The Olivine-Spinel-\(a^{\text{melt}}_{\text{SiO}_2} \) (OSaS) Oxybarometer: A New Method for Evaluating Magmatic Oxygen Fugacity in Olivine-Phyric Basalts

Aaron S. Bell\(^1\), Laura Waters\(^2\), Mark Ghiorso\(^3\)

\(^1\)Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309 USA
\(^2\)Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801 USA
\(^3\)OFM Research

Abstract

The compositions of co-tectic olivine-spinel pairs in mafic magmas provide information on the oxygen fugacity of their host liquid, which can be accessed with a thermodynamic analysis of the olivine-spinel-liquid peritectic reaction:

\[
3\text{Fe}_2\text{SiO}_4^{\text{oliv}} + \text{O}_2^{\text{sys}} = 2\text{Fe}_3\text{O}_4^{\text{sp}} + 3\text{SiO}_2^{\text{melt}}
\]

The extraction of redox information from co-tectic olivine-spinel pairs requires a well-defined silica activity value \(a^{\text{melt}}_{\text{SiO}_2} \) for the melt of interest, as well as a method to calculate \(a^{\text{oliv}}_{\text{Fe}_2\text{SiO}_4} \) and \(a^{\text{sp}}_{\text{Fe}_3\text{O}_4} \) from chemical analyses of olivine and spinel, respectively. In this work, we develop a new olivine-spinel-\(a^{\text{melt}}_{\text{SiO}_2} \) (OSaS) oxygen barometer that utilizes MELTS to obtain values of \(a^{\text{melt}}_{\text{SiO}_2} \), which are used with values \(a^{\text{oliv}}_{\text{Fe}_2\text{SiO}_4} \) and \(a^{\text{sp}}_{\text{Fe}_3\text{O}_4} \) determined from established solution models for olivine and spinel. We find that two implementations of the spinel-liquid peritectic equilibria can successfully generate magmatic oxygen fugacity values, (1) using a combination of mineral activity models from the literature (classical-OSaS) and \(a^{\text{melt}}_{\text{SiO}_2} \) determined from MELTS, and (2) directly from chemical potentials obtained from MELTS, where a correction is added to the MELTS-derived chemical potentials for the magnetite component of the spinel (MELTS-OSaS). The two implementations of the OSaS were tested by using each model to recover the experimentally reported \(f^\text{O}_2 \) values for a dataset consisting of 50 olivine-spinel-glass assemblages derived from 14 published experimental studies. This dataset was filtered to remove potential disequilibrium phase assemblages, experiments with failed redox buffers, and poor-quality EMP analyses. Data quality metrics for the dataset filtration included Fe-Mg partitioning between olivine and melt, Fe-Mg partitioning between olivine-spinel, and an examination of whether \(a^{\text{melt}}_{\text{SiO}_2} \) values were consistent with the reported phase assemblages. The classical-OSaS implementations reproduced the \(f^\text{O}_2 \) values reported from the experimental dataset with a standard error estimate (SEE) of ±0.39, root mean standard error (RMSE) of ±0.40 and average deviation of ±0.31. In testing the MELTS-OSaS model, we identified that the solution model for magnetite underpredicted the values of \(a^{\text{sp}}_{\text{Fe}_3\text{O}_4} \); therefore, we used the 50 experiments to assign a
correction to the MELTS-predicted chemical potentials of magnetite. We tested the MELTS-OSaS model with the magnetite correction on a dataset of 18 additional buffered experiments, filtered for redox equilibrium and not included in the original experimental dataset. We find that the MELTS-OSaS model, which includes the correction for the magnetite chemical potential, reproduces f_{O_2} values for the 18 experiments with an SEE of ±0.20, root mean standard error (RMSE) of ±0.23 and average deviation of ±0.18. The OSaS oxybarometer can return magmatic f_{O_2} values with a standard error of ±0.20 to 0.39 log units, depending on the model selected, provided that the olivine-spinel cotectic temperature is known to an accuracy of ±25°C, the H$_2$O content of the melt can be estimated within ±1.5wt%, and that the crystallization pressure of the olivine-spinel pair is < 500 MPa. We also propose that the OSaS models can be applied to experimental run products to determine or confirm oxygen fugacity values. We additionally suggest that the careful application of the OSaS oxybarometer can provide a reliable and robust alternative for performing redox studies on samples that do not contain sufficient glassy material to support the application of spectroscopic techniques (i.e., XANES and Mössbauer).

1. Introduction

Oxygen fugacity (f_{O_2}) exerts critical influence on a wide range of petrologic and geochemical processes. In the broadest sense, oxygen fugacity plays a deterministic role in dictating the distribution of polyvalent elements (e.g., Fe, S, V, Mo, Cr) among various geochemical reservoirs - core, mantle, and crust - within the Earth (Arculus, 1979; Frost & McCammon, 2008). The bulk composition and speciation of magmatic fluids, which are ultimately emitted as fumarolic gasses (Gaillard & Scaillet, 2014; Moussallam et al., 2016; Ortenzi et al., 2020), are also directly controlled by magmatic oxygen fugacity; as such the prevailing f_{O_2} of planetary scale magma oceans exerts significant influence over the development and evolution of early planetary atmospheres (Deng et al., 2020; Hirschmann, 2012; Sossi et al., 2020). The influence of oxygen fugacity even extends to rheological properties of mantle peridotites, where it controls the point defect density in olivine and therefore its effective viscosity and seismic properties (Bai et al., 1991; Cline et al., 2018). Understanding the prevailing oxidation state of basaltic magmas underpins our ability to interpret and predict liquid-crystal phase equilibria along their liquid lines of descent, as well as the speciation and degassing behaviors of their dissolved C-H-S-O volatile components (Gaillard & Scaillet, 2014). Perhaps even more importantly, the f_{O_2} record preserved in primitive basaltic magmas is an accessible, albeit indirect, archive of redox heterogeneity among various geochemical reservoirs within the Earth’s upper mantle. Comparisons of the f_{O_2} values estimated for basalts with those of their peridotite sources (Birner et al., 2018; Carmichael, 1991; Cottrell et al., 2020; Stolper et al., 2020) show broad agreement, suggesting that basalts are indeed faithful recorders of the f_{O_2} of their mantle sources. Thus, f_{O_2}
measurements from basalts may provide insights into spatial and temporal changes in the oxidation state of
the mantle driven by the deep Earth oxygen cycle.

Magmatic redox conditions are typically assessed by either spectroscopic measurements or
thermodynamic phase equilibrium approaches. If glassy materials are available (e.g., matrix glass or melt
inclusions), Fe K-edge XANES (X-ray Absorption Near Edge Spectroscopy) (Berry et al., 2003; Cottrell
& Kelley, 2011; O’Neill et al., 2018; Zhang et al., 2018) or Mössbauer Spectroscopy measurements are
commonly employed to quantify Fe$^{3+}$/ΣFe ratios in glasses (O’Neill et al., 2018; Zhang, 2019). Measured
Fe$^{3+}$/ΣFe ratios are subsequently converted into oxygen fugacities using an established model that relates
fO_2 to intensive variables such as temperature, pressure, and liquid composition (Jayasuriya et al., 2004;
Kress & Carmichael, 1991; O’Neill et al., 2018; Borisov et al. 2018). Although basalt is one of the most
abundant terrestrial, martian, and asteroidal materials, there are surprisingly few methods for appraising the
magmatic oxygen fugacity of primitive samples lacking the glassy material required for the application of
spectroscopic techniques.

Phase equilibrium-based approaches, such as the magnetite-ilmenite geothermometer and
oxybarometer (Buddington & Lindsley, 1964; Ghiorso & Evans, 2008) or the olivine-orthopyroxene-spinel
oxybarometer (Bryndzia and Wood 1990; Ballhaus et al., 1991), can in some instances be applied to
samples not amenable to spectroscopic methods of study. Though phase equilibrium-based oxybarometers
can partially fill the technique gap for holocrystalline samples, we stress that the existing methods are not
without drawbacks and limitations. For example, the reliability of redox calculations from magnetite-ilmenite pairs is often compromised in mafic samples, as these phases are highly prone to kinetic
disequilibrium during crystallization, insidious low temperature re-equilibration, and post-crystallization
oxy-exsolution (Hou et al., 2020, and refs within). Furthermore, magnetite-ilmenite pairs commonly appear
relatively late in the crystallization sequence of basaltic magmas, therefore they may reveal little about the
oxidation state of more primitive liquids. The olivine-spinel-orthopyroxene equilibrium that was originally
developed as an oxybarometer for spinel peridotites by Ballhaus et al. (1991) can also be adapted for use
in basalts. However, many silica-undersaturated rocks (e.g., alkaline basalts and picrites) either do not
become saturated with orthopyroxene late in the crystallization sequence or fail to crystallize orthopyroxene
entirely, as in the case of critically silica undersaturated compositions (Carmichael et al., 1970). The dearth
of mafic compositions that generate phase assemblages with usable orthopyroxene phenocrysts limits the
application of the Ballhaus et al. (1991) oxygen barometer to bulk compositions that have silica activities
sufficient to support orthopyroxene crystallization.

The development of new, user-friendly oxybarometers for compositionally diverse basalts is a
critical step if magmatic redox studies are to be expanded to a wider range of samples and tectonic settings.
We stress that basalts from tectonic settings (i.e., continental rifts) that generate relatively few rapidly
quenched, glassy samples remain chronically understudied. In this work, we leverage thermodynamic
calculations from the MELTS thermodynamic model collection (Ghiorso & Gualda, 2015; Ghiorso & Sack,
1995; Gualda et al., 2012) as implemented by the ThermoEngine Python Package (Thermoengine, 2022),
hereafter referred to as MELTS, to develop two novel implementations of an oxybarometer that exploit the
olivine-spinel-melt equilibria. A python code containing the model with both implementations and
benchmark files are provided as part of the supplemental material (Appendix A1).

2. The Olivine-Spinel-\(a_{\text{SiO}_2}^{\text{melt}}\) (OSaS) Equilibrium

Phase equilibrium experiments and the presence of ubiquitous octahedral Cr-spinel inclusions in
Mg-rich olivine phenocrysts provide strong evidence that olivine and Cr-rich spinel are the first two phases
that appear on the liquidus of primitive basaltic magmas (Médard & Grove, 2008; Roeder et al., 2006). As
such, cotectic olivine-spinel pairs are uniquely suited to provide insights into the prevailing magmatic
oxygen fugacity of primitive basaltic liquids. Using a reaction reminiscent of the olivine-spinel-
orthopyroxene equilibrium developed by Ballhaus et al. (1991), the compositions of olivine and Fe\(^{3+}\)-
bearing spinel can be formally connected to magmatic \(fO_2\) through the peritectic reaction:

\[
\text{Eq. 1} \quad 3\text{Fe}_2\text{SiO}_4^{\text{oliv}} + O_2^{\text{sys}} = 2\text{Fe}_3\text{O}_4^{\text{sp}} + 3\text{SiO}_2^{\text{melt}}
\]

This reaction can be reformulated in thermodynamic notation to express oxygen fugacity as a function of
the activity of the fayalite component of olivine \(a_{\text{Fe}_2\text{SiO}_4}^{\text{oliv}}\), the activity of the magnetite component of the
spinel \(a_{\text{Fe}_3\text{O}_4}^{\text{sp}}\), and the activity of SiO\(_2\) in the melt \(a_{\text{SiO}_2}^{\text{melt}}\):

\[
\text{Eq. 2} \quad \log_{10}fO_2 = \frac{-\Delta G^0_{\text{T,P}}}{\ln(10)RT} + 3\log a_{\text{SiO}_2}^{\text{melt}} + 2\log a_{\text{Fe}_3\text{O}_4}^{\text{sp}} - 3\log a_{\text{Fe}_2\text{SiO}_4}^{\text{oliv}}
\]

Provided that the crystallization temperature for an olivine-spinel pair is known, the application of Eq. 2 to
evaluate magmatic \(fO_2\) simply requires one to obtain values for \(\Delta G^0_{\text{T,P}}\), \(a_{\text{Fe}_2\text{SiO}_4}^{\text{oliv}}\), \(a_{\text{Fe}_3\text{O}_4}^{\text{sp}}\), and \(a_{\text{SiO}_2}^{\text{melt}}\). The
calculation of \(\Delta G^0_{\text{T,P}}\), \(a_{\text{Fe}_2\text{SiO}_4}^{\text{oliv}}\), and \(a_{\text{Fe}_3\text{O}_4}^{\text{sp}}\) is a relatively straightforward exercise, as standard state
thermodynamic data (e.g., \(\Delta H_{\text{Tr}}, S^0_{\text{Tr}},\) heat capacity functions, and molar volumes for the phases of interest)
as well as solution models for the crystalline phases of interest are readily available. Obtaining \(a_{\text{SiO}_2}^{\text{melt}}\) values
for basaltic melts that are compatible with Eq. 2 is a more difficult prospect, as the potential methods for
obtaining this value are either insufficiently accurate or remain untested with respect to their efficacy when
applied to \(fO_2\) calculations.
2.1 The Trouble with Calculating $a_{SiO_2}^{melt}$ in from Mineral-Melt Equilibria

One approach for obtaining the $a_{SiO_2}^{melt}$ values for silicate magmas employs mineral-melt equilibria, such as the olivine-orthopyroxene-melt peritectic reaction. Though this approach presents the simplest solution for calculating $a_{SiO_2}^{melt}$, we note that equilibrium orthopyroxene-olivine pairs are relatively rare in primitive tholeiites that crystallize at shallow crustal pressures. Furthermore, orthopyroxene is entirely absent in critically silica-undersaturated alkali basalts and basanites (Carmichael et al., 1970). It is possible to reformulate the olivine-orthopyroxene-melt equilibrium in which the activity of the clinoenstatite component (augite) is substituted for the activity of enstatite in orthopyroxene. The peritectic reaction between olivine, the clinoenstatite component of high-Ca pyroxene (augite) and the melt offers an alternative approach for obtaining $a_{SiO_2}^{melt}$ for basaltic phase assemblages that lack orthopyroxene. In magmas co-saturated with olivine and clinopyroxene the $a_{SiO_2}^{melt}$ can be defined with the equilibrium:

Eq. 3

$$\text{Mg}_2\text{SiO}_4^{\text{oliv}} + \text{SiO}_2^{\text{melt}} = 2\text{MgSiO}_3^{\text{clinoenst}}$$

which can be re-arranged as:

Eq. 4

$$\log a_{SiO_2}^{melt} = \frac{-\Delta G^\circ_{T,P}}{\ln(10)RT} + 2\log a_{\text{MgSiO}_3}^{\text{cpx or opx}} - \log a_{\text{Mg}_2\text{SiO}_4}^{\text{oliv}}$$

The $\Delta G^\circ_{T,P}$ that appears in Eq. 4 is calculated from the standard state thermodynamic properties of clinoenstatite, rather than orthoenstatite. On the surface, this approach offers an appealing solution to the $a_{SiO_2}^{melt}$ problem, however there are several notable issues which diminish the effectiveness of this approach. The first issue is that cotectic olivine-spinel pairs may not be in equilibrium with augite phenocrysts in the assemblage, as clinopyroxene often appears relatively late in the crystallization sequence for melts experiencing low crystallization pressures (e.g., Sisson and Grove, 1993). The second issue is that the efficacy of this method largely depends on how well the selected clinopyroxene solution model performs for the composition of interest. For example, Bucholz and Keleman (2019) explored this approach and applied it to a suite of deep-crustal, ultramafic basaltic cumulates to determine $a_{SiO_2}^{melt}$. They demonstrate that $a_{SiO_2}^{melt}$ values calculated in this manner critically depend on the pyroxene solution model’s ability to generate accurate $a_{\text{MgSiO}_3}^{\text{cpx}}$ values. The results of Bucholz and Keleman (2019) underscore the difficulty of using $a_{\text{MgSiO}_3}^{\text{cpx}}$ values predicted for high Ca-enriched clinopyroxene. The $a_{\text{MgSiO}_3}^{\text{cpx}}$ for Ca-enriched clinopyroxenes are insufficiently accurate for performing redox calculations, as the $a_{SiO_2}^{melt}$ values for these
compositions are consistently underpredicted, which in turn, systematically skews the resultant fO_2 towards values that are too reduced.

Nikolaev et al. (2016) also attempted to exploit the olivine-spinel-melt equilibria to formulate an empirical oxybarometer for magmatic phase assemblages containing cotectic olivine-spinel pairs. In this approach the authors adopted a formulation which does not explicitly account for silica activity, where oxygen fugacity was cast as an empirical function of olivine composition, spinel composition, and temperature. Though this model successfully returns fO_2 values for many compositions, we stress that the value assumed by $a^{\text{melt}}_{\text{SiO}_2}$ in many cases exerts significant leverage on the resultant fO_2. As such, empirical models lacking terms accounting for the impact of $a^{\text{melt}}_{\text{SiO}_2}$ (which we note is not only a function of liquid composition, but also a function of pressure and dissolved water content) cannot serve as a universal model for all magmatic systems, and may produce systematically biased results for systems that have $a^{\text{melt}}_{\text{SiO}_2}$ dissimilar to the coarse “average” $a^{\text{melt}}_{\text{SiO}_2}$ inherent to the calibration dataset.

3. Using MELTS to Obtain $a^{\text{melt}}_{\text{SiO}_2}$ for the OSaS Oxybarometer

In the absence of a silica activity buffering phase assemblage, MELTS may be utilized to obtain the silica activity for the liquid of interest through calculations of the chemical potential of silica ($\mu^{\text{melt}}_{\text{SiO}_2}$) for multi-component silicate melts. The $\mu^{\text{melt}}_{\text{SiO}_2}$ values calculated from the MELTS algorithm can be converted into activity values using the expression:

$$\mu^{\text{melt}}_{\text{SiO}_2} - \mu^{\circ}_{\text{SiO}_2} = RT \ln a^{\text{melt}}_{\text{SiO}_2}$$

where $\mu^{\text{melt}}_{\text{SiO}_2}$ is the chemical potential of the SiO$_2$ component of the melt obtained from MELTS and $\mu^{\circ}_{\text{SiO}_2}$ represents the standard state chemical potential to which the $a^{\text{melt}}_{\text{SiO}_2}$ value is being referenced. The value of $\mu^{\circ}_{\text{SiO}_2}$ can refer to either the chemical potential of pure liquid SiO$_2$ or the chemical potential of one of several crystalline SiO$_2$ polymorphs. All calculations of $\mu^{\text{melt}}_{\text{SiO}_2}$ performed in this work utilized the Rhyolite MELTS models of Ghiorso and Gualda (2015); the $\mu^{\text{melt}}_{\text{SiO}_2}$ values were subsequently converted into obtaining $a^{\text{melt}}_{\text{SiO}_2}$ values for the liquid of interest.

Using MELTS, one can readily obtain $a^{\text{melt}}_{\text{SiO}_2}$ for a basaltic melt composition of interest and subsequently insert that value along with appropriate values of $a^{\text{oil}}_{\text{Fe}_2\text{SiO}_4}$ and $a^{\text{sp}}_{\text{Fe}_3\text{O}_4}$ into Eq.2 to calculate fO_2. This approach is appealing for its familiar form (Eq. 2) and relative simplicity; for this reason, we hereafter refer to this approach as the “classical-OSaS oxybarometer.” In this version of the OSaS oxybarometer, we have opted to calculate $\Delta_r G^{\circ}_{(T,P)}$ for the OSaS equilibrium with the internally consistent thermodynamic...
dataset of Berman (1988), as it is inherently compatible with thermodynamic data generated from MELTS. The $\Delta G^\circ_{(T,P)}$ values for Eq.1 were calculated using the standard state properties of crystalline SiO$_2$, rather than pure silica liquid, therefore the $a^\text{melt}_\text{SiO}_2$ values obtained from MELTS reference a high temperature polymorph of quartz as the standard state. We also note that it is possible to calculate $\Delta G^\circ_{(T,P)}$ values for the OSaS oxybarometer using the Holland and Powell (2011) thermodynamic database. The $\Delta G^\circ_{(T,P)}$ values calculated from the Berman (1988) and the Holland and Powell (2011) datasets differ by less than 1.5 kJ mol$^{-1}$ (from 1100°C to 1300°C). The subtle differences in the $\Delta G^\circ_{(T,P)}$ obtained from the two databases translates to a difference in oxygen fugacity values of < 0.075 log units for the end-member quartz-fayalite-magnetite buffer reaction. This comparison suggests that implementing $\Delta G^\circ_{(T,P)}$ calculated from either the Berman (1988) or the Holland and Powell (2011) databases in the OSaS should return nearly identical fO_2 values.

We use the olivine solution model of O’Neill et al. (2003) to calculate fayalite activities, as the interaction parameter from this model is consistent with the calorimetrically determined mixing parameters of Dachs and Gieger (2007). Using the symmetric regular solution model of O’Neill et al. (2003), fayalite activity is calculated, using Eqs. 6 & 7:

$$\text{Eq. 6} \quad R T \ln \gamma_{\text{Fe}_2\text{Si}O_4}^{\text{oliv}} = X_{\text{Mg}_2\text{Si}O_4} W_{\text{Fe-Mg}}^{\text{oliv}}$$

$$\text{Eq. 7} \quad a_{\text{Fe}_2\text{Si}O_4}^{\text{oliv}} = \left[X_{\text{Fe}_2\text{Si}O_4} \gamma_{\text{Fe}_2\text{Si}O_4}^{\text{oliv}} \right]^2$$

Where R is the universal gas constant, T is the temperature in K, and $W_{\text{Fe-Mg}}^{\text{oliv}}$ is the binary interaction parameter that assumes a value of 2.3 kJ mol$^{-1}$. The activity of the magnetite component of the spinel was calculated using the solution model of Nell and Wood (1990) which was given in an empirical form by Wood (1991) as:

$$\text{Eq. 8} \quad \log a_{\text{Fe}_3\text{O}_4}^{\text{sp}} = \left(\frac{(Fe^{2+})(Fe^{3+})}{4} \right)^2 + \frac{1}{4} \left[406(A1)^2 + 653(Mg)(A1) + 299(Cr)^2 + 199(Cr)(A1) + 463(Mg)(Cr) \right]$$

where the element in parenthesis refers to the number of cations present per spinel formula unit normalized to four oxygen anions. Ferric and ferrous ratios and cation site occupancy calculations follow the procedure of the SPINCALC spreadsheet (found at http://www.gabbrosoft.org); the SPINCALC charge balance and normalization procedure is implemented into the python code and applied to the classical OSaS.

In addition to the classical-OSaS method described above, the MELTS algorithm can also be applied to the olivine-spinel-$a^\text{melt}_\text{SiO}_2$ equilibrium in a slightly different, though more fundamental way. Rather
than using MELTS to obtain $\alpha_{\text{SiO}_2}^{\text{melt}}$ values for use in Eq. 2, MELTS can alternatively be used in a second implementation of Eq. 2 to directly calculate the chemical potentials of the fayalite endmember in the olivine solution of interest, the magnetite endmember of spinel solution of interest, and SiO$_2$ in the melt of interest. This approach has the advantage of using the internally consistent solution models and thermodynamic dataset intrinsic to the MELTS software. Chemical potentials calculated from MELTS can be arranged to define f_{O_2} as follows:

$$\mu_{\text{O}_2}^{\text{sys}} = 3\mu_{\text{SiO}_2}^{\text{melt}} + 2\mu_{\text{Fe}_3\text{O}_4}^{\text{sp}} - 3\mu_{\text{Fe}_2\text{SiO}_4}^{\text{oliv}}$$

where the chemical potential $\mu_{\text{O}_2}^{\text{sys}}$ obtained from Eq.5 can be converted into oxygen fugacity, using the standard state thermodynamic data for O$_2$ reported in the JANAF tables (Chase, 1998), as in Eq. 10:

$$\mu_{\text{O}_2}^{\text{sys}} - \mu_{\text{O}_2}^0 = RT\ln f_{\text{O}_2}$$

The "MELTS-only" version oxybarometer described above (hereafter referred to as the MELTS-OSaS oxybarometer) has the advantage of using solution models and a thermodynamic data set that are internally consistent. As such, the solution models for olivine and spinel endemic to this approach are different than the models implemented in the previous form of the classical-OSaS oxybarometer. MELTS calculations employ the Sack and Ghiorso (1989) olivine solution model for the calculation of $\mu_{\text{Fe}_2\text{SiO}_4}^{\text{oliv}}$ and the Sack and Ghiorso (1991) spinel solution model for the calculation of $\mu_{\text{Fe}_3\text{O}_4}^{\text{sp}}$.

4. Evaluating the OSaS Oxybarometers: Calculating the Oxygen Fugacity Recorded by Olivine-Spinel-Glass Sets in Redox Controlled Phase Equilibrium Experiments

Although the two versions of the OSaS oxybarometer described above should in principle generate accurate magmatic oxygen fugacity data for equilibrium olivine-spinel pairs, we stress that both approaches still require a rigorous test before being applied to ‘real world’ magmatic redox studies. The primary objective of this work is to develop a working oxybarometer that can be applied to cotectic olivine-spinel (±glass) assemblages in holocrystalline basalts that lack phase assemblages amenable to other established oxybarometers. To assess the efficacy of each of the approaches, we apply each method to a suite of redox buffered phase equilibrium experiments drawn from the literature. We used the Library for Experimental Phase Relations (LEPR) (Hirschmann et al., 2008) and conducted a literature search to identify an initial set of validation experiments which (1) contained olivine-spinel-liquid phase assemblages and (2) were conducted at controlled f_{O_2}. In total, we identified 223 experiments from 33 experimental studies. The bulk
compositions of the starting materials used in these experiments range in composition from alkaline to subalkaline and from mafic to intermediate.

4.1 Filtering Experimental Dataset

From this initial dataset we omit experiments with spinel analyses that contain >0.7 wt% SiO₂ to reduce any interference of groundmass glass contamination for calculation of spinel component activities. We also filtered the for experiments that contained olivine-melt pairs with \(K_{d_Fe-Mg}^{oliv-melt} \) values consistent with the attainment of equilibrium. For melt compositions low in total alkali content, we only selected experiments in which \(K_{d_Fe-Mg}^{oliv-melt} \) values vary between 0.30±0.08 (Fig. 1A). Lower \(K_{d_Fe-Mg}^{oliv-melt} \) values were accepted for melts that contained higher concentrations of alkalis (Fig. 1A), as it has been shown that increasing alkali content and decreasing silica activity effectively depress \(K_{d_Fe-Mg}^{oliv-melt} \) values (Toplis, 2005). We intentionally employ a wide filter for the olivine \(K_{d_Fe-Mg}^{oliv-melt} \) values, as our goal is to test the oxygen barometers across a spectrum of liquid compositions with variable silica activities.

We also evaluated experiments for the attainment of equilibrium between spinel and olivine. Depending on the choice of experimental starting material, it is possible for experiments to inherit relict spinel crystals that are out of equilibrium with the olivine and liquid present in the experiment. Disequilibrium or un-melted spinel crystals may remain in experimental phase assemblages because of sluggish re-equilibration kinetics or short experimental run times, which may be required to maintain a viable redox buffer assemblage. We use an empirical approach to filter out experiments that contain disequilibrium spinel. The distribution of Fe²⁺ and Mg between olivine and spinel can be described with the exchange equilibrium:

\[
X_{Mg}^{ol} + X_{Fe^{2+}}^{sp} = X_{Fe^{2+}}^{ol} + X_{Mg}^{sp}
\]

Unlike olivine, a single canonical Fe-Mg exchange coefficient cannot be ascribed to olivine-spinel pairs. We found that within the experimental dataset, the Fe²⁺-Mg exchange coefficient depends primarily on the Al-content of the spinel (Fig. 1B). We also examined the dataset for a potential relationship between \(K_{d_Fe^{2+}-Mg}^{ol-sp} \) and Cr content of the spinel, however, we found no significant correlation. The calculated \(K_{d_Fe^{2+}-Mg}^{ol-sp} \) values increase with increasing Al content (Fig. 1B) for the dataset and fall on a linear trend described by:

\[
K_{d_{Fe^{2+}-Mg}}^{ol-sp} = 0.249X_{Al} + 0.034
\]
Where X_{Al} is the number of Al cations per spinel formula unit (normalized to four oxygen anions). The observed relationship between \(K_{D}^{\text{Al}} \) and the identity of the dominate cation occupying the octahedral site (Al\(^{3+}\), Cr\(^{3+}\), or Fe\(^{3+}\)) in the spinel is consistent with the reciprocal solution behavior exhibited by spinel (Wood and Nicholls 1978), as well as the results of previous studies of olivine-spinel partitioning (Evans and Frost, 1975). The linear trend described by Eq. 12 may be thought of as an apparent equilibrium trend, and as such is a useful tool for evaluating whether a given olivine-spinel pair represents an equilibrium assemblage. Using this criterion, we discarded eleven experiments that contained olivine-spinel pairs that plotted off the apparent equilibrium \(K_{D} \) trend (±0.1). We show the linear fit of the initial and filtered dataset in Fig. 1B to highlight the minimal change imparted to the fit after removing disequilibrium spinels.

Accurate control of oxygen fugacity is a fundamentally challenging problem in experimental petrology (Grove, 1981). Reported oxygen fugacity values from 1-bar gas mixing experiments are typically accurate, as they can be directly assessed with yttrium- or calcium-stabilized zirconia oxygen sensors. However, higher pressure experiments that rely on double capsule techniques that employ solid mineral redox buffer assemblages may either fail to achieve redox equilibrium or fail to maintain redox equilibrium over the duration of the experiment. It is difficult to assess the quality of literature-reported \(f_{O_2} \) values or their affiliated uncertainties (if reported), however, we have attempted to ideantify experiments from the dataset that likely failed to attain or maintain redox equilibrium using a simple test based on calculated values of \(a_{SiO_2}^{\text{melt}} \). In this “reasonableness” test, we initially assume that each experiment was buffered at the reported \(f_{O_2} \), and then we solve for the \(a_{SiO_2}^{\text{melt}} \) using a rearranged form of Eq. 2 (Fig. 1C). We find that \(a_{SiO_2}^{\text{melt}} \) values generated for many experiments plot in petrologically unreasonable regions of temperature-\(a_{SiO_2}^{\text{melt}} \) space. We identified experiments where log\(a_{SiO_2}^{\text{melt}} \) < 0.25 or log\(a_{SiO_2}^{\text{melt}} \) > 0.75 as being suspicious, as the phase assemblages in these experiments are inconsistent with such extreme silica activity values. For example, experiments that return log\(a_{SiO_2}^{\text{melt}} \) values > 0.75 (\(-\text{log}_{10} a_{SiO_2}^{\text{melt}} = -0.15 \)) should contain orthopyroxene as a liquidus phase instead of olivine (Fig. 1C) and other samples that plot above \(\log_{10} a_{SiO_2}^{\text{melt}} = 1 \) should be saturated with a crystalline SiO\(_2\) polymorph which is inherently incompatible with the presence of olivine phenocrysts. Likewise, experiments that have log\(a_{SiO_2}^{\text{melt}} \) values < 0.25 (\(-\text{log}_{10} a_{SiO_2}^{\text{melt}} = -0.60 \)) plot below perovskite-sphene silica buffer curve in the stability field of feldspathoid group minerals. Rare terrestrial rocks such as olivine melilites and extraterrestrial basalts (such as angrite meteorites) may have log\(a_{SiO_2}^{\text{melt}} \) <0.25, however, the bulk compositions of the experiments considered for the calibration dataset bear no resemblance to these exotic compositions. The silica activity test allows us to directly assesses consistency of \(a_{SiO_2}^{\text{melt}} \) values constrained by thermodynamic analysis of independent peritectic reactions. The presence or absence of orthopyroxene, quartz, or nepheline in the experimental phase assemblages
effectively constrains the range of permissible silica activity values vis a vis the pertinent \(a_{\text{SiO}_2}^{\text{melt}} \) buffer reactions. In other words, this test is effectively a comparison of \(a_{\text{SiO}_2}^{\text{melt}} \) values calculated with the OSaS reaction to \(a_{\text{SiO}_2}^{\text{melt}} \) constraints from other mineral-melt reactions that define silica activity. We emphasize that experiments are not excluded on their \(a_{\text{SiO}_2}^{\text{melt}} \) value alone. Rather, this test excludes experiments that have \(a_{\text{SiO}_2}^{\text{melt}} \) values that are inconsistent with reported phase assemblage of the experimental charge in question.

For example, an experimental melt that does not contain quartz cannot have an \(\log_{10} a_{\text{SiO}_2}^{\text{melt}} \) of 1.0. The extreme high and low \(a_{\text{SiO}_2}^{\text{melt}} \) values obtained for the experimental melts may be attributed to several factors, including: (1) inaccurate spinel analyses, (2) unrecognized compositional zoning in olivine, or (3) a failed redox buffer assemblage. We omit these experiments from our calibration dataset, as some component of the olivine-spinel-\(a_{\text{SiO}_2}^{\text{melt}} \)-\(f\text{O}_2 \) system reflects disequilibrium, where the mineral assemblage reported in the run products is inconsistent with the mineral assemblage predicted by the calculated values of \(a_{\text{SiO}_2}^{\text{melt}} \). After culling the experimental dataset using the olivine-spinel Fe\(_{\text{Mg}} \)-K\(_D\) test and the \(a_{\text{SiO}_2}^{\text{melt}} \) test, our final dataset consists of 50 experiments on natural liquids.

In total, 19 experiments failed the olivine and liquid Fe\(_{\text{Mg}} \)-K\(_D\) test; of those 19 experiments two experiments also failed the test of olivine-spinel equilibrium, and 11 also failed the \(a_{\text{SiO}_2}^{\text{melt}} \) test. Eleven experiments failed the test of olivine-spinel equilibrium, where two of the 11 experiments also failed the olivine and liquid Fe\(_{\text{Mg}} \)-K\(_D\) test and one of the 11 experiments failed the \(a_{\text{SiO}_2}^{\text{melt}} \) test. Finally, 91 experiments failed the \(a_{\text{SiO}_2}^{\text{melt}} \) test, meaning that their calculated values of \(a_{\text{SiO}_2}^{\text{melt}} \) suggest that the experiments should be saturated in feldspathoids, orthopyroxene or quartz, but neither of these phases are reported in the run products. A single experiment failed all three tests. We note that all olivine-spinel pairs in our culled dataset are also consistent (within±0.1) with the olivine-spinel equilibrium proposed by Li et al. (1995), which accounts for variations in temperature. The final data set includes liquid compositions that range from basanite to andesite (Fig. 2) (Supplemental Data Table S1).

4.2 Evaluating the Performance of the Classical OSaS Oxybarometer

We used the activities of olivine and spinel, and the \(a_{\text{SiO}_2}^{\text{melt}} \) values relative to tridymite (using Eq. 5) for the experimental glasses and the \(\Delta G^\circ \) values based on the Berman (1988) database to solve for \(f\text{O}_2 \) based on Eq. 2. We find that this approach generates \(f\text{O}_2 \) values for the experiments in the initial validation dataset with an RMSE of ±0.40 log units, a standard error estimate of ±0.39 log units and an average residual (the average of the absolute values of the residual for each experiment) of ±0.31 log units (Fig. 3A). We find a few weak patterns in the residuals of the OSaS oxybarometer (Fig. 4), however, all the residual slopes appear to be negligible within the average residual of the model. The greatest trend is associated with H\(_2\)O content, which cannot be deconvolved from pressure in experiments in the test dataset.
For melts from experiments conducted at high water contents and high pressures, the model systematically underestimates the reported oxygen fugacity \(f_{O_2} \) values (Fig. 4C). We also find there is a weak correlation between the \(f_{O_2} \) residual and both melt and olivine compositions, such that the model systematically underestimates \(f_{O_2} \) for silica-rich liquids and forsterite-rich olivine (e.g., Fo\(_{90}\); Fig. 4D), however, we stress that these correlations are weak and are smaller in magnitude than the average residual of the model. We suggest that the classical OSaS model should not be applied to olivine-spinel-glass assemblages with melts that contain more than 10 wt.% H\(_2\)O.

4.3 Evaluating the Performance of the MELTS-OSaS Oxybarometer

We used the MELTs algorithm to calculate the chemical potentials of spinel, olivine, and SiO\(_2\) in the melt using compositions, temperatures, and pressures reported for the experiments included in the culled evaluation dataset. The resultant chemical potentials were inserted into Eq. 9 to obtain \(\mu_{O_2} \), which we then converted into \(f_{O_2} \) using Eq. 10. The MELTS-OSaS approach reproduces \(f_{O_2} \) values of the initial validation dataset with an average residual of +0.76 log units. The MELTS-OSaS approach systematically underpredicts the \(f_{O_2} \) of experiments with equilibrium spinel compositions that are enriched in chromium and aluminum (Fig. 5).

This result suggests that we have identified an equilibrium for which the internally consistent MELTS model does not reproduce the experimental data with an acceptable margin of error. At the most fundamental level, the mismatch between the experimental and predicted \(f_{O_2} \) values is reflected by a deficit chemical potential calculated for the reaction of interest (Eq. 9). There are two potential sources of this deficit (1) the standard state \(\mu^0 \) values used for any of the end-member phases or (2) the chemical potential associated with the excess mixing properties derived from the solution model of choice (we also stress that these two possibilities are not mutually exclusive). Given the internal consistency of the Berman thermodynamic dataset that underpins the MELTS OSaS and the fact that it faithfully reproduces experimentally determined equilibrium \(f_{O_2} \) values of the fayalite-magnetite-quartz buffer, there is no evidence implicating the standard state properties as the source of the observed error. Therefore, it is likely that the source of the error is related to the mixing properties defined by either the olivine or spinel solution model.

4.3.1 Source of the energy deficit in the MELTS OSaS equilibrium: olivine or spinel?

The observed MELTS OSaS chemical potential deficit can potentially be attributed to deficiencies in \(\mu_{Fe_{3}O_4}^{sp} \) or \(\mu_{Fe_{2}SiO_4}^{oliv} \) predicted by the spinel and olivine solution models, respectively. We evaluate which phase is the source of the energy deficit by comparing the residuals from the MELTS OSaS model (known-predicted values of log\(f_{O_2} \)) as a function of the compositions of olivine and spinel (Fig. 6). We find that the residuals from the MELTS OSaS show the strongest correlations with the composition of the
spinel, in particular the Cr-content and Cr# (residuals vs. Cr# yield $R^2 = 0.45$, p-value=9.8×10^{-8}; Fig. 6A), where the lowest residuals coincide with spinel compositions with low concentrations of Cr. Furthermore, we find that the average residual for the nine experiments that have spinel compositions with Cr#<0.01 is +0.24 log units which suggests that the MELTS OSaS model performs well for spinel compositions that are effectively binary MgAl$_2$O$_4$-Fe$_3$O$_4$ or Fe$_2$TiO$_4$-Fe$_3$O$_4$ mixtures. In contrast, residuals show a much weaker correlation with olivine composition (residuals vs. mol% fayalite yields $R^2 = 0.15$, which is reduced to 0.07 if a single, fayalite-rich olivine at the far right-hand side of the fit is discarded; Fig. 6B). We also note that when the Sack and Ghiorso (1989) solution model is used in the internally consistent MELTS architecture, it has been demonstrated that it successfully reproduces a preponderance of the experimental phase equilibrium data on which it was evaluated. The broad success of the Sack and Ghiorso (1989) olivine solution model within the MELTS architecture is a strong argument that the observed chemical potential deficit is not, in fact, related to a mishandling of the olivine solution properties. The observed correlations between spinel composition and residuals suggest Cr parameterization of Sack and Ghiorso (1991b) - which was meant to extend to the original Sack and Ghiorso (1991a) model for Fe-Mg-titanomagnetite-aluminate spinel to Cr-bearing compositions - underpredicts magnetite activity for spinel compositions that contain a chromite component. We emphasize that composition space for spinel is large and that the solution properties of spinel are exceedingly complicated. The configurational entropy of normal-inverse spinel solutions is impacted by temperature-dependent ordering on the cation sublattice; therefore, spinel solution models contain provisions to predict configurational entropy for a given composition. Magnetite activity values are influenced solution model implicit parameters that account for compositionally driven variations in cation distributions (i.e., the inversion parameter and its temperature dependence). Kurepin (2005) re-evaluated degree of inversion and cation mixing across the chromite-magnetite binary with new lattice parameter data and found that the Sack and Ghiorso (1991b) Cr extension overestimates the inversion parameter for Cr bearing compositions. The Kurepin (2005) work suggests that that the inversion parameter is nearly zero for spinel that contain dilute magnetite concentrations (i.e., <25 mol. % Fe$_3$O$_4$). If this is correct, then the overestimation of the inversion parameter results in configurational entropy estimates that are too high, which would translate to $a_{Fe_3O_4}^{sp}$ values that are too low. The use of low $a_{Fe_3O_4}^{sp}$ in OSaS equilibrium will, by extension generate fO$_2$ values that are also too low, which is consistent with the observed behavior of the residuals for experiments that contain Cr spinel.

4.3.2 Correction to μFe$_3$O$_4$ values

We developed an empirical correction that can be applied to the μFe$_3$O$_4$ values generated by MELTS. This correction effectively increases the MELTS-derived μFe$_3$O$_4$ values to bring them into
equilibrium with the reported f_{O_2} values for the experiments in the initial validation dataset. The equilibrium values for $\mu_{Fe_3O_4}$ (i.e., $\mu_{Fe_3O_4}^{\text{spinel-eq}}$ in Eq. 13 below) can be obtained by rearranging Eq. 9 such that:

\[
\mu_{Fe_3O_4}^{\text{spinel-eq}} = \frac{-3\mu_{SiO_2}^{\text{melt}} - 3\mu_{Fe_2SiO_4}^{\text{olivine}} - \mu_{O_2}}{2}
\]

We conducted a multivariate linear regression to relate the difference in the equilibrium $\mu_{Fe_3O_4}^{\text{spinel-eq}}$ and MELTS $\mu_{Fe_3O_4}^{\text{spinel}}$ values to the composition of the spinel (as mole fractions of oxide components). We systematically removed inconsequential compositional terms from the regression until we reached a combination of statistically significant terms and a low standard error on the regression fit. We find that the intercept, the initial, uncorrected value of $\mu_{Fe_3O_4}$ from MELTS, and a subset of oxide “components” ($X_{Cr_2O_3}$, X_{MgO}, X_{FeOT}) are all significant terms (p-values ≤ 0.02) (Table 1; Fig. 7A) and the model fit reproduces the idealized $\mu_{Fe_3O_4}$ values with a standard error estimate of ± 4.816 kJ, which is equivalent to an uncertainty of ± 0.17 log units of f_{O_2}. Seven significant figures are required for each of the regression coefficients, as using less than the seven significant figures (i.e., rounding) will result in $\mu_{Fe_3O_4}$ that are insufficiently precise for calculating accurate f_{O_2} values. It is also important to note that the corrected equilibrium $\mu_{Fe_3O_4}$ values obtained through this regression cannot be reincorporated into the MELTS algorithm, as they are no longer internally consistent with supporting model parameters. Using the newly derived regression equation (Table 1) to calculate $\mu_{Fe_3O_4}$ from MELTS outputs, we find that the MELTS-OSaS can successfully reproduce the f_{O_2} values for the experimental dataset with a SEE of ± 0.35 log units. Additionally, we find no significant patterns in the residuals as a function of spinel composition (Fig. 7B).

To understand the error of the MELTS-OSaS oxygen barometer, we must apply it to experiments that were not used to calibrate the correction to $\mu_{Fe_3O_4}$. We identified an additional 18 experiments that were not either (1) not found during our initial, imperfect, search of the LEPR database and literature or (2) were published after the initial testing and calibration of the MELTS-OSaS oxybarometer (Supplemental Table S2). This additional test dataset includes the experiments of Gaetani et al. (1994), Melekova et al. (2017), Takagi et al. (2005), Krawczynski et al. (2012) and Zhang et al. (2023). We have applied the MELTS-OSaS oxybarometer to predict the f_{O_2} values of these experiments and found that the MELTS-OSaS with a corrected $\mu_{Fe_3O_4}$ returns f_{O_2} values for most of these experiments with of ± 0.23 log units, a standard error estimate of ± 0.20 log units and an average residual (the average of the absolute values of the residual for each experiment) of ± 0.18 log units (Fig. 7C).

We additionally tested this model on experiments on picritic melts with >10 wt.% MgO from Matzen et al. (2011) and Zhang et al. (2023) (which pass all filters but were not included in either of the preceding experimental datasets; Supplemental Table S3). We found that both the MELTS-OSaS and the
classical-OSaS models overestimate the f_O^2 of picritic liquids by an average of +0.29 log units and by +0.42 log units, respectively (Supplemental Fig. S1). We observe that this effect is confined to liquid compositions containing >10.0 wt. % MgO. This effect suggests that MELTS systematically overpredicts $a_{\text{SiO}_2}^{\text{melt}}$ values for liquid compositions enriched in normative olivine, therefore, we caution users to be cognizant of the small, albeit systematic, f_O^2 bias imparted to MgO-rich liquids.

We find a few weak patterns in the residuals for the validation dataset (Fig. 8A-D), but the magnitudes of the correlation slopes are negligible within the average residual of the model and lower in magnitude than those of the classical OSaS oxybarometer for a given parameter. The model has some pattern in residual with increasing SiO$_2$ concentration (Fig. 8A) and H$_2$O content (Fig. 8C) of the coexisting melt, both of which impact the activity of silica parameter used in the model. Like the classical OSaS oxybarometer, the residuals associated with the MELTs OSaS oxybarometer indicate that the model satisfactorily reproduces the evaluation dataset. The model’s performance is significantly degraded for olivine-spinel-glass assemblages that grew from extremely H$_2$O rich melts (e.g., > 10 wt.%). Therefore, as with the classical OSaS oxybarometer, we strongly caution against applying the MELTS OSaS model to water-rich systems, as it may produce inaccurate results.

In general, the f_O^2 values generated from the two models are in good agreement when considering the error estimates of both models (Fig. 9). The mean difference in f_O^2 predicted by the two models for the 18 experiments used to test the MELTS-OSaS barometer is –0.12 log units and the average absolute value of the difference in the f_O^2 predicted by the two models is 0.2 log units.

5. Uncertainties and Limitations of the Classical and MELTS OSaS Oxybarometers

The advantage to testing the classical-OSaS and MELTS-OSaS oxybarometers on experiments is that they are conducted at known temperatures, pressures, and water contents. As the goal of this work is to provide a method for estimating f_O^2 in natural samples, we have also attempted to evaluate how well the model performs when intensive and compositional variables are not well known. Temperature exerts a principal control ΔG^0 values that appear in Eq. 2, as well as (though to a lesser extent) the mineral and melt activities calculated from the solution models. Both OSaS formulations are mildly dependent on pressure and the dissolved H$_2$O content of the liquid of interest. Like temperature, pressure also directly impacts ΔG for the reaction of interest, as well as the $a_{\text{SiO}_2}^{\text{melt}}$ value calculated from MELTS. The dissolved water content of the melt exerts considerable influence on the $a_{\text{SiO}_2}^{\text{melt}}$ (Carmichael 1970), where increasing water content depresses the silica activity of the melt, which in turn decreases the calculated oxygen fugacity values. We also note that CO$_2$ has a minor effect on $a_{\text{SiO}_2}^{\text{melt}}$, however, the magnitude of this effect is insignificant compared to H$_2$O. Varying CO$_2$ content from 0 to 2000 ppm changes the $a_{\text{SiO}_2}^{\text{melt}}$ value by 0.003.
Uncertainties in the composition of the equilibrium liquid coexisting with olivine and spinel may impact the calculated $a^\text{melt}_{\text{SiO}_2}$ value, however, we stress that uncertainties in the $a^\text{melt}_{\text{SiO}_2}$ obtained for tholeites and olivine tholeiites ($a^\text{melt}_{\text{SiO}_2}$ ranging from 0.45 to 0.65) exert minimal leverage on the f_{O_2} values returned by the model. To illustrate this point, we have performed a sensitivity analysis that shows uncertainties in the $a^\text{melt}_{\text{SiO}_2}$ of ±0.05 (a reasonable assumption for the effects uncertainties in the input liquid composition) generate a response in the returned f_{O_2} value of approximately ±0.10 log units (Fig. 9), which is significantly smaller than the error estimate of either model. This analysis highlights an important feature intrinsic to the OSaS approach - namely that a reasonable approximation of the input liquid composition may be sufficient for applying the models to f_{O_2} calculations of basaltic lavas. In other words, small errors in the input liquid composition are not translated into significant errors in the calculated f_{O_2} values for tholeiites and olivine tholeiites. For liquids with high $a^\text{melt}_{\text{SiO}_2}$ values, silica activity is effectively a variable of second order importance. On the other hand, for liquid compositions that have low $a^\text{melt}_{\text{SiO}_2}$ values that characterize basanites and feldspathoidal basalts, it is clear that $a^\text{melt}_{\text{SiO}_2}$ exerts significant leverage on the resultant f_{O_2} values (Fig. 10). Therefore, caution should be exercised in applying the OSaS to silica-undersaturated magmas with poorly constrained melt compositions. Though the OSaS models were successfully applied experiments performed on basanites and alkali-rich compositions, we suggest that the models are best applied to magmas with $a^\text{melt}_{\text{SiO}_2} > 0.35$ to minimize errors related to intrinsic uncertainties associated with the silica activity values.

We explored the impact of uncertainties in pressure, temperature, and dissolved water content on the f_{O_2} values calculated from the OSaS formulations by performing a sensitivity test using the olivine-spinel-glass assemblage from an experiment reported in Grove et al. (2003) (their experiment 85-41c#7). The olivine-spinel and liquid compositions were supplied to the oxybarometers and the assumed values for temperature, pressure, and water content were systematically varied. We find that, for the classical-OSaS oxygen barometer, if temperature is known within ±25°C (at a constant pressure of 200 MPa), the uncertainty in f_{O_2} is approximately ±0.3 log units (Fig. 11). Increasing the water content of the melt at constant pressure (200 MPa) and temperature, from 1.0 wt.% to 5.0 wt%, generates a decrease in the calculated f_{O_2} of ~0.40 log units (Fig. 11A). At a constant temperature of 1050°C and dissolved H$_2$O content of 4 wt.%, the effect of increasing pressure from 100 to 500 MPa generates an increase in the model calculated f_{O_2} value of less than 0.3 log units. We find similar uncertainties with respect to the effects of temperature, dissolved H$_2$O content, and pressure when repeating the same test for the MELTS-OSaS oxybarometer (Fig. 11C&D). Provided that one can estimate the crystallization temperature of olivine-spinel pairs to a precision of ±25°C and the dissolved water content of the melt to ±1.5 wt%, both OSaS models should return accurate f_{O_2} values.
6. Application of the OSaS to Natural Samples

While the OSaS barometers yield accurate \(f_{O_2} \) values for the experimental validation datasets, we have also applied the models to a suite of natural samples, where considerably less is known about the temperature-pressure-\(H_2O \) conditions at the time of crystal growth. This application effectively serves as a “field” test that is intended to help establish whether the models generate reasonable estimates of \(f_{O_2} \) for natural samples. We have attempted to apply the OSaS models to olivine-spinel-melt pairs from natural samples that have established values of \(f_{O_2} \), preferably through a method of determining \(f_{O_2} \) other than a strictly thermodynamic approach (i.e., an evaluation of \(\text{Fe}^{3+}/\Sigma \text{Fe} \) from XANES or Mössbauer Spectroscopy). Though many spectroscopic works on \(\text{Fe}^{3+}/\Sigma \text{Fe} \) in glasses in melt inclusions often supply the composition of the host olivine, we cannot identify a study that also reports spinel compositions. Therefore, we target olivine- and spinel-bearing mafic rocks that have an existing \(f_{O_2} \) estimates derived from \(\text{Fe}^{3+}/\Sigma \text{Fe} \) from XANES or Mössbauer Spectroscopy, which are from locations that also have a variety of samples with detailed petrologic descriptions and analyses of olivine, spinel, and glass.

It has long been recognized that the oxidations states recorded by basalt glasses from the midocean ridge (MORBs) provide a record of the oxidation state of their mantle source (Arculus, 1979; Christie et al., 1986; Haggerty, 1978). As such, there has been significant effort exerted in determining the \(\text{Fe}^{3+}/\Sigma \text{Fe} \) of MOR glasses (Bézos & Humler, 2005; Christie et al., 1986; Cottrell & Kelley, 2011; O’Neill et al., 2018; Zhang et al., 2018), which can be converted to an oxygen fugacity using models from the literature (Jayasuriya et al., 2004; Kress & Carmichael, 1991; O’Neill et al., 2018). In general, the \(\text{Fe}^{3+}/\Sigma \text{Fe} \) measured for MORBs indicate that these basalts record an oxygen fugacity within approximately ±0.20 log units of the fayalite-magnetite-quartz buffer (e.g., ΔFMQ+0.10±0.18, Cottrell & Kelley, 2011; ΔFMQ–0.17±0.15, Zhang et al. 2018; ΔFMQ+0.19±0.35, O’Neill et al., 2018) (Fig. 12). We examined literature associated with the Deep-Sea Drilling Project (DPS) and identified studies that report compositions of olivine, spinel and matrix glasses from any midocean ridge. We found olivine, spinel and matrix glasses from the Costa Rican Ridge Zone (leg 70 sample 504B, Group J) (Natland et al., 1983) and from the Lau Basin (Hawkins & Melchior, 1985), which is a complex back arc basin situated between a subduction zone on its eastern side and back arc ridges on its western margin (Baker et al., 2019) (Supplemental Data Table S4). We note that within these studies, some metadata are reported for mineral analyses, such as location on the grain (i.e., core or rim) or if spinels were included in olivine, but reporting of these observations is not consistent from study to study. For the Lau Basin samples, Hawkins and Melchior (1985) and Kamenetsky et al. (1997) report temperatures for the rocks from their study using olivine-melt equilibrium and olivine-chromite equilibrium, and we adopt those temperatures [average from Hawkins and Melchior (1985) = 1190°C] for our application here, along with pressures of 0.1 MPa and \(H_2O \) contents of 0 wt.%. We find
that the classical and MELTS-OSaS barometers yield log\text{O}_2 values of \(-8.33\ (\pm0.1)\) and \(-8.42\ (\pm0.07)\), which correspond to values of \(\Delta QFM+0.09\) and \(-0.02\), respectively, for the Lau Basin Basalts. For the Costa Rican Ridge samples, Natland et al. (1983) report several olivine and spinel compositions for a given rock composition. We show the average oxygen fugacity (\(\pm1\sigma\)) for each sample based on all possible pairings of olivine and spinel for a given liquid composition, where we assume a temperature of 1200°C, a pressure of 0.1 MPa, and H\text{2}O content of 0 wt. % in our calculations (Supplemental Data Table S2). We find that the classical-OSaS and MELTS-OSaS barometers yield log\text{O}_2 values of \(-8.41\ (\pm0.24)\) and \(-8.47\ (\pm0.23)\), which correspond to \(\Delta FMQ-0.11\) and \(-0.16\), respectively, for the Costa Rican Ridge Basalts (Fig. 12). Overall, the oxygen fugacity values generated from the OSaS for these samples agree with the established redox range for MORBs from derived from other methods.

It is also widely accepted that volcanic rocks erupting from subduction zone settings are systematically more oxidized than midocean ridges (Carmichael, 1991; Cottrell et al., 2020), thus we aim to identify arc segments for which there is an estimate of magmatic oxygen fugacity using some spectroscopic method. Brounce et al. (2014) reports oxygen fugacity values derived from Fe K-edge XANES analyses for primitive volcanic glasses from Mariana trough and arc (Fig. 12). Brounce et al. (2014) found that elevated Fe\text{3+}/\Sigma Fe ratios and low MgO contents of whole rock and glass compositions from the Mariana samples suggested that olivine fractionation had occurred prior to eruption. Therefore, Brounce et al. (2014) corrected the measured Fe\text{3+}/\Sigma Fe to reflect the fractionation of olivine from the liquid using the model of Lee et al. (2009). We show \(\Delta FMQ\) values that correspond to the initial Fe\text{3+}/\Sigma Fe determined by spectroscopy and the \(\Delta FMQ\) values that correspond to Fe\text{3+}/\Sigma Fe corrected for olivine fractionation. We applied the OSaS models to olivine-spinel-glass data from samples from the Mariana trough and arc from the literature (Bloomer & Hawkins, 1987; Hawkins & Melchior, 1985). Five samples from the Marianas trough have reported temperatures that range from 1084-1197°C, water contents of \(\sim2\) wt% to which we ascribe pressures of 100 MPa. We find that the classical-OSaS and MELTS-OSaS oxybarometers yield redox estimates from \(\Delta FMQ +0.3\) to +1.3 and +0.1 to +1.5, respectively, for the samples from the Mariana Trough. One sample from the Mariana Arc (Bloomer & Hawkins, 1987) has a reported temperature of 1200°C and H\text{2}O contents of \(\sim2\) wt%H\text{2}O, which we adopt for our tests (Supplemental Data Table S4). We assign pressure of olivine crystallization based on the H\text{2}O contents reported for these samples (100 MPa). The classical and MELTS-OSaS oxybarometers yield redox estimates from \(\Delta FMQ +1.9\) and +1.5, respectively, for the sample from the Mariana arc. The OSaS-determined redox conditions for the Mariana trough samples span a range that partially overlaps with the oxygen fugacities determined by Brounce et al. (2014), after olivine addition. The redox conditions for samples from the Mariana arc determined by OSaS barometer overlap well with those determined by Brounce et al. (2014).
OSaS-model f_O^2 estimates for basalts from the Mariana trough exceed the values determined by Brounce et al. (2014). We suspect this difference arises due to treatments of the different dataset; we do not correct the samples in our application for any olivine fractionation. The addition of olivine back into the Mariana trough samples to reconstruct primary liquid compositions will cause the oxygen fugacities in Fig. 11 to decrease, towards those of Brounce et al. (2014). We find that the samples from the Mariana trough that yield the highest estimated values of f_O^2 also have the lowest MgO contents, suggesting that the olivine-spinel pairs could record evolving f_O^2 due to fractionation or melt-vapor separation. We emphasize that numerous redox processes (e.g., degassing, crystallization) occur in magmatic plumbing systems and that the compositions of olivine-spinel pairs may provide a valuable record of these processes. The similarities between the f_O^2 estimates from both the Classical and MELTS implementations of the barometers and those from spectroscopic studies lend considerable confidence to f_O^2 estimates produced by both implementations of the OSaS models. A caveat to both comparisons is that neither application involves precisely the same sample, however, we note that the f_O^2 values returned for each tectonic setting are consistent with the accepted values or those reported in the literature.

7. Implications

One potential application of these models is to evaluate the attainment of redox equilibrium that employ solid state buffer assemblages (e.g., the double capsule technique in piston cylinder experiments) in phase equilibrium and crystallization experiments performed on basaltic compositions. The new models offer an accessible method (i.e., one that only requires access to an electron microprobe) for experimental petrologists to ascertain if redox equilibrium was indeed achieved and maintained throughout the duration of an experiment.

More importantly, we envision that the OSaS models can potentially facilitate an expansion of magmatic redox studies to samples not amenable to XANES or Mossbauer measurements. Existing magmatic redox studies have been limited to a small number of samples from settings that produce copious quantities of glassy material, however tectonic settings (such as continental rifts) simply do not generate many glassy samples, and thus remain chronically understudied. Furthermore, the OSaS models provide an accessible alternative for researchers who need to generate magmatic redox data but lack access to synchrotron or Mossbauer facilities. We also stress that the OSaS models can serve a key role in cross checking f_O^2 values from olivine hosted melt inclusions or rapidly quenched samples derived from spectroscopic measurements against those with recorded cotectic olivine spinel pairs.

The application of the OSaS models to natural samples requires that potential users (1) identify equilibrium olivine-spinel pairs in the samples of interest, (2) estimate the cotectic temperature for the olivine-spinel pair, (3) obtain an estimate of the liquid in equilibrium with the olivine-spinel pairs, along
with the H$_2$O content, and (4) have some constraint on equilibration pressure. Below we offer a few criteria and suggested methods to aid potential users in completing the aforementioned tasks. We recognize that this list of suggestions is not exhaustive and there are other potential methods approaches to assess equilibrium among the phases of interest, to obtain estimates for liquidus temperatures, and to estimate the water content of the melt. Potential OSA S users are under no obligation to employ our suggestions and are encouraged to adapt the tool to their purposes as they see fit, however, we stress that it is incumbent on potential users to exercise sound petrologic judgement when applying the OSA S models.

The identification of disequilibrium olivine-spinel pairs can be accomplished by comparing the $K_{d_{\text{Fe}^{2+}-\text{Mg}_{\text{ol}}}}^{\text{ol-sp}}$ for the pair of interest with the values predicted by Eq. 12 and/or through the equilibrium evaluation of Li et al. (1995). Though this simple approach does not ensure that a given pair represents an equilibrium assemblage, it does serve as a rough filter to eliminate olivine-spinel pairs that are clearly out of equilibrium and will generate inaccurate f_{O_2} values. We stress that olivine and Cr-spinel are often the first two liquidus phases in basalts that contain > 6.0 wt. % MgO. In such magmas, spinel is often present in the form of euhedral to subhedral inclusions in the cores of olivine phenocrysts (Roedder et al. 2006). These textures represent cotectic pairs that can be readily identified. We suggest that the OSA S models be applied to samples that experienced rapid cooling after eruption (e.g., surficial lava flows) to minimize potential subsolidus re-equilibration between olivine and spinel.

Of these tasks, obtaining accurate estimates for the olivine-spinel cotectic temperature is the least straightforward. There are several geothermometers that can be used to help estimate olivine-spinel cotectic temperatures (e.g., the olivine liquid geothermometers of Putrika, 2005; Herzberg and O’Hara, 2002), however we suggest that the Al in olivine geothermometer (Coogan et al., 2014; Wan et al., 2008) is well suited to estimate the crystallization temperature for an olivine-spinel pair of interest. The Al in olivine geothermometer is ideally suited for this task as it exploits the temperature dependence of the Al partition coefficient between olivine and spinel and can generate information about the cotectic temperature for the pair. We note that this approach does require careful consideration of EMP detection limits and analytical uncertainties for measured Al concentration of olivine. Thermometers based on Mg-Ni partitioning in olivine (e.g., Pu et al., 2017) may also prove useful for the OSA S, as this method can also provide estimates of pre-eruptive H$_2$O contents, though we note that laser ablation inductively coupled mass-spectrometry (LA-ICPMS) may be required for successful application of this thermometer. We also suggest that if whole rock compositions are known, the “reasonableness” of the olivine-spinel temperature estimates can be cross checked against the MELTS-predicted liquidus temperature for the olivine composition of interest.

To determine the appropriate liquid composition in equilibrium with olivine spinel pairs for samples that lack glassy groundmass, we suggest that whole rock compositions could be used directly, depending if sample crystallinity is low or if it could be demonstrated that an olivine-spinel pair is in...
equilibrium with the whole rock composition. Alternatively, the whole rock composition, mineral compositions, and mineral modes in a rock could be used to calculate a predicted interstitial liquid. In evaluating the combination of any liquid-crystal pair, some equilibrium test, such as the Fe-Mg,K_D values between olivine and melt, can be employed to assess the reasonableness of a selected melt composition. We do emphasize that one of the features of the OSaS model is that the uncertainties in the α^melt_{SiO_2} obtained for tholeiites and olivine tholeiites (α^melt_{SiO_2} ranging from 0.45 to 0.65), and therefore, the selected liquid composition, exert minimal leverage on the fO_2 values returned by the model (Fig. 10). We provide a guide in Appendix 2 for arriving at estimates of melt compositions in equilibrium with phenocrysts, using whole rock compositions, mineral compositions, and modes for a Snake River Plane basalt.

For hydrous magmas, the implementation of the OSaS models depends on one being able to estimate the water content of the melt. In the absence melt inclusion data, we suggest that users estimate water content with plagioclase-liquid hygrometry (e.g., Putirka, 2008; Waters and Lange, 2015), or through microbeam studies of melt inclusions where possible. Pressure should be considered when applying the OSaS to non-experimental samples. Careful microbeam studies of dissolved volatiles (e.g., CO_2) in olivine-hosted melt inclusions may also provide constraints on the minimum pressure for olivine crystallization. In many cases it is difficult, if not impossible, to estimate the pressure at which olivine-spinel pairs grew from the liquid, however, we stress that pressure has only a minor effect on the OSaS-determined fO_2 values for pressures < 500 MPa. As such, we strongly recommend that the OSaS should primarily to samples in which the olivine-spinel pairs generated by episodes of shallow crustal crystallization.

Finally, in the supplement, we provide all datasets, a python code with instructions to users, both the classical-OSaS and MELTS-OSaS models that can be uploaded to and used on the Thermoengine website, a benchmark input file that can be modified with a user’s data and uploaded along with the python script, as well as benchmark summary output files for the different models. We encourage readers to utilize the instructions to users, as the code is designed to output all variables described in this work.

Acknowledgements
John Naliboff is thanked for assistance with developing the initial coding approach to this project. Yishen Zhang is thanked for detailed comments and feedback in review that led to improvements on this manuscript. We also acknowledge Fred Davis for his comments on the manuscript. Chip Lesher, the handling editor for this manuscript, is additionally thanked for his feedback and comments on the manuscript.

Figure Captions:
Figure 1: (A) The olivine-liquid Fe-Mg K\textsubscript{D} values for olivine melt pairs from experiments are shown as a function of the total alkali content of the liquid, where the Fe-Mg K\textsubscript{D} values are calculated using the Fe2+ contents in the glasses determined based on the reported temperature, pressures, oxygen fugacities, glass compositions and the empirically calibrated equation of Kress & Carmichael (1991). The Fe-Mg K\textsubscript{D} value of 0.3 is shown as a solid black line and grey dashed lines correspond to the Fe-Mg K\textsubscript{D} of 0.3±0.08. Anomalously high and low K\textsubscript{D} values and those from experiments that failed additional tests (light colored symbols that fall above or below the dashed grey lines) were flagged as potentially representing poor analyses or disequilibrium. (B) The olivine-spinel Fe-Mg K\textsubscript{D} values calculated for the experimental dataset are shown as a function of the Al content of the spinel. Values that plot significantly (>±0.1) off the linear trend were discarded from the calibration. (C) A plot of the log a\textsubscript{SiO\textsubscript{2}}\textsubscript{melt} calculated using Eq. 2 rearranged to solve for amelt\textsubscript{SiO\textsubscript{2}} using the ∆G°, asp\textsubscript{Fe\textsubscript{3}O\textsubscript{4}}, the aolv\textsubscript{Fe\textsubscript{2}SiO\textsubscript{4}} and the reported values of fO\textsubscript{2}. Experiments that plot in the quartz stability field or plot in the feldspathoid stability field and lack those minerals in their reported run products were excluded from the calibration data set.

Figure 2: Experiments that passed all exclusionary criteria (e.g., Fig. 1) are shown as a function of their SiO\textsubscript{2} contents and total alkali contents to illustrate the compositional of the dataset. (Auwera & Longhi, 1994; Barclay & Carmichael, 2004; Davis & Cottrell, 2018; Feig et al., 2010; Grove et al., 1997, 2003; Grove & Bryan, 1983; Grove & Juster, 1989; Kawamoto, 1996; Krawczynski et al., 2012; Médard & Grove, 2008; Meen, 1987, 1990; Pichavant & Macdonald, 2007; Sack et al., 1987; Waters et al., 2021)

Figure 3: The reported fO\textsubscript{2} values (i.e., log fO\textsubscript{2} known) for the experimental dataset are shown with their calculated values of fO\textsubscript{2} using the classical OSaS oxygen barometer. The symbols are color coded to represent the Cr content of the spinel composition used in the calculation. The classical OSaS model (using MELTS generated silica activity values referenced to tridymite and activity models from the literature) reproduces the experimental fO\textsubscript{2} values with an average RMSE of ±0.40 log units and an average residual of ±0.32. The fO\textsubscript{2} values generated by the classical OSaS model do not covary with spinel composition.

Figure 4: In all panels, the residuals (known fO\textsubscript{2}-modeled fO\textsubscript{2}) from the classical OSaS barometer are shown as a function of various input parameters: (A) wt. % SiO\textsubscript{2}, where symbols are color coded to total alkali content, (B) experimental temperature, where symbols are color coded to experimental pressure (MPa), (C) dissolved water content of the melt, where symbols are color coded to experimental pressure (MPa), (D) Mg content of the experimental olivine, where symbols are color coded to the Cr# (X\textsubscript{Cr}/(X\textsubscript{Cr}+X\textsubscript{Al})) in spinel.
Figure 5: The reported \(f_{O_2} \) values (i.e., log \(f_{O_2} \) known) for the validation dataset are plotted against the \(f_{O_2} \) using the predicted MELTS-OSaS; this plot illustrates how the uncorrected version of MELTs-OSaS reproduces reported \(f_{O_2} \) values for experiments that have spinel with low Cr concentrations and underpredicts \(f_{O_2} \) values for experiments that have spinel with Cr content.

Figure 6: (A) The residuals from the MELTS OSaS are plotted against Cr# of the spinel; this plot shows a strong correlation between the Cr content of the spinel and the observed \(f_{O_2} \) residual. (B) The residuals of the MELTS OSaS plotted against the mol. % fayalite in the olivine.

Figure 7: (A) The MELTS \(\mu_{Fe_3O_4} \) values (black diamonds) and the corrected \(\mu_{Fe_3O_4} \) values (grey circles) are shown, as a function of the equilibrium \(\mu_{Fe_3O_4} \) values (i.e., the values of \(\mu_{Fe_3O_4} \) required to successfully predict the experimental \(f_{O_2} \) values). The \(\mu_{Fe_3O_4} \) values directly output from MELTs fall below the 1:1 line, indicating that they will under predict values of \(f_{O_2} \). The corrected \(\mu_{Fe_3O_4} \) values match well with the 1:1 line suggesting that they accurately reproduce the reported values of values of \(f_{O_2} \). (B) The reported \(f_{O_2} \) values (i.e., log \(f_{O_2} \) known) for the experimental validation dataset are shown with their calculated values of \(f_{O_2} \) using the calibrated MELTS OSaS with the corrected \(\mu_{Fe_3O_4} \) values. (C) The reported \(f_{O_2} \) values (i.e., log \(f_{O_2} \) known) for 18 experiments from the studies of Krawczynski et al. (2012), Gaetani et al. (1994), Takagi et al. (2005), Melekova et al. (2017), and Zhang et al. (2023) that were not a part of the initial validation/calibration dataset used to generate the \(\mu_{Fe_3O_4} \) correction are plotted against the \(f_{O_2} \) values predicted from the calibrated MELTS-OSaS model. MELTS-OSaS reproduces the 18 experimental \(f_{O_2} \) values with an average RMSE of ±0.23 log units, a standard error estimate of ±0.20, and an average residual of ±0.18.

Figure 8: In all panels, the residuals (known/\(f_{O_2} \)-modeled/\(f_{O_2} \)) from the MELTS OSaS model (with \(\mu_{Fe_3O_4} \) correction) are shown as a function of various input parameters: (A) wt.% SiO\(_2\), where symbols are color coded to total alkali content, (B) experimental temperature, where symbols are color coded to experimental pressure (MPa), (C) dissolved water content of the melt, where symbols are color coded to experimental pressure (MPa), (D) Mg content of the experimental olivine, where symbols are color coded to the Cr# (\(X_{Cr}/(X_{Cr}+X_{Al}) \) in spinel.

Figure 9: The \(f_{O_2} \) values calculated for the experimental dataset from the classical OSaS model plotted against the values calculated from the MELTS-OSaS (with \(\mu_{Fe_3O_4} \) correction). The plot shows a 1:1 line as well as the equation derived from a linear regression of the plotted data.
Figure 10: The curve in this figure shows how the OSaS predicted f_{O_2} values vary as a function of $a_{SiO_2}^melt$ for a fictive olivine-spinel pair with fixed composition activity values and a fixed temperature of 1150°C. The symbols with the error bars on the curve illustrate the magnitude of the error in the predicted f_{O_2} value assuming that MELTS generated $a_{SiO_2}^melt$ values have an intrinsic uncertainty of ±0.05. The $a_{SiO_2}^melt$ and f_{O_2} values for the experimental validation dataset are superimposed on this plot to illustrate that most “basaltic” magma compositions (even alkali-rich basalts) characterized by $a_{SiO_2}^melt$ values that correspond to low uncertainties in OSaS derived f_{O_2} values.

Figure 11: (A) The effect of variable water content impacts the melts derived silica activity and the calculated f_{O_2} values across a range of temperatures (at constant pressure of 200 MPa) for the classical-OSaS model. (B) The effect of pressure variation on calculated f_{O_2} values as a function of temperature (ΔG values are calculated for each curve at the temperatures at which they appear on the plot) is shown for the classical-OSaS model. (C) The effect of variable water content on the MELTS-derived silica activity and the calculated f_{O_2} values is shown for a range of temperatures (at constant pressure) using the MELTS-OSaS model. (D) The effect of pressure variation on the calculated values of f_{O_2} is shown for the MELTS-OSaS model.

Figure 12: The f_{O_2} values (relative to the FMQ buffer) calculated from the OSaS models for the MORB samples from the Lau Basin (1, Hawkins & Melchior, 1985; 2, Kamenetsky et al., 1997), Costa Rican Ridge Zone (3, Natland et al., 1983), and basalts from the Mariana Trough (1, Hawkins & Melchior, 1985) and Arc (7, Bloomer & Hawkins, 1987) are shown with the f_{O_2} values determined by XANES for midocean ridge basalt glasses (4, Zhang et al., 2018; 5, O’Neill et al., 2018) and basalt glasses from the Mariana Trough and Arc basalts (6, Brounce et al., 2014). Brounce et al. (2014) report the $Fe^{3+}/\Sigma Fe$ ratios for glasses from the Mariana trough in their supplement; we convert these ratios to ΔFMQ values using a temperature of 1150°C the model of Kress and Carmichael (1991). The OSaS-generated values broadly agree with the XANES-established oxygen fugacity values, where there is less agreement in the Mariana trough samples, but excellent agreement between analyses from MORB and general agreement with samples from the Mariana arc (see text).

10. References

equilibria data. *Geochemistry, Geophysics, Geosystems*, 9(3).

https://doi.org/10.1093/petrology/egaa116

https://doi.org/10.2138/am-2004-11-1203

https://doi.org/10.1016/S0012-821X(96)00182-3

https://doi.org/10.1007/BF00307328

https://doi.org/10.1093/petrology/egq089

<table>
<thead>
<tr>
<th></th>
<th>Coefficients</th>
<th>Standard Error</th>
<th>t Stat</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-88317.12</td>
<td>30632.35</td>
<td>-2.88</td>
<td>6.02E-03</td>
</tr>
<tr>
<td>MELTS µFe₃O₄</td>
<td>0.9680702</td>
<td>0.02</td>
<td>56.66</td>
<td>1.73E-43</td>
</tr>
<tr>
<td>Xᵢ, Spinel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>66581.75</td>
<td>11814.68</td>
<td>5.64</td>
<td>1.08E-06</td>
</tr>
<tr>
<td>FeO°</td>
<td>53625.74</td>
<td>12355.58</td>
<td>4.34</td>
<td>7.96E-05</td>
</tr>
<tr>
<td>MgO</td>
<td>75747.29</td>
<td>20637.63</td>
<td>3.67</td>
<td>6.40E-04</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2
Classical OSAoS barometer

\[\log(fO_2) \text{ calculated} \]

\[\log(fO_2) \text{ known} \]

SEE = ±0.39
Avg. Deviation = ±0.31
RMSE = ±0.40

Figure 3
Figure 4
Figure 5
Figure 6

(A) Relationship between Cr# (spinel) and uncorrected MELTs OSaS log/O2. The linear regression equation is y = 1.364x + 0.3205, with an R² of 0.45 and a P-value of 9.88 x 10⁻⁸.

(B) Relationship between X_Fayalite (olivine) and uncorrected MELTs OSaS log/O2. The linear regression equation is y = -2.3434x + 1.193, with an R² of 0.15 and a P-value of 5.73 x 10⁻³.
Figure 7

(A) Scatter plot showing the relationship between the model output or corrected μ_{Fe3O4} and the equilibrium μ_{Fe3O4}, with a high R^2 value of 0.99 and a SEE of ± 4816 J.

(B) Graph depicting the MELTs-only OSaS (modified μ_{Fe3O4}) with a SEE of ± 0.35, an average deviation of ±0.29, and an RMSE of ± 0.35.

(C) Graph for MELTs-only OSaS experiments not included in the dataset with a SEE of ± 0.20, an average deviation of ±0.18, and an RMSE of ± 0.23.
Figure 8
Figure 9

Datafit:
0.98x - 0.05
R² = 0.995

1:1 (as a reference)
Figure 10
Figure 11

Graphs showing the relationship between temperature and calculated log (\(f_{O_2}\)) for different concentrations of water and pressures. Each graph represents a different set of conditions:

A: OSaS
- \(a_{SiO_2} = 0.65\)
- \(a_{SiO_2} = 0.66\)
- \(a_{SiO_2} = 0.49\)

B: OSaS
- \(\Delta_r G = 250.0 \text{ kJ}\)
- \(\Delta_r G = 265.6 \text{ kJ}\)
- \(\Delta_r G = 241.2 \text{ kJ}\)

C: MELTs-OSaS

D: MELTs-OSaS
- Graphs at constant pressure (100 MPa to 500 MPa)
- Graphs at constant water (1 wt% to 5 wt%)

Each graph is labeled with the conditions under which it was calculated.
Figure 12