  201 

The thick section _lpi1 (and the meteorite in general) shows minor evidence of 202 
terrestrial weathering (Korotev, 2022). One crack in the D1 dunite and its surroundings 203 
contains K-rich material, tentatively identified as clay (Fig. 3c). Another crack contains a 204 
Ca-rich grain (Fig. 3c), without other elements detectable by EMP, that is likely a Ca-205 
carbonate. That same crack also contains a sulfur-bearing grain, again without 206 
elements detected in our EMP maps (Fig. 3c). This could be a grain of barium sulfate 207 
(barite), such as occurs in other NWA meteorites (Korotev et al., 2009). 208 
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Dunite Mineralogy and Composition   209 

The D1 dunite fragment, before cutting, was approximately 10x7x4 mm (Figs. 1, 210 
2). The thick section analyzed here exposes a 5x4 mm surface of the dunite (Fig 3). 211 
The thick-section surface appears representative of the whole fragment, except that it 212 
does not expose an apparent stringer of high-density material visible in the XCT scan 213 
(Fig. 2b, c).  214 
 Mineralogically, the D1 dunite is simple; it consists only of olivine, low-Ca 215 
pyroxene, high-Ca pyroxene, anorthite plagioclase, and chromite (Fig. 3a). No other 216 
phases were detected (Fig. 3), such as Fe±Ti oxides, Ca-phosphates, 217 
zircon/baddeleyite, alkali feldspar, or garnet. A small proportion of K-bearing material 218 
on a fracture (Fig. 3c) is interpreted as clay produced during terrestrial weathering. 219 
Minerals in the dunite are nearly of constant compositions and lack zoning in major or 220 
minor elements (Fig. 4); Table 1 gives average mineral compositions, and a calculated 221 
bulk composition of the dunite (based on mineral proportions, analyses, and densities; 222 
Table 2); full analyses are in the Supplemental Material.  223 

The silicate minerals are magnesian; the olivine is Fo83 (Fig. 4, Table 1), and the 224 
pyroxenes are slightly more magnesian (Wo03En82Fs15 and Wo44En49Fs07, Table 1), 225 
consistent with Fe-Mg equilibria (Baker and Herzberg, 1980; Lindsley, 1983). The 226 
olivine has FeO/MnO = 84, consistent with a lunar provenance (Karner et al., 2003). 227 
The pyroxenes contain minor non-quadrilateral components (e.g., Al, Ti, Cr, Na), and so 228 
are represented well on a standard pyroxene quadrilateral (Fig. 4). The augite is slightly 229 
sub-calcic, and the orthopyroxene contains a small proportion of Ca (Table 1, Fig. 4). 230 
D1’s plagioclase is An96.5 (see Table 1 for values and abbreviations), such as is 231 
abundant in lunar anorthosites and most lunar rocks. Its chromite is a complex solid 232 
solution, with significant Al substitution for Cr, Mg substitution for Fe2+, and a small 233 
proportion of Ti. The analytical sums for chromite are low, which we attribute to its 234 
small grain size and irregular surfaces near grain edges; the chromite standard analyzed 235 
well. It is also possible that the dunite’s chromite contains an unanalyzed element or a 236 
bit of ferric iron.  237 
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Mineral proportions and their calculated densities are given in Table 2, along with 238 
a calculated bulk density for the D1 dunite. 239 

Dunite Texture 240 

 Macroscopically, the D1 dunite has a granoblastic-polygonal texture, and lacks 241 
apparent preferred mineral orientations. This absence of preferred orientations is also 242 
seen on the weathered meteorite surface (Fig. 1), in the different colors of the olivine, 243 
augite, and orthopyroxene grains. Note that the weathered and cut surfaces are 244 
approximately perpendicular to each other. Likewise, the XCT scan shows no 245 
alignments or preferred orientations of the pyroxene and plagioclase grains (Fig. 2). 246 
Thus, we infer that the dunite lacks linear and/or planar structures; i.e. it is structurally 247 
isotropic. 248 

Olivine grains can be distinguished from each other, at least in part, by the 249 
presence of gaps (from grinding/polishing) along grain boundaries and cracks 250 
representing cleavage in individual grains (Figs. 3, 5). From this view, the D1 olivines 251 
are all of approximately the same size, ~100 µm across, and show no obvious preferred 252 
elongation direction. Boundaries between grains of olivine (as can be discerned) are 253 
generally planar (Fig. 5), and are consistent with triple-junction angles of ~120°.  254 

Pyroxenes and plagioclases appear randomly distributed among the olivine 255 
grains, Fig. 3a, and few of these appear elongated or aligned. The few elongated augite 256 
grains (e.g., bottom left of the clast in Fig. 3a) are associated with augite-chromite 257 
symplectites and are inferred to be late-stage additions (see below). Boundaries of 258 
pyroxene and plagioclase grains against olivines are either straight or concave toward 259 
the olivine (Fig. 5), consistent with inferred constraints of equilibrium surface energy 260 
(Spry, 1969; Barker, 2013).  261 

Symplectite  262 

 Chromite and some augite in the D1 dunite are exceptions to this textural 263 
equilibrium. Nearly all the chromite occurs either as symplectic intergrowths with augite 264 
(Figs. 5c, 5d) or elongate grains, sandwiched between silicate mineral grains. Much of 265 
the augite is in equant anhedral grains (e.g., Fig. 3a, upper right side of dunite clast), 266 
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but some augite is in symplectic intergrowths with chromite (Figs. 5c, 5d), and some 267 
occurs as elongate grains between other mineral grains (e.g., at the center of Fig. 5b). 268 
The largest example of elongated grains in the thick section is in the lower left corner of 269 
the dunite in Figure 3a. There, an elongate augite grain and an augite-chromite 270 
symplectite define a short veinlet cutting the dunite. This veinlet could be an example 271 
of the high-density veinlets observed in XCT (Figs. 2b, 2c).  272 

Inferences 273 

Thermobarometry 274 

 The mineral compositions in the NWA 11421_lpi1_D1 dunite appear to represent 275 
a state of chemical equilibrium, so we can apply thermobarometry to determine its 276 
equilibrium temperature and pressure. We consider the minerals to be in chemical 277 
equilibrium because: the compositions of each mineral are consistent across the dunite 278 
fragment (Fig. 4 & Supplementary Material); the Mg*s of the olivine, augite, and 279 
orthopyroxene are consistent with equilibrium, see Table 1 and Figure 4 (Baker and 280 
Herzberg, 1980; Lindsley, 1983); and the Ca contents of the augite and orthopyroxene 281 
are consistent with equilibrium (Lindsley, 1983). 282 
 With this evidence of chemical equilibrium, we can apply established mineral 283 
thermobarometers to determine the temperature and pressure at which the dunite’s 284 
minerals equilibrated: 980±20°C and 0.4±0.1 GPa. We calculated temperatures and 285 
pressures for six different sets of minerals (ol + pl + cpx + opx) in direct or nearly 286 
direct contact, Figure 6 (see Supplemental Material). Details of the temperature and 287 
pressure calculation are given in Appendix II. Equilibration temperatures were 288 
calculated from two-pyroxene thermometry (Ca distribution between augite and 289 
orthopyroxene) using the calibration of Brey and Köhler (1990) and two calibrations 290 
from Putirka (2008). For each set of minerals, these temperatures are within 20°C of 291 
each other. The resulting minimum and maximum temperatures were then used as 292 
input to calculate pressures using THERMOCALC’s avP algorithm (Powell and Holland 293 
1994, 2008), selecting the temperature that produced the P result with the lowest 294 
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residuals. The calculated pressures rely primarily on the Al contents of pyroxenes, e.g., 295 
the Mg- and Ca-Tschermak’s, or kushiroite (Kimura et al., 2009), components. To 296 
validate the procedure, we calculated temperatures and pressures for the lunar 297 
troctolite 76535 (Fig. 6; Appendix II); our results are comparable to those in earlier 298 
studies (McCallum and Schwartz, 2001; Elardo et al., 2012). For the six sets of minerals 299 
in the D1 dunite, calculated equilibrium temperatures range from 940 to 990°C (Fig. 6), 300 
with an average of 980°C. Calculated equilibrium pressures range from 0.27±0.1 to 301 
0.51±0.1 GPa (Fig. 6), with a best estimate of 0.4±0.1 GPa.  302 

Equilibration Depth – The Upper Mantle 303 

 To understand the original geologic setting of the NWA 11421_lpi1_D1 dunite, it 304 
is crucial to know how the calculated equilibrium pressure corresponds to depth. We 305 
use the Wieczorek et al. (2013) model of the lunar crust and upper mantle: a porous 306 
(fragmented) anorthositic crust with average density of 2550 kg/m3 and thickness from 307 
34 to 43 km, overlying a peridotitic upper mantle of density 3400 kg/m3 (nearly 308 
identical to that calculated for the dunite, Table 2). With those constraints (and lunar 309 
surface gravity of 1.62 m/s2), pressure at the base of the crust is calculated to be 0.14 310 
to 0.18 GPa. The equilibration pressure for D1 is greater than these,  which places D1’s 311 
equilibration in the Moon’s upper mantle. Using the Wieczorek et al. (2013) model, the 312 
D1 dunite equilibrated at a depth of 88±22 km, in the Moon’s upper mantle.  313 

The dunite’s mineral equilibration is consistent with formation on a ‘normal’ 314 
present-day lunar geotherm (i.e., selenotherm), see Figure 7. Within 2 uncertainty, 315 

the dunite’s equilibration is consistent with the present-day selenotherm calculated by 316 
Khan et al. (2014) from seismic data. That seleotherm includes consideration of a 317 
partially molten mantle at depths >1200 km, and a porous crust of low thermal 318 
conductivity. The nominal pressure and temperature of equilibration plot at slightly 319 
higher temperature (or lower pressure) than Khan’s selenotherm (Fig.7), consistent also 320 
with equilibration along an ancient, slightly hotter, thermal gradient.  321 
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Texture 322 

The texture of the D1 dunite (excepting the symplectites) arose during its 323 
chemical and thermal history in the moon, and so reveals some of that history. As 324 
described above, olivine grains in D1 are all of approximately the same size (Fig. 3), 325 
and show no obvious elongations or preferred orientations None of the minerals in D1 326 
show their own crystal forms (i.e., are not idiomorphic); rather, grain boundaries are 327 
straight or curved as consistent with equilibria of mineral surface energies (Spry, 1969).  328 

These textures of D1 are consistent with those of a granoblastic-polygonal 329 
metamorphic rock – one in which grain sizes and boundaries have adjusted to 330 
equilibrium shapes during extensive thermal metamorphism without deformation. 331 
Granoblastic-polygonal textures are common among mantle rocks from the Earth 332 
(Mercier and Nicolas, 1975), although Earth mantle rocks tend to have larger grains 333 
(e.g., ~1 mm vs the 0.1 mm of D1). Such textures are not characteristic of igneous 334 
cumulate rocks (Wager et al., 1960; Wager and Brown, 1967).   335 

Symplectite Formation 336 

 The chromite-augite symplectites in the D1 dunite require explanation, in the 337 
context of long-standing controversies about symplectite formation in other lunar rocks. 338 
In the still-current summary, Bell et al. (1975) described six varieties of lunar 339 
symplectites, and four general formation mechanisms. The symplectites in D1 fall into 340 
Bell’s category C, “… 10-1000-μm elongated masses along grain boundaries…” (Figs. 341 
5c, d). Bell and coauthors agreed that type-C symplectites formed by reactions between 342 
olivine and plagioclase. Dymek et al. (1975) inferred that similar symplectites in 72415 343 
formed by interaction with a silicate fluid (i.e., in an open system). Elardo et al. (2012) 344 
confirmed this inference, showing that symplectites of this type in troctolite 76535 345 
(their Fig. 1) formed by addition of Cr and Fe in an open-system process. The D1 346 
symplectites are similar enough to those in 76535 (Elardo et al., 2012), in texture and 347 
in composition, that a similar open system origin seems reasonable. An origin by garnet 348 
breakdown seems unlikely for the D1 symplectites, because garnet in peridotites tends 349 
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to form euhedra (Spry, 1969; Dégi et al., 2010; Barker, 2013) and not intergranular 350 
pods and films (Figs. 2b, 2c, 3a, fc, 5d).   351 

The Lunar Upper Mantle 352 

 It seems presumptuous to extrapolate from a single clast in a breccia to the 353 
Moon’s whole mantle, yet such assumptions have proven useful (Wood et al., 1970). If 354 
the D1 dunite clast in NWA 11421 is representative of a portion of the lunar mantle, it 355 
could help constrain models of the Moon’s early history.  356 
 The Al, Ca, and Ti abundances in the D1 dunite seem most consistent with 357 
formation in a differentiated lunar mantle that was well-mixed after its overturn (see 358 
Introduction). Estimated compositions of the bulk, undifferentiated lunar mantle have 3-359 
7% Al2O3, 3-5% CaO, and 0.2 – 0.4% TiO2 (Elkins-Tanton et al., 2011), while the 360 
dunite contains only 0.55% Al2O3, 0.57% CaO, and 0.07% TiO2 (Table 1). Thus, the 361 
dunite composition is consistent (in general terms) with a primitive mantle composition 362 
that was depleted in components that partition into silicate melt (e.g., Al, Ca, Ti).  363 

The dunite’s Mg* (i.e., Fo) of 83 is consistent with most models of the bulk 364 
primitive lunar mantle, which have Mg* = 80 – 85; see Table 1 of Elkins-Tanton et al. 365 
(2011). A lunar mantle that differentiated during a magma ocean episode would retain 366 
that average bulk Mg*, and be stratified with highest Mg* at its base (according to 367 
mineral-melt element partitioning). In some models of LMO crystallization, Fo83 olivine 368 
of is calculated to form only after ~65-75% of LMO crystallization (depending on the 369 
model starting composition), and is nearly the last olivine to crystallize (Elkins-Tanton et 370 
al., 2011; Lin et al., 2020; Johnson et al., 2021). In other models of LMO crystallization 371 
Fo83 olivine does not crystallize (Snyder et al., 1992; Rapp and Draper, 2018); low-Ca 372 
pyroxene would be the only silicate with Mg*=83.  373 

This cumulate pile from a crystallizing LMO would have been gravitationally 374 
unstable, having the Fe-rich denser materials near the top. This pile would have 375 
overturned, bringing denser material to the mantle base with some degree of mixing 376 
(Hess and Parmentier, 1995). If there had been no mixing after overturn, e.g. Figure 5b 377 
of Elkins-Tanton et al. (2011), olivine at the depth inferred for the NWA 11421 dunite 378 
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would be ~Fo90, significantly more magnesian than it is (Table 1). This mismatch in Fo 379 
number implies that at least some of the lunar mantle had been mixed during overturn. 380 
However, the presence of augite-chromite symplectites that post-date dunite formation 381 
(see below) allows the possibility that the original dunite might have been somewhat 382 
more magnesian than what we now see, having equilibrated with the Fe-Cr-bearing 383 
material responsible for the symplectites.  384 

If a stratified differentiated lunar mantle had homogenized during or after 385 
overturn (Boukaré et al., 2018; Zhao et al., 2019), it would maintain its bulk Mg* across 386 
all depths and so would be consistent with the Mg* and inferred depth for the NWA 387 
11421 dunite (Table 1). Likewise, abundances of Al and Ti in the dunite are consistent 388 
with a differentiated mantle, one from which igneous incompatible elements had been 389 
partially removed to form the lunar anorthositic crust, and incompatible-enriched late 390 
LMO melts. So, the NWA 11421 dunite is most consistent with a lunar mantle that was 391 
mixed well after (or during) its overturn (Boukaré et al., 2018; Moriarty et al., 2021).  392 

Discussion: Other Possible Sample of the Lunar Mantle 393 

To our knowledge, D1 in NWA 11421 is the first lunar sample known to have 394 
equilibrated at pressures consistent with the lunar mantle. It is possible that other lunar 395 
dunites and peridotites are samples of the lunar mantle, but few are reported to have 396 
mineral assemblages (olivine – plagioclase – augite – low-Ca pyoxene) that could 397 
provide equilibration temperatures and pressures (see Appendix II). See Appendix III 398 
for comments about thermobarometry of lunar spinel cataclasites.  399 

However, many lunar symplectites have bulk compositions consistent with 400 
mixtures of garnet ± olivine (Bell et al., 1975), which suggests that they were originally 401 
those minerals, and decomposed to augite + chromite on decompression (Bell et al., 402 
1975; Schmitt, 2016). Specifically, symplectites in dunite 72415 have been interpreted 403 
as products of the decomposition of garnet (Schmitt, 2016; Bhanot et al., 2022). If so, 404 
the garnet must have originated in the lower lunar mantle, at pressures greater perhaps 405 
than 2.3 GPa (Schmitt, 2016). The garnet would then have been transported, perhaps 406 
during the overturn of the LMO cumulates, to the shallow mantle (Bhanot et al., 2022) 407 
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where it could have decomposed to symplectites and then would have been transported 408 
to the surface.   409 

Implications 410 

 The D1 dunite clast in NWA 11421_lpi1 equilibrated last at ~980°C and 0.4±0.1 411 
GPa, at a depth of 88±22 km, firmly in the Moon’s upper mantle. This temperature and 412 
pressure are consistent with estimates of the present-day selenotherm (Khan et al., 413 
2014). Its chemical composition (Mg*, Al content) is consistent with estimates of the 414 
bulk composition of the lunar mantle, suggesting that the dunite formed after mantle 415 
differentiation (separation of anorthositic crust and Fe-Ti-rich residua) and after 416 
density-driven overturn had re-homogenized the mantle. This interpretation of the D1 417 
dunite’s origin is not unique – a similar chemistry and texture could form from an 418 
undifferentiated mantle composition by removal of a partial melt or perhaps a 419 
garnetiferous peridotite.  420 
 The veinlets and masses of augite and augite-chromite symplectite represent a 421 
fluid-based metasomatic event, after the dunite host had achieved textural equilibrium 422 
(presumably still in the mantle). Similar metasomatic products occur in other lunar and 423 
asteroidal samples (Elardo et al. 2012) (Vaci et al., 2021), and their origin remains 424 
unclear, especially the nature and origin of the metasomatic fluid. 425 

The D1 dunite is the first recognized sample of the lunar mantle, although 426 
mantle rock is inferred to have been brought to the surface by large impact events 427 
(Yamamoto et al., 2010; Miljković et al., 2015; Bretzfelder et al., 2020; Moriarty et al., 428 

2021). It is puzzling that no other bits of mantle dunite have been recognized, despite 429 
the relative abundance of crustal intrusive rocks in the meteorite and Apollo collections, 430 
e.g. McCallum and Schwartz (2001) and Elardo et al. (2012). Finding other fragments of 431 
lunar mantle rock would be very useful, and the search should be widened. The clast 432 
described here was recognized first because it was exposed on a weathered surface; 433 
where possible, XCT scans of other lunar breccias could reveal more fragments of the 434 
lunar mantle.  435 
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 448 

TABLES 449 

Table 1. Average Mineral Compositions, and Calculated Bulk Composition for the D1 Dunite. 450 
 451 

 452 
See Supplemental Material spreadsheet for details and individual analyses. Uncertainties are 1. 453 
Mg* is molar Mg/(Mg+Fe) in %; In pyroxenes, Wo is molar proportion CaSiO (molar % Ca/(Ca+Mg+Fe)), and En is molar 454 
proportion MgSiO3 (molar % Mg/(Ca+Mg+Fe)). 455 
An is molar Ca/(Ca+Na) in %. 456 
 457 
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Table 2. Mineral Proportions and  458 
 Densities 459 

 
Mineral 

Area %  Density 
kg/m3 

Olivine 95.3 3380 
Augite 1.1 3250 
Orthopyroxene 1.6 3400 
Plagioclase 1.3 2730 
Chromite 0.7 5000 

Bulk Dunite  3380 
 460 
  461 
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Figures & Captions 462 

 463 

 464 
Figure 1. A portion of the NWA 11421 fragment investigated here, macroscopic visible-light, true color. The meteorite 465 
consists of lithic clasts in dark glassy matrix. The studied dunite clast (D1) at the image center is brown, 0.7 cm long. In 466 
it, olivine is pale brown, orthopyroxene is darker brown, and augite is dark green. Most other visible clasts are troctolitic 467 
(t, plagioclase + olivine). Photo courtesy of M. Cimala (polandmet.com).  468 
 469 
 470 
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  471 

  472 
Figure 2. X-ray computed tomogram (XCT) slices of the NWA 11241 piece. a. Parallel to the base of the sample (in Fig. 473 
1), cutting through the dunite clast (D). Note other dark, plagioclase-rich clasts and speckled matrix (devitrified impact 474 
melt). b. XCT slice perpendicular to that of 1a, bottom of the sample to top of image, & partially distorted. Dunite (D) cut 475 
by bright veinlet, possibly rich in chromite symplectite. c. XCT slice perpendicular to those of 1a & 1b, bottom of the 476 
sample to top of image, & partially distorted. Dunite (D) cut by bright discontinuous veinlets. d. General XCT view of 477 
meteorite, slice parallel to that of Fig. 1a, but away from the dunite. Note coarser grained clasts of plagioclase-rich (dark 478 
areas) troctolite and lherzolite in fine-grained speckled matrix (devitrified impact melt). 479 
  480 
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 481 

 482 
Figure 3. Multi-element images, by SEM/EDS of the D1 dunite clast and surroundings. Epoxy is black in all frames (left of 483 
the rock sample, and filling cracks across it. a. Mg-Ca-Al, showing main minerals in clast, and their chemical homogeneity. 484 
In the dunite clast: bright red is olivine; dull red is orthopyroxene; green is augite; blue-green is plagioclase, and small 485 
discrete black spots in the dunite are chromite. White rectangles are locations of images in Figure 5. The matrix, being 486 
rich in plagioclase, is dominantly blue-green. b. Ti-P(Zr)-Fe. PK and ZrL X-rays are not distinguished. The dunite and 487 
many mineral fragments in the matrix contain Fe (in blue). Chromite in the dunite is magenta, as is ilmenite in the matrix. 488 
A few spots in the matrix, greenish and white, could be Ca-phosphate, zircon, or baddeleyite. c. Ca-K-S, shows 489 
weathering products along cracks. Ca-rich spots along a crack (bright red, far right center) are interpreted as calcite; K-490 
bearing streaks and veinlets (green) are interpreted as clay minerals. A few S-rich grains (blue) along cracks (S, but no 491 
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Ca) could be barite; S-rich spots in the matrix are Fe-sulfides. The small greenish clast (K-bearing) left of the scale bar is 492 
one of the few evolved rock fragments in the meteorite (Treiman and Semprich, 2021).   493 
 494 
 495 

 496 
Figure 4. Pyroxene and olivine compositions in the D1 dunite. Pyroxene end-members are: En = enstatite (Mg2Si2O6); Fs 497 
= ferrosilite (Fe2Si2O6); Di = diopside (CaMgSi2O6); Hd =hedenbergite (CaFeSi2O6). Olivine end-members are: Fo = 498 
forsterite (Mg2SiO4); Fa = fayalite (Fe2SiO4); Ca-olivine (Ca2SiO4). Compositions of augite (open red squares), 499 
orthopyroxene (dotted blue circles), and olivine (filled purple diamonds) are nearly constant across the dunite clast. The 500 
range of Wo content of the augite could represent slight mixture with orthopyroxene.   501 
  502 
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 503 

 504 
Figure 5. Details of textural relationships in the D1 dunite. a. BSE image of typical dunite texture: olivine (Ol, bright red), 505 
plagioclase (Pl, teal), augite (A, green), and orthopyroxene (Opx, dull red). The individual grains are in textural 506 
equilibrium, except for the elongate augite (see Fig. 5c & 5d). b. Mg-Ca-Al element map of same area. Enlarged by 507 
interpolation from Fig. 3a. Al-rich areas (bright blue) are traces of alumina polishing compound in cracks. c. BSE image of 508 
largest augite-chromite symplectite; mineral labels as above plus chromite (c). d. Mg-Ca-Al element map of same area as 509 
Fig. 5c. Enlarged by interpolation from Fig. 3a.  510 
 511 

 512 
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 513 
Figure 6. Calculated temperatures and pressures for separate mineral groups in the D1 dunite, red 514 
circles (see Appendix II and Supplemental Material) and clinopyroxene-olivine pairs in lunar troctolite 515 
76535, green diamonds (see Appendix II). Standard deviations are 1σ.  516 
  517 
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 518 
Figure 7. Equilibration conditions of the NWA 11421_lpi1_D1 dunite, and present-day thermal 519 
trajectories in the lunar mantle, after Fig. 2 of Garcia et al. (2019). Equilibrium p-T in red (Fig. 6), 520 
with 1 uncertainties. Pink band (K14) covers best model seleotherms of Khan et al. (2014), which 521 

include 40 km thick, porous crust of low thermal conductivity. Orange band (K13) includes calculated 522 
selenotherms for dry olivine ± orthopyroxene from Karato (2013); Blue line (KK09) is selenotherm 523 
from Kuskov and Kronrod (2009). Gray band includes estimates of the solidus for undifferentiated 524 
lunar mantle material (Longhi, 2006) (Hirschmann, 2000). 525 
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clast, spinel + augite + low-Ca-pyroxene, lacks olivine and so has limited significance for calculating 642 
pressure (Herzberg and Baker, 1980) (McCallum and Schwartz, 2001) (Nazarov et al., 2011). 643 
 644 
 645 
 646 
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