1	Revision 1
2	Mechanisms of fluid degassing in shallow magma chambers control the
3	formation of porphyry deposits
4	Zixuan Wang ^{1, 2, 3} , Yuanchuan Zheng ^{1, 3, *} , Bo Xu ^{1, 2, *} , Zengqian Hou ⁴ , Yang
5	Shen ⁵ , Aiping Zhang ⁶ , Lu Wang ¹ , Changda Wu ⁴ , Qingfeng Guo ²
6	¹ State Key Laboratory of Geological Processes and Mineral Resources and
7	School of Earth Sciences and Resources, China University of Geosciences,
8	Beijing 100083, People's Republic of China
9	² School of Gemology, China University of Geosciences, Beijing 100083,
10	People's Republic of China
11	³ Frontiers Science Center for Deep-Time Digital Earth, China University of
12	Geosciences, Beijing 100083, People's Republic of China
13	⁴ Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037,
14	People's Republic of China
15	⁵ State Key Laboratory of Marine Geology, and School of Ocean and Earth
16	Science, Tongji University, Shanghai 200092, P. R. China
17	⁶ College of Resource Environment and Earth Sciences, Yunnan University,
18	Kunming 650091, People's Republic of China
19	
20	*Corresponding author at:
21	29 Xueyuan Road, Haidian District, Beijing 100083, China.
22	Tel: +8615011361152
23	E-mail: zhengyuanchuan@gmail.com (Yuanchuan Zheng)

24

25 29 Xueyuan Road, Haidian District, Beijing 100083, China.

- 26 Tel: +8618611688625
- 27 E-mail: xubo@outlook.com.cn (**Bo Xu**)
- 28
- 29

Abstract

30 Magmatic fluid degassing within shallow magma chambers underneath the ore 31 bodies is critical to the formation of porphyry Cu-Au deposits (PCDs). Yet, it 32 remains unclear that how the ways of fluid degassing influence on the 33 development of PCDs. Here, geochemical data of apatite, amphibole and 34 plagioclase from ore-forming and coeval barren porphyries have been analyzed in 35 Sanjiang metallogenic belt, China. The ore-forming porphyries normally exhibit 36 high and wide X_F/X_{Cl} (31.76–548.12) and X_F/X_{OH} (0.779–7.370) ratios of 37 apatites, which are evidently higher than those of the barren porphyries (X_F/X_{CI}) of 38 1.03–26.58; X_F/X_{OH} of 0.686–3.602). Combined with the continuous variation 39 features of Cl/OH ratios and H₂O contents of melts calculated by amphiboles, as 40 well as fluid migration models, we constrained the mechanisms of fluid degassing 41 within shallow magma chambers underneath PCDs. There are three different 42 ways of fluid degassing, while only fluid degassing via fluid channel stage can 43 migrate and focus the metal-rich fluids effectively, conducive to the development 44 of PCDs. The mechanisms of magmatic fluid degassing processes are further 45 controlled by the storage depths of magma chambers and initial H₂O contents of 46 the magmas revealed by the compositions of amphibole, plagioclase and

47	thermodynamic modelling. Magmas, with shallower storage depth and higher
48	initial H ₂ O content, are more likely to experience extensive and focused fluid
49	degassing, leading to the generation of PCDs. This study demonstrates the
50	potential utility of integrated mineral analyses, the thermodynamic modelling for
51	investigating the mechanisms of magmatic fluid degassing in porphyry systems,
52	as well as identifying prospective buried PCDs.
53	
54	Keywords: porphyry deposit, magma degassing, magma chamber,
55	thermodynamic modelling, apatite, amphibole
56	
57	Introduction
58	Porphyry Cu-Au deposits (PCDs), representing a typical type of magmatic-
59	hydrothermal deposit, currently provide \sim 75% and \sim 20% of the global demand
60	for Cu and Au, respectively (Sillitoe, 2010). Their ore bodies are typically around
61	the apical tips of small volume ($< -5 \text{ km}^3$) pipe- or dyke-like porphyries at depths
62	of \sim 1–4 km. Such small porphyries could not be able to provide enough ore-
63	forming metals and fluids (enriched in H ₂ O, HCl, H ₂ S, SO ₂ and other volatile
64	components) for the development of large PCDs. Thus, it is commonly believed
65	that the ore-forming metals and fluids are dominantly derived from a larger
66	magma chamber (> $\sim 100 \text{ km}^3$) underneath the porphyries at depths of $\sim 4-10 \text{ km}$
67	(e.g., Richards., 2018). Consequently, the tonnages of PCDs could be closely
68	associated with the volumes of fluids (> $\sim 10 \text{ km}^3$) degassed from the shallow
69	magma chambers (e.g., Cline and Bodnar, 1991; Chelle-Michou et al., 2017;

70	Richards., 2018), while the processes of fluid degassing may also play critical
71	roles in the development of PCDs as shown by numerical simulations (Parmigiani
72	et al., 2016, 2017; Degruyter et al., 2019; Lamy-Chappuis et al., 2020). These
73	various processes that govern the transport and extraction of magmatic fluids, as
74	they leave their shallow magma chambers and reach the mineralization sites, are
75	difficult to be well constrained directly by geological samples, and remain a major
76	challenge to our understanding of magmatic-hydrothermal systems of PCDs.
77	Apatite and amphibole are common phases in ore-forming porphyries that can
78	incorporate Cl, F and OH in their structure and known to have a relatively high
79	crystal-melt partition coefficients of them. They have been used to elucidate the
80	behavior of magmatic fluids, owing to their ability to dynamically re-equilibrate
81	their volatiles contents in response to changes in melt compositions (Piccoli and
82	Candela, 2002; Humphreys et al., 2009). Therefore, the compositions of apatite
83	and amphibole might have great potential to provide well constrains on the
84	mechanisms of fluid degassing within the shallow magma chambers underneath
85	PCDs (e.g., Humphreys et al., 2009; Stock et al., 2016, 2018; Popa et al., 2021).
86	The comparisons of apatite and amphibole from ore-forming and barren magmas,
87	combined with correlative thermodynamic models, could be used to reveal the
88	significance of fluid degassing mechanisms in the development of PCDs and their
89	tonnages.
90	The Cenozoic Cu-Au metallogenic belt in Sanjiang region (Sanjiang metallogenic
91	belt), southwestern China, hosts numerous PCDs (Figure 1). They show broad

92 similarities in their formation ages, metal components and alteration patterns, and

93	are all related to adakite-like porphyries (Lu et al., 2013a, 2013b; Huang et al.,
94	2019), while the tonnages of these PCDs vary significantly. Meanwhile, there are
95	also some coeval adakite-like porphyries without mineralization (barren) in this
96	metallogenic belt. Collectively, these facts make the Sanjiang metallogenic belt an
97	excellent opportunity to examine how the mechanisms of fluid degassing in
98	shallow magma chambers control the formation of PCDs and provide the
99	guidance for PCDs mineral exploration.
100	
101	Geological setting
102	The eastern Tibet Plateau, lying to Yangtze and Songpan–Ganze block, is built on
103	a tectonic collage of continental blocks resulted in progressive Triassic to
104	Cretaceous closures of the Paleo- and Neo-Tethyan Oceans (Figure 1). The
105	Cenozoic evolution of the eastern Tibet Plateau was largely controlled by Indian-
106	Asian collision, which was initiated at ca. 55 Ma (e.g., Najman et al., 2010; Deng
107	et al., 2014, 2021). The Indian-Asian continental collision caused crustal
108	thickening in Tibet (e.g., Najman et al., 2010), with continuing impingement of
109	the Indian plate on Asian causing the extrusion of elongated crustal blocks in
110	Sanjiang region, along the eastern Tibet Plateau (Figure 1; Tapponnier et al.,
111	1982).
112	During the Indian-Asian collision, the Eocene Sanjiang metallogenic belt formed
113	along Jinshajiang-Ailaoshan suture zone (JAS), which is largely composed of
114	relics of the Jinshajiang-Ailaoshan Paleo-Tethys oceanic plate (Figure 1; Deng et
115	al., 2014, 2021). The Sanjiang metallogenic belt clustered abundant Eocene

116 potassic felsic intrusions and potassic-ultrapotassic mafic volcanic rocks. There 117 are numerous PCDs along Sanjiang metallogenic belt, including two giant PCDs 118 of Yulong and Beiva as well as a series of large- to small-sized deposits (Lu et al., 119 2013b; He et al., 2015; Hou et al., 2017; Huang et al., 2019; Xu et al., 2021; 120 Wang et al., 2022). The proven resources currently include >16 Mt Cu, >450 t 121 Au, ~6 Mt Mo (Lu et al., 2013b; Deng et al., 2014, 2021; He et al., 2015; Wang et 122 al., 2022). These PCDs were formed at ca. 34–43 Ma sharing similar metal 123 components and alteration patterns, and genetically related to adakite-like felsic 124 porphyries (ore-forming porphyries). Many Eocene adakite-like porphyries (32– 125 43 Ma) with no features of alteration and mineralization (barren porphyries) have 126 also been identified in this belt (Figure 1). The ore-forming and barren adakite-like porphyries have similar outcrop area 127 (typically 0.5–1 km²), dominated by pipe- or dyke-like intrusive bodies (Figure 128 129 1). The popular model proposes that these adakite-like porphyries were produced 130 by partial melting of sulfide-rich arc cumulates in the lower crust (e.g., Lu et al., 131 2013; Hou et al., 2017; Huang et al., 2019; Shen et al., 2021). Additionally, some 132 scholars have also suggested that these adakite-like porphyries could be derived 133 from the fractionation of potassic mafic magmas derived from lithospheric mantle 134 (Jiang et al., 2006; Chang et al., 2023a). While there are potassic mafic rocks with 135 high La/Yb and Dy/Yb ratios similar to the felsic rocks, the scarcity of 136 corresponding high La/Yb and Dy/Yb samples in the intermediate-transitional 137 range undermines the credibility of the potassic mafic magmas fractionation 138 model (Supplementary Figure 1a, b). The elevated La/Yb and Dy/Yb ratios

139	observed in these adakite-like porphyries can be effectively explained by the
140	presence of residual garnet in the source (Davidson et al., 2007; Macpherson,
141	2008). Considering the similarities in geochemical signatures (e.g., adakite-like;
142	Supplementary Figure 1c, d) and isotopic compositions ($\epsilon_{Hf}(t)$: -9.1–8.5;
143	$({}^{87}Sr/{}^{86}Sr)_i$: 0.7050–0.7097; $\epsilon_{Nd}(t)$: -11.2–1.43; Supplementary Figure 2), we are
144	inclined to believe that both ore-forming and barren adakite-like porphyries were
145	derived from partial melting of a juvenile lower crust resulting from previous
146	underplating of Neoproterozoic-Paleozoic arc magmas. The subduction of Indian
147	continent disturbed the asthenosphere of Asian continent, causing the upwelling
148	of mantle flow. The hot mantle flow rose through the mantle and widely emplaced
149	at crust-mantle boundary, resulting in large-scale partial melting of the lower
150	crust (e.g., Hou et al., 2021). The Jinshajiang-Ailaoshan suture zone, having
151	spatial correspondence with this hot mantle flow, dominates the emplacement of
152	potassic intrusions, forming the north-northwest trend 2000-km-long magmatic
153	belt (Figure 1; Hou et al., 2021; Deng et al., 2021).
154	
155	Sample description
156	Combined with our previously data, systematic whole-rock and mineralogical
157	data from four ore-forming porphyries of PCDs, including two giant PCDs (Beiya
158	and Yulong) and two large PCDs (Machangqing and Yao'an), as well as six

- 159 barren porphyries (Shigu, Weishan, Ninglang, Yanyuan, Nangqian and
- 160 Mangkang) in the Sanjiang metallogenic belt have been analyzed in this paper
- 161 (Supplementary Table 1–7). The Yulong and Machangqing deposits contain Cu–

162	Mo mineralization (Yulong: ~6.5 Mt Cu, 0.4 Mt Mo; Machangqing: 0.3 Mt Cu,
163	0.1 Mt Mo) within the \sim 43 Ma and \sim 35 Ma porphyries. The Beiya and Yao'an
164	deposits exhibit Au mineralization (\sim 320 t and \sim 10 t Au) related to the \sim 36 Ma
165	and ~33 Ma porphyries, respectively. The barren porphyries have been dated at
166	\sim 33 to 40 Ma, showing spatial and temporal correspondence with the ore-forming
167	porphyries.

168 The ore-forming and barren porphyries have similar mineral assemblages. The 169 phenocrysts contain plagioclase, K-feldspar, amphibole, biotite and quartz, and 170 some apatite micro-phenocrysts. Groundmass of these porphyries are composed 171 of plagioclase, K-feldspar and quartz with sizes mostly < 0.5 mm. The plagioclase 172 (0.2-4 mm) occurs as euhedral to subhedral laths (Figure 2a-g). Some plagioclase 173 grains preserve oscillatory zoning (Figure 2b, f). K-feldspar is mostly anhedral 174 with occasional cross-hatched (tartan) twinning. The biotite phenocrysts, which 175 are lath-shaped and range from euhedral to subhedral, exhibit yellowish to dark 176 brown pleochroism (Figure 2b, f). The quartz phenocrysts are irregular and 177 circular. Euhedral to subhedral amphibole phenocrysts are hexagon-shaped with 178 dark brown to green pleochroism, ranging from the 0.3 to 5 mm in size (Figure 179 2a–g). Some slightly fluid altered amphibole phenocrysts have bleached colors 180 corresponding to the patchy zoning observed in BSE images (Figure 2h), which 181 were excluded from the experiment. Apatites occur as inclusions within biotite 182 and K-feldspar phenocrysts apart from micro-phenocrysts (Figure 2j, 2k). Some 183 apatites exhibit bright bands along fractures and edges in cathodoluminescence 184 (CL) images (Figure 21), indicating that these corresponding portions of apatite

185	have undergone late-stage hydrothermal alteration. We excluded these
186	hydrothermally altered apatites and took precautions during experiments to avoid
187	fluid or mineral inclusions and fractures in apatite to ensure that the tested apatites
188	are primarily magmatic origin (Supplementary Figure 3). Therefore, the selected
189	amphiboles and apatites are of primary magmatic origin (Figure 2i, 2l), and
190	capable of reflecting the corresponding magmatic processes and avoiding the
191	influence of late-stage hydrothermal alteration.
192	
193	Results
194	Major element compositions of apatite, amphibole, and plagioclase from ore-
195	forming and barren porphyries in Sanjiang metallogenic belt were obtained using
196	an electron probe microanalyzer (EPMA). The results are presented in
197	Supplementary Table 1–3, including compiled data for Yao'an, Yulong, Nangqian
198	and Mangkang (e.g., Bi et al., 2009). For detailed information about the analytical
199	methods employed, please refer to the Supplementary materials.
200	
201	Amphibole compositions
202	The analyzed amphibole phenocrysts in both ore-forming and barren porphyries

203 are unaltered, showing no bleached colors (Figure 2i). The quality of their

- 204 compositions was verified using AMFORM.xlsx (Ridolf et al., 2018). These
- amphiboles are all calcic ($Ca_B > 1.5$) and can be further classified as actinolite,
- 206 magnesiohornblende, edenite and pargasite (Supplementary Figure 4a, b; Leake et
- al., 1997). The amphibole phenocrysts in ore-forming porphyries demonstrate

208 variable contents of Na₂O (0.54–2.24 wt%), CaO (10.91–12.56 wt%), and Al₂O₃

- 209 (1.99–8.48 wt%). The amphibole phenocrysts in barren porphyries display
- 210 narrower ranges in Na₂O (1.45–3.01 wt%), CaO (10.91–11.94 wt%), and Al₂O₃
- 211 (6.63–12.12 wt%). The Al^{VI} contents of the amphiboles in ore-forming and barren
- 212 porphyries are 0.28–1.44 and 0.97–1.87, respectively. They exhibit similar ranges
- of Cl contents (0.01–0.24 wt% and 0.02–0.19 wt%, respectively), with no

214 observed correlation between Cl and Mg# (Supplementary Table 2).

215

216 Apatite compositions

217 Apatites in the ore-forming and barren porphyries exhibit similar CaO, P₂O₅ and

218 SO₃ contents (52–59 wt%, 38–43 wt% and 0.03–1.44 wt%, respectively). Apatites

from ore-forming porphyries show much higher F (1.60–3.22 wt%) and lower Cl

220 (0.01–0.17 wt%) contents relative to those from barren porphyries (1.15–2.76

221 wt% F, 0.18–2.10 wt% Cl; Supplementary Table 1). These differences can be

translated to X_F, X_{Cl} and X_{OH} (Supplementary Figure 4c), which are the mole

- 223 fractions of F, Cl and OH, respectively.
- Apatites from ore-forming porphyries tend to have a low and narrow range of
- 225 X_{Cl}/X_{OH} (0.003–0.148), high and wide extents of X_F/X_{Cl} (31.76–548.12) and
- 226 X_F/X_{OH} (0.779–7.370), showing a negative correlation between X_F and X_{CI} , X_F
- and X_{OH}, respectively. In contrast, the counterparts from barren porphyries have
- 228 high and wide X_{Cl}/X_{OH} ratios (0.073–1.041), low and narrow X_F/X_{Cl} (1.03–26.58)
- and X_F/X_{OH} (0.686–3.602) ratios, with a negative correlation between X_{CI} and
- 230 X_{OH} (Supplementary Table 1).

231

232 Feldspar compositions

233	Some plagioclase phenocrysts in ore-forming and barren porphyries are zoned.
234	The plagioclases we selected are those with no zone or the rims of the zoned
235	plagioclase phenocrysts, which could be in equilibrium with the residual evolved
236	melt. In ore-forming porphyries, the plagioclase phenocrysts range in composition
237	from albite to anorthoclase and oligoclase (An content = $0.6-34.0\%$ and Or
238	content = $0.5-24.0\%$). Among them, the plagioclase phenocrysts in the Beiya ore-
239	forming porphyry have the lowest An content (0.6-2.8%). The compositions of
240	plagioclase phenocrysts in barren porphyries are comparable to those in ore-
241	forming porphyries, ranging from albite to oligoclase (An content = $2.4-30.7\%$
242	and Or content = $0.5-8.6\%$; Supplementary Figure 4d, Table 3).

243

244 Pressure, temperature and H₂O content estimates

245 The method of Ridolfi and Renzulli (2012) has been used to estimate the physical

246 (P, T) and compositional conditions (e.g., melt H₂O contents) at the time of

amphibole crystallization, based on amphibole compositions (Figure 3). This

248 method is recommended for studies aiming to discern the pre-eruptive conditions

and sub-volcanic processes such as magma storage for both calc-alkaline and

alkaline magmatic series (Ridolfi and Renzulli. 2012; Chelle-Michou et al., 2015;

- 251 Gorini et al., 2018), which is consistent with our samples. The amphibole
- compositions in this study match those of the experimental amphiboles from
- 253 Ridolfi and Renzulli (2012). However, there are much debate surrounds the

254	accuracy of the calculated intensive variables (e.g. Walker et al., 2013; Erdmann
255	et al., 2014). Therefore, the methods of amphibole–plagioclase barometer and
256	feldspar-liquid hygrometer have been conducted to estimate the physical and
257	compositional conditions (especially P and melt H_2O contents) and verify the
258	credibility of these results (Anderson et al., 2008; Putirka, 2008). The results for
259	individual analyses can be found in Supplementary Table 2–4.
260	The pressures and temperatures calculated using the methods of Ridolfi and
261	Renzulli (2012) indicate that amphiboles from ore-forming porphyries record
262	lower crystallization temperatures (680–831 °C with uncertainties \pm 23.5 °C) and
263	pressures (0.39–1.56 Kbar with uncertainties \pm 11.5%), whereas amphiboles from
264	barren porphyries yield evidently higher temperature and pressure, except for
265	Shigu and Yanyuan barren porphyries (739–940 °C and 0.97–4.35 Kbar, with
266	uncertainties \pm 23.5 °C and \pm 11.5%, respectively; Figure 3; Supplementary Fig 5,
267	Table 2). We also calculated pressures using amphibole–plagioclase barometer
268	(Anderson et al., 2008), and obtained a range of pressures of 0.3–4.4 Kbar, which
269	is similar to the results estimated by the methods of Ridolfi and Renzulli (2012)
270	(Supplementary Table 4). The pressures calculated by these two methods of the
271	same porphyry are relatively consistent within this study (Supplementary Fig 5).
272	The new temperature-independent Al-in amphibole geobarometer of Médard and
273	Le Pennec (2022) returns similar pressure ranges for ore-forming and barren
274	porphyries and suggests a shallower storage depths for the ore-forming magmas.
275	Overall, the melt H_2O contents of ore-forming porphyries (4.2–6.3 wt% with
276	uncertainties \pm 0.78 wt%) are slightly lower than those of barren porphyries (4.0–

277	8.1 wt% with uncertainties \pm 0.78 wt%) by the methods of Ridolfi and Renzulli
278	(2012) (Figure 3; Supplementary Table 2). These results are also cosistent with
279	the melt H ₂ O contents calculated using feldspar-liquid hygrometer (Putirka,
280	2008), except for Beiya ore-forming porphyry (Supplementary Fig 6, Table 3).
281	The higher melt H ₂ O contents and temperatures calculated by plagioclase-liquid
282	in the Beiya porphyry may indicate the physical and compositional conditions for
283	the early crystallization of plagioclases, while the lower melt H_2O contents and
284	temperatures calculated by amphibole-only represent the conditions for the later
285	stage of magma evolution with the crystallization of amphiboles.
286	
287	Discussion
288	Modelling fractionation and fluid saturation
289	According to the different pressures and temperatures estimated by amphiboles
290	from ore-forming and barren porphyries in Sanjiang metallogenic belt, the
291	evolutions of ore-forming and barren magmas have been modeled, over the
292	pressure of 1.2 Kbar (corresponding to ore-forming magmas) and 3 Kbar (for
293	barren magmas) by the Rhyolite-MELTS thermodynamic software (Gualda et al.,
294	2012). Because these magmas are attributed to the partial melting of a thickened
295	juvenile lower crust (Figure 3a; Supplementary Figure 1, 2; Lu et al., 2013a,
296	2013b; He et al., 2015; Hou et al., 2017; Huang et al., 2019; Wang et al., 2022),
297	the melt composition from partial melting experiments on a synthetic has been
200	
290	used as the starting composition, which is close to the average lower continental

300	run at the Ni-NiO buffer and with H_2O concentration of 4 wt% according to the
301	results calculated by amphibole compositions (Figure 3c, 4b), and were also the
302	best ones reproducing the stable phase assemblages observed in ore-forming and
303	barren porphyries (Figure 3a; Lu et al., 2013a, 2013b; He et al., 2015; Huang et
304	al., 2019; Wang et al., 2022).
305	The model results confirm the crystallization sequence: plagioclase (~980°C) $+$
306	amphibole (~920°C) + quartz (~760°C) + biotite (~750°C) + apatite
307	(~730°C) + K-feldspar (~740°C) at 1.2 Kbar, and plagioclase (~970°C) +
308	amphibole (~910°C) + quartz (~800°C) + biotite (~780°C) + apatite
309	(~760°C) at 3 Kbar (Figure 5a). These match the observed phase assemblage in
310	ore-forming and barren porphyries. Apatites arrive on the liquidus as a late
311	phenocryst phase at both 1.2 and 3 Kbar, which is consistent with the high SiO_2
312	contents of the melt inclusions trapped by apatites in Yulong porphyries (Chang et
313	al., 2018). During fractionation, modeled melt MgO contents have similar
314	variation characteristics at 1.2 and 3 Kbar, which decrease when amphiboles
315	arrive on the liquidus (Figure 5a). Pressures greatly affect the behaviors of
316	dissolved H ₂ O contents. At 3 Kbar, modeled melt H ₂ O contents increase from the
317	beginning to 6.9 wt% before fluid saturation is achieved at ~50% crystallization,
318	whereas the fluid saturation is achieved much earlier at \sim 7% crystallization, with
319	melt H_2O contents around 4 wt% at 1.2 Kbar (Figure 3c; 5a). We have also
320	modeled sulfide saturation processes at 1.2 and 3 Kbar with initial S concentration
321	~100 ppm (Smythe et al., 2017; Yao and Mungall, 2020). The saturation
322	conditions occur at 15% crystallization, and the modeled melt S contents decrease

323	with fractionation at both 1.2 and 3 Kbar. Pressures affect the modeled down-
324	temperature S evolution of the melt, that the melt S contents at 3 Kbar are a bit
325	higher than those at 1.2 Kbar after S saturation is achieved (Figure 5a).
326	
327	Fluid enrichment and degassing of ore-forming and barren magmas
328	The crystallization pressures and temperatures calculated by amphibole from ore-
329	forming porphyries (pink trend; 0.39–1.56 Kbar; 680–831 °C) are lower than
330	those of barren porphyries (gray trend; 0.97–4.35 Kbar; 739–940 °C; Figure 4c
331	and d), suggesting that amphibole crystallization in ore-forming magmas (with
332	lower crystallization pressure conditions) is relatively later than that in barren
333	magmas. These are consistent with the thermodynamic modelling, that modeled
334	melt amphiboles arriving on the liquidus at 3 Kbar is earlier than that at 1.2 Kbar
335	(Figure 5a, 6a and c).
336	During crystallization process with H ₂ O-undersaturation, Cl/OH ratios of the
337	melts $[(Cl/OH)_m]$ will decrease with increasing H ₂ O contents of melts, whereas
338	(Cl/OH) _m and H ₂ O contents of melts could decrease together under H ₂ O-
339	saturation condition, according to the experimental exchange partition coefficient
340	of Cl/OH and Cl/H ₂ O ratios between fluid and melt (Sato et al., 2005). In the
341	Sanjiang metallogenic belt, though the (Cl/OH) _m decrease through cooling
342	process within both ore-forming and barren magmas (Figure 4c), H_2O contents of
343	the ore-forming magmas first increase then decrease with the falling of $(Cl/OH)_m$
344	as revealed by amphiboles (Figure $4b$). Conversely, H ₂ O contents of the barren
345	magmas are characterized by rising consistently, lacking of falling in H ₂ O

346	contents (Figure 4b). These features indicate that H_2O contents were enriched in
347	both of the ore-forming and barren magmas during the processes of amphibole
348	crystallization. However, H ₂ O saturation did not occur within the barren magmas,
349	while the ore-forming magmas experienced obvious $\mathrm{H}_2\mathrm{O}$ saturation and degassing
350	processes. According to the thermodynamic modelling, amphibole crystallization
351	occurs at relatively early stages of magmatic evolution at both 1.2 and 3 Kbar (Fig
352	5a and 6a, c). Amphiboles could record the degassing processes of most of the
353	ore-forming magmas, while the degassing processes of some ore-forming magmas
354	(such as Yao'an) are not recorded by amphiboles, due to degassing processes
355	taking place after amphibole crystallization instead of there being no degassing
356	processes.
357	The obvious changes of F, Cl and OH contents of apatites indicate that they may
358	have higher potential to record degassing processes than amphiboles. That is, the
359	crystallization of apatites could be at later magmatic fractionation stage, which is
360	consistent with the results of thermodynamic modelling (Fig 5a and 6a–d;
361	Supplementary Figure 4c). Together with their application to elucidate the volatile
362	contents of melts (Stock et al., 2016; 2018), models can be built to estimate the
363	evolution of melt volatile composition, relying on apatite-melt exchange
364	coefficients (K) between F–OH and Cl–OH. Decreasing in $X_{\text{F}}/X_{\text{Cl}}$ and $X_{\text{F}}/X_{\text{OH}}$
365	with the falling of X_{Cl}/X_{OH} ratios for apatites should represent H_2O -
366	undersaturated crystallization, when the order of crystal-melt partition
367	coefficients from high to low is F, Cl and H ₂ O. In contrast, H ₂ O-saturation
368	crystallization could be characterized by a strong decrease in apatite X_{Cl}/X_{OH} ,

369	with increasing X_F/X_{Cl} ratios (Figure 7a, b; Supplementary Figure 4c), owing to
370	much higher fluid-melt partition coefficients for Cl than those for F (Webster et
371	al., 2014). Therefore, as shown in Figure 7, a modal represents $\sim 50\%$
372	crystallization at H_2O -undersaturated conditions starting from 4 wt% H_2O content
373	(according to our Rhyolite-MELTS thermodynamic modelling; the initial melt Cl
374	and F concentrations are set at 0.4 wt % and 0.15 %, based on the melt inclusion
375	data from the Sanjiang porphyries; Chang et al., 2023b), with crystal-melt
376	partition coefficients Dc/m F \approx 0.99, Dc/m Cl \approx 0.9 and Dc/m OH \approx 0.01. During
377	the next differentiation under fluid-saturation conditions to 90% crystallization,
378	there are three trajectories of apatite compositional evolution, which show
379	gradually increasing X_F/X_{Cl} and X_F/X_{OH} ratios, indicating an increased degree of
380	fluid degassing. The fluid–melt partition coefficient has been set as Df/m $F\approx 0.9$
381	and Df/m Cl \approx 35, consistent with alkali melt–fluid halogen partitioning
382	experiments under magmatic conditions (Figure 7a, b; e.g., Borodulin et al., 2009;
383	Hsu et al., 2019).
384	Much higher X_F/X_{Cl} and lower X_{Cl}/X_{OH} ratios of apatites from ore-forming
385	porphyries suggest that the ore-forming magma crystallization were reached H ₂ O-
386	saturation and degassed extensive fluids during magmatic evolution (Figure 7a),
387	according to the apatite thermodynamic modelling. The H ₂ O contents calculated
388	by amphiboles from ore-forming porphyries are decreasing with increase of
389	apatite X_F/X_{Cl} ratios, which further restricts the fluid degassing of ore-forming
390	magmas (Figure 8b). The fluid saturation and degassing processes will be greatly
391	affected by the magma storage depths, because pressure is the most important

392	variable controlling the solubility of H_2O (e.g., Zhang et al., 1999; Ghiorso and
393	Gualda, 2015; Collins et al., 2020). The lower crystallization pressures (shallower
394	storage depths) of ore-forming magmas estimated by amphiboles indicate lower
395	H_2O solubility (easier to reach H_2O saturation) of them (Figure 3b), which also
396	concurs with the features of apatites, amphiboles and our Rhyolite-MELTS
397	modelling (Figure 4d; 5a).
398	Very low X_{Cl}/X_{OH} ratios of apatites from ore-forming porphyries are consistent
399	with sufficient isobaric H_2O -saturated fractionation at high Df/m Cl, where Cl is
400	efficiently extracted from the melt into the extensive fluid phase. The ratios of
401	X_F/X_{OH} , however, remain relatively low throughout this isobaric crystallization
402	process according to no H_2O loss (Figure 7b; Stock et al., 2018). Under the
403	following polybaric H ₂ O-saturation fractionation, which is a fast process with
404	violent H ₂ O loss (fluid degassing) from shallow magma chambers, the $X_{\text{F}} / X_{\text{OH}}$
405	ratios of apatites from ore-forming porphyries then curve towards higher values
406	immediately, resulting in wide ranges of X_F/X_{OH} ratios (Figure 7b; 8c, d; Stock et
407	al., 2018). Low X_{Cl}/X_{OH} and wide ranges of X_F/X_{OH} and X_F/X_{Cl} ratios of apatites
408	and low crystallization pressures estimated by amphiboles, therefore, suggest that
409	the ore-forming magmas experienced focused extensive fluid degassing with
410	shallower storage depths of magma chambers.
411	Being different from ore-forming magmas, the barren magmas, with higher
412	crystallization pressures estimated by amphiboles (Figure 3a, b; Supplementary
413	Figure 5), show fluid enrichment during crystallization process at H ₂ O-

414 undersaturated conditions (gradual increase of H₂O contents with relatively low

415	X_F/X_{Cl} ratios of apatites; Figure 3c; 4b; 7a; 8a, b), followed by fluid exsolution
416	under isobaric H_2O -saturation condition (with no H_2O loss; continuous reduction
417	of X_{Cl}/X_{OH} with low X_F/X_{Cl} and X_F/X_{OH} ratios of apatites; Figure 7b).
418	
419	Mechanisms of fluid degassing within shallow magma chambers
420	The ore-forming and barren magmas experienced polybaric and isobaric H ₂ O-
421	saturation fractionation, respectively, according to the features of apatites and
422	amphiboles. However, the different ways of fluid degassing under H_2O -saturation
423	processes cannot be explained only by H2O solubility of melts according to
424	pressure conditions of magma chambers. Here, three different ways of fluid
425	degassing have been identified in the Sanjiang metallgenic belt according to
426	thermodynamic modelling (Figure 5b) and apatite and amphibole compositions
427	(Figure 5c–e), (1) by discrete bubbles that roughly account for a few percentages
428	of the total amount of fluid degassing, which could be recorded by the early
429	crystallized amphiboles characterized by decreasing $(Cl/OH)_m$ with increasing
430	H_2O contents (Figure 5e); (2) by permeable degassing via fluid channel formation
431	that contributes to about 40-50% of the degassing, which could be indicated by
432	high X_F/X_{Cl} and X_F/X_{OH} ratios of apatites. The together decreasing (Cl/OH) _m ratio
433	and H ₂ O contents calculated by some relatively late crystalline amphiboles can
434	also indicate this degassing stage (Figure 5c); and (3) degassing stops because
435	there is not enough fluid to form/stabilize connected pathways (bubbles remain
436	trapped in the mush), which could be recorded by the decreasing $X_{\mbox{Cl}}/X_{\mbox{OH}}$ with
437	low X_F/X_{OH} ratios of apatites, representing isobaric fluid exsolution (Figure 5d).

438	The storage depth of magmas play an important role in controlling the
439	mechanisms of fluid degassing. At 3 Kbar (~10 km in depth), the simulated melts
440	can achieve H_2O -saturation at ~41% crystal volume fractions (~50%
441	crystallization), and finally exsolves a large amount of fluids (~3.5 wt%), but all
442	the exsolved fluids belongs to the third stage which remain trapped in the mush
443	with no degassing (green region in Figure 5b). At 1.2 Kbar (~4 km in depth),
444	however, H ₂ O-saturation is achieved at very early stage with \sim 6% crystal volume
445	fractions (~7 wt% crystallization), and the degassing occurs through stage 1 and
446	stage 2 and finally to stage 3. Up to 3.4 wt% H_2O can be exsolved controlled by
447	discrete bubbles and fluid channel degassing processes (Figure 5b; Parmigiani et
448	al., 2017). Conclusively, shallower storage depths (for ore-forming magmas)
449	would enhance the amount of fluid degassing before the trapped bubbles stage.
450	However, the Yanyuan and Shigu exhibit shallow storage depths, similar to those
451	of the ore-forming magmas, showing weak or no fluid degassing (Figure 7a, b;
452	8b, d), which could be caused by the melts with relatively lower initial H_2O
453	contents.
454	The initial H ₂ O content of magmas may also play an important factor affecting
455	the mechanisms of fluid degassing (Chiaradia, 2020; Rezeau and Jagoutz, 2020).
456	The same starting compositions with different initial H_2O contents (1–7 wt%) at
457	1.2 and 3 Kbar have been modeled (Figure 6a, c). The model results confirm that
458	the crystallization sequences are similar with different initial H ₂ O contents. The
459	crystallization of quartz and plagioclase will be delayed and the process of H ₂ O-

460 saturation will be enormously advanced, with higher initial H₂O contents (Figure

476	Extensive focused fluid degassing driving the formation of porphyry deposits
475	
474	processes via the trapped bubbles stage.
473	storage depths and lower initial H_2O contents of magmas will block the degassing
472	undergo more intense fluid degassing through fluid channel stage. The deeper
471	contents can reach fluid saturation at earlier stages of crystallization processes and
470	Collectively, magmas with shallower storage depths and higher initial H_2O
469	amount of fluid degassing before the trapped bubbles stage.
468	6d). These results imply that higher initial H_2O contents would increase the
467	degas after ~87 wt% crystallization, if the initial H_2O content is 6 wt% (Figure
466	initial H_2O content is more than 4 wt%. ~80% fluid contents (4.8 wt%) are able to
465	(Figure 6b). In contrast, at 3 Kbar, degassing process cannot occur unless the
464	contents could undergo degassing process, if the initial H_2O content is 6 wt%
463	wt% crystallization, when the initial H ₂ O content is 4 wt%. Almost all fluid
462	than 2 wt% (Figure 6a, b). ~85% fluid contents (3.4 wt%) could degas after ~90
461	6a, c). At 1.2 Kbar, the initial H_2O content required for fluid degassing is greater

477 Cu, Au and S will effectively partition into the fluids due to similarly elevated

478 fluid/melt partition coefficients, which vary from 10 to 100, 2 to 100 and 20 to

479 280 (e.g., Zajacz et al., 2012; Audétat and Edmonds, 2020), respectively. Thus,

480 the effective fluid exsolution, which could carry a large amount of metals, plays a

481 primary role in the generation of PCDs. However, the barren porphyries in the

- 482 Sanjiang metallgenic belt (e.g., Weishan and Nangqian) also experienced H₂O
- 483 saturation processes with no porphyry mineralization, according to continuous

484 reduction of X_{CI}/X_{OH} with low X_F/X_{CI} and X_F/X_{OH} ratios of apatites (Figure 7a, 485 b). This is possibly caused by the lack of effective migration and focusing of the 486 exsolved fluids. The mechanisms of fluid degassing after exsolution within 487 magma chambers, therefore, may finally determine whether the porphyries have 488 the potential to form PCDs. 489 As shown above, the ore-forming magmas in the Sanjiang metallgenic belt 490 experienced focused extensive fluid degassing revealed by the features of apatites 491 and amphiboles. Shallower storage depths and higher initial H₂O contents of ore-492 forming magmas made the magmatic fluid exsolution occur at very early stage. In 493 consequence, these earlier exsolved fluids should enriched in Cu, Au and S, 494 because less fractionation of sulfides could occur before earlier fluid saturation, 495 leading to that higher proportion of those ore-forming elements can be extracted 496 from the melt by these earlier exsolved fluids (Figure 5a; Smythe et al., 2017). 497 Most of these exsolved fluids could migrate efficiently through fluid channel 498 stage. Meanwhile, for the ore-forming magmas with shallow storage depths, it is 499 easy to form a stable tube ring network, a particularly efficient fluid transport 500 pathway (Oppenheimer et al., 2015; Edmonds and Woods, 2018; Lamy-Chappuis 501 et al., 2020). This stable tube ring network will establish within the magma 502 chambers close to H₂O saturation at the early stage of crystallization processes, 503 requiring relatively low initial H₂O contents (Figure 9b). Fluid exsolution of the 504 entire ore-forming magmas took place mainly through fluid channel stage and 505 laterally focused fluids flowed through the tube ring, and then focused degassed 506 from spatially stable small region in the roof of the magma chambers, which is

507 consistent with wide ranges of X_F/X_{OH} and low X_{CI}/X_{OH} ratios of apatites (Figure

508 **9b**). The metal sulfides were settled in relatively small volume rocks accordingly

509 (porphyry mineralization) at the end.

510 Conversely, the barren magmas with deep storage depths could also undergo fluid 511 saturation (Figure 9c, d), which occurred at late stage of crystallization processes. 512 Most of the exsolved fluids would be trapped within the magma chambers at 513 trapped bubbles stage. Even if the storage depths of the barren magmas from 514 Yanyuan and Shigu are shallow, their low initial H₂O contents (less than 2 wt%, 515 according to our thermodynamic modelling with different initial H₂O contents; 516 Figure 6b) blocked the migration of exsolved fluids (mainly at trapped bubbles 517 stage; Figure 6b; 9a). It is also difficult to form an integral tube ring network for 518 the barren magmas with deep storage depths and/or low initial H₂O contents 519 (Figure 9a, c, d). Fluid degassing within the barren magma chambers is weaker, 520 more radial and diffusive, recorded by slight increase in X_F/X_{OH} with low 521 X_{CI}/X_{OH} ratios of apatites (as in Shigu and Weishan barren magma chambers; Fig. 522 9a, d), or there is no degassing at all, revealed by declining of X_{CI}/X_{OH} with low 523 X_F/X_{OH} ratios of apatites (Figure 9c). Without or with limited magmatic fluid 524 degassing, the ore-forming elements cannot be effectively focused and migrated 525 from the magma chambers, resulting in no porphyry mineralization. 526 Magmatic fluid degassing processes bridge the magmatic and hydrothermal 527 systems of PCDs, during magma ascent and storage in the upper crust with 528 cooling and crystallization at a fixed pressure (e.g., Parmigiani et al., 2016, 2017). 529 In the Sanjiang metallgenic belt, only magmas with shallow storage depths

530 (commonly less than ~5 km) and relatively high initial H_2O contents (at least ~2 531 wt%) allow effective migration, focusing and degassing processes of metal-rich 532 exsolved fluids, which are pre-requisites to the precipitation of metal sulphides 533 within a relatively small volume of rock, the final step in the formation of PCDs. 534

535

Implications for exploration

536 The mineral geochemical data and thermodynamic modelling presented here 537 allow us to shed light on the control of the mechanisms of fluid degassing within 538 shallow magma chambers on the formation of PCDs. This multiscale approach 539 reveals that only if H₂O-saturation is achieved at the early stage of magmatic 540 evolution, the exsolved fluids carrying ore-forming elements can migrate 541 efficiently through fluid channel stage, focus through the tube ring and degas 542 from spatially small region in the roof of shallow magma chambers. Magmas with 543 shallower storage depths and higher initial H₂O contents can reach fluid saturation 544 at earlier stages of crystallization processes and allow more substantial focused 545 degassing, leading to significant ore-forming elements focusing and the formation 546 of PCDs. Conversely, deeper storage depths and lower initial H₂O contents can be 547 more prone to a late-stage fluid exsolution where fluids remain trapped in the 548 mush with no degassing. 549 The combination of apatite, amphibole and plagioclase analyses and 550 thermodynamic modelling represents a robust approach for assessing the

- 551 mechanisms of fluid degassing in the upper crust, which could reveal the
- transformation processes from magmatic systems to hydrothermal systems. This

553	approach can significantly advance our understanding of the ore-forming
554	processes of PCDs, which can be an effective exploration tool to reveal the
555	degassing processes of magmas and the optimal storage depths conducive to
556	porphyry mineralization, and thus to identify prospective buried PCDs.
557	
558	Acknowledgments
559	We would like to express our gratitude to Peiyan Xu, Siqi Liu, Qiang Fu, and
560	Xiaoyan Zhao for their assistance during fieldwork and valuable discussions. This
561	work was supported by the National Key Research and Development Program of
562	China (grant numbers 2019YFA0708602, 2016YFC0600310); the National
563	Natural Science Foundation of China (grant numbers 42202081, 42022014,
564	41872083); "Deep-Time Digital Earth", Science and Technology Leading Talents
565	Team Funds for the Frontiers Science Center for Deep-Time Digital Earth, China
566	University of Geosciences (Bejing; grant 2652023001) and the China
567	Fundamental Research Funds for the Central Universities (grant numbers
568	53200859424). We would also like to express our appreciation to editor Julie
569	Roberge and two anonymous reviewers for their constructive feedback, which
570	significantly improved the quality of our manuscript.
571	
572	References cited
573	Anderson, J.L., Barth, A.P., Wooden, J.L., and Mazdab, F. (2008). Thermometers
574	and thermobarometers in granitic systems. Reviews in mineralogy and
575	geochemistry, 69(1), 121-142.

- 576 Annen, C., Blundy, J.D., and Sparks, R.S.J. (2006). The genesis of intermediate
- 577 and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3), 505–
- 578 539.
- 579 Audétat, A., and Edmonds, M. (2020). Magmatic-hydrothermal fluids. Elements:
- 580 An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(6),
- 581 401–406.
- 582 Bi, X.W., Hu, R.Z., Hanley, J.J., Mungall, J.E., Peng, J.T., Shang, L.B., Wu, K.X.,
- 583 Suang, Y., L, H.L., and Hu, X.Y. (2009). Crystallisation conditions (t, p, fO₂)
- from mineral chemistry of Cu- and Au-mineralised alkaline intrusions in the Red
- 585 River–Jinshajiang alkaline igneous belt, western Yunnan province, china.
- 586 Mineralogy & Petrology, 96(1–2), 43.
- 587 Borodulin, G.P., Chevychelov, V.Y., and Zaraysky, G.P. (2009). Experimental
- 588 study of partitioning of tantalum, niobium, manganese, and fluorine between
- 589 aqueous fluoride fluid and granitic and alkaline melts. Doklady Earth Sciences,
- 590 427, 868–873.
- 591 Chang, J. and Audétat, A. (2023a) Post-subduction porphyry Cu magmas in the
- 592 Sanjiang region of southwestern China formed by fractionation of lithospheric
- 593 mantle-derived mafic magmas. Geology, 51(1), 64–68.
- 594 Chang, J. and Audétat, A. (2023b). Experimental Equilibrium and Fractional
- 595 Crystallization of a H₂O, CO₂, Cl, and S-bearing Potassic Mafic Magma at 1.0
- 596 GPa, with Implications for the Origin of Porphyry Cu (Au, Mo)-forming Potassic
- 597 Magmas. Journal of Petrology, egad034.
- 598 Chiaradia, M. (2020). Gold endowments of porphyry deposits controlled by

- 599 precipitation efficiency. Nature Communications, 11(1), 248.
- 600 Chang, J., Li, J.W., and Audétat, A. (2018). Formation and evolution of
- 601 multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo
- 602 deposit, eastern Tibet: Insights from LA–ICP–MS analysis of fluid inclusions.
- 603 Geochimica et Cosmochimica Acta, 232, 181–205.
- 604 Chelle-Michou, C., Chiaradia, M., Beguelin, P., and Ulianov, A. (2015).
- 605 Petrological evolution of the magmatic suite associated with the Coroccohuayco
- 606 Cu (-Au-Fe) Porphyry-skarn deposit, Peru. Journal of Petrology, 56(9), 1829-
- 607 1862.
- 608 Chelle-Michou, C., Rottier, B., Caricchi, L., and Simpson, G. (2017). Tempo of
- magma degassing and the genesis of porphyry copper deposits. Scientific reports,

610 7(1), 1–12.

- 611 Cline, J.S., and Bodnar, R.J. 1991. Can economic porphyry copper mineralization
- 612 be generated by a typical calc-alkaline melt?. Journal of Geophysical Research:
- 613 Solid Earth, 96(B5), 8113-8126.
- 614 Collins, W.J., Murphy, J.B., Johnson, T.E., and Huang, H.Q. (2020). Critical role
- of water in the formation of continental crust. Nature Geoscience, 13(5), 331–338.
- 616 Degruyter, W., Parmigiani, A., Huber, C., and Bachmann, O. (2019). How do
- 617 volatiles escape their shallow magmatic hearth? Philosophical Transactions.
- 618 Series A, Mathematical, Physical, and Engineering Sciences, 377(2139),
- 619 20180017.
- 620 Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A. (2007).
- 621 Amphibole "sponge" in arc crust?. Geology, 35(9), 787–790.

- 622 Deng, J., Wang, Q.F., Li, G.J., and Santosh, M. (2014). Cenozoic tectono-
- 623 magmatic and metallogenic processes in the Sanjiang region, southwestern China.
- 624 Earth-Science Reviews, 138, 268–299.
- 625 Deng, J., Wang, Q.F., Gao, L., He, W.Y., Yang, Z.Y., Zhang, S.H., Chang, L.J.,
- 626 Li, G.J., Sun, X., and Zhou, D.Q. (2021). Differential crustal rotation and its
- 627 control on giant ore clusters along the eastern margin of Tibet. Geology, 49(4),
- 628 428–432.
- 629 Edmonds, M., and Woods, A.W. (2018). Exsolved volatiles in magma reservoirs.
- 630 Journal of Volcanology and Geothermal Research, 368, 13–30.
- 631 Erdmann, S., Martel, C., Pichavant, M., and Kushnir, A. (2014). Amphibole as an
- 632 archivist of magmatic crystallization conditions: problems, potential, and
- 633 implications for inferring magma storage prior to the paroxysmal 2010 eruption of
- Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167, 1–23.
- 635 Ghiorso, M.S., and Gualda, G.A. (2015). An H₂O–CO₂ mixed fluid saturation
- 636 model compatible with rhyolite-MELTS. Contributions to Mineralogy and
- 637 Petrology, 169(6), 1–30.
- 638 Gorini, A., Ridolfi, F., Piscaglia, F., Taussi, M., and Renzulli, A. (2018).
- 639 Application and reliability of calcic amphibole thermobarometry as inferred from
- 640 calc-alkaline products of active geothermal areas in the Andes. Journal of
- 641 Volcanology and geothermal Research, 358, 58–76.
- 642 Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L. (2012). Rhyolite-
- 643 MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing
- magmatic systems. Journal of Petrology, 53(5), 875–890.

- 645 He, W.Y., Mo, X.X., He, Z.H., White, N.C., Chen, J.B., Yang, K.H., Wang, R.,
- 646 Yu, X.H., Dong, G.C., and Huang, X.F. (2015). The geology and mineralogy of
- 647 the Beiya skarn gold depposit in Yunnan, southwest China. Economic Geology,
- 648 110, 1625–1641.
- Hou, Z.Q., Zhou, Y., Wang, R., Zheng, Y.C., He, W.Y., Zhao, M., Evans, N.J.,
- and Weinberg, R.F. (2017). Recycling of metal-fertilized lower continental crust:
- 651 Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 45(6),
- 652 563–566.
- Hou, Z.Q., Xu, B., Zheng, Y.C., Zheng, H.W., and Zhang, H.R. (2021) Mantle
- flow: The deep mechanism of large-scale growth in Tibetan Plateau. Chinese
- 655 Science Bulletin, 66, 2671–2690 (in Chinese with English abstract).
- Hsu, Y.J., Zajacz, Z., Ulmer, P., and Heinrich, C.A. (2019). Chlorine partitioning
- between granitic melt and H₂O–CO₂–NaCl fluids in the Earth's upper crust and
- 658 implications for magmatic-hydrothermal ore genesis. Geochimica et
- 659 Cosmochimica Acta, 261, 171–190.
- 660 Huang, M.L., Bi, X.W., Hu, R.Z., Gao, J.F., Xu, L.L., Zhu, J.J., and Shang, L.B.
- 661 (2019). Geochemistry, in-situ Sr–Nd–Hf–O isotopes, and mineralogical
- 662 constraints on origin and magmatic-hydrothermal evolution of the Yulong
- 663 porphyry Cu-Mo deposit, Eastern Tibet. Gondwana Research, 76, 98–114.
- Humphreys, M.C.S., Edmonds, M., Christopher, T., and Hards, V. (2009).
- 665 Chlorine variations in the magma of Soufrière Hills Volcano, Montserrat: Insights
- 666 from Cl in hornblende and melt inclusions. Geochimica et Cosmochimica Acta,
- 667 73(19), 5693–5708.

- 668 Iacono-Marziano, G., Morizet, Y., Le Trong, E., and Gaillard, F. (2012). New
- 669 experimental data and semi-empirical parameterization of H₂O–CO₂ solubility in
- 670 mafic melts. Geochimica et Cosmochimica Acta, 97, 1–23.
- Jiang, Y.H., Jiang, S.Y., Ling, H.F., Dai, B.Z. (2006). Low-degree melting of a
- 672 metasomatized lithospheric mantle for the origin of Cenozoic Yulong
- 673 monzogranite-porphyry, east Tibet: geochemical and Sr–Nd–Pb–Hf isotopic
- 674 constraints. Earth and Planetary Science Letters, 241(3-4), 617–633.
- 675 Lamy-Chappuis, B., Heinrich, C.A., Driesner, T., and Weis, P. (2020).
- 676 Mechanisms and patterns of magmatic fluid transport in cooling hydrous
- 677 intrusions. Earth and Planetary Science Letters, 535, 116111.
- 678 Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Charles Gilbert, M., Grice,
- J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K.,
- 680 Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S.,
- 681 Schumacher, J.C., Simith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker,
- E.J.W., and Guo, Y.Z. (1997). Nomenclature of amphiboles; report of the
- 683 Subcommittee on Amphiboles of the International Mineralogical Association
- 684 Commission on new minerals and mineral names. The Canadian Mineralogist,
- 685 35(1), 219–246.
- Lu, Y.J., Kerrich, R., Mccuaig, T.C., Li, Z.X., Hart, C.J., Cawood, P.A., Hou,
- 687 Z.Q., Bagas, L., Cliff, J., Belousova, E.A., and Tang, S.H. (2013a). Geochemical,
- 688 Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene
- shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW
- 690 China: petrogenesis and tectonic implications. Journal of Petrology, 54(7), 1309–

691 1348.

- Lu, Y.J., Kerrich, R., Kemp, A.I., McCuaig, T.C., Hou, Z.Q., Hart, C.J., Li, Z.X.,
- 693 Cawood, P.A., Bagas, L., Yang, Z.M., Cliff, J., Belousova, E.A., Jourdan, F., and
- 694 Evans, N.J. (2013b). Intracontinental Eocene–Oligocene porphyry Cu mineral
- 695 systems of Yunnan, western Yangtze Craton, China: compositional
- 696 characteristics, sources, and implications for continental collision metallogeny.
- 697 Economic Geology, 108(7), 1541–1576.
- Macpherson, C.G. (2008). Lithosphere erosion and crustal growth in subduction
- zones: Insights from initiation of the nascent East Philippine Arc. Geology, 36(4),
- 700 311–314.
- 701 Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E.,
- 702 Godin, L., Han, J.T., Liebke, U., Oliver, G., Parrish, R., and Vezzoli, G. (2010).
- 703 Timing of India–Asia collision: Geological, biostratigraphic, and palaeomagnetic
- constraints. Journal of Geophysical Research: Solid Earth, 115, B12.
- Newman, S., and Lowenstern, J.B. (2002). VolatileCalc: a silicate melt–H₂O–CO₂
- solution model written in Visual Basic for excel. Computers & Geosciences,
- 707 28(5), 597–604.
- 708 Oppenheimer, J., Rust, A.C., Cashman, K.V., and Sandnes, B. (2015). Gas
- 709 migration regimes and outgassing in particle-rich suspensions. Frontiers in
- 710 Physics, 3, 60.
- 711 Papale, P., Moretti, R., and Barbato, D. (2006). The compositional dependence of
- 712 the saturation surface of $H_2O + CO_2$ fluids in silicate melts. Chemical Geology,
- 713 229(1–3), 78–95.

- 714 Parmigiani, A., Faroughi, S., Huber, C., Bachmann, O., and Su, Y. (2016). Bubble
- accumulation and its role in the evolution of magma reservoirs in the upper crust.
- 716 Nature, 532 (7600), 492–495.
- 717 Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C., and Bachmann, O. (2017).
- 718 The mechanics of shallow magma reservoir outgassing. Geochemistry,
- 719 Geophysics, Geosystems, 18(8), 2887–2905.
- 720 Piccoli, P.M., and Candela, P.A. (2002). Apatite in igneous systems. Reviews in
- 721 Mineralogy and Geochemistry, 48(1), 255–292.
- Popa, R.G., Tollan, P., Bachmann, O., Schenker, V., Ellis, B., and Allaz, J. M.
- 723 (2021). Water exsolution in the magma chamber favors effusive eruptions:
- 724 Application of Cl–F partitioning behavior at the Nisyros–Yali volcanic area.
- 725 Chemical Geology, 570, 120170.
- 726 Putirka, K.D. (2008). Thermometers and barometers for volcanic systems.
- Reviews in mineralogy and geochemistry, 69(1), 61–120.
- 728 Putirka, K.D. (2016). Amphibole thermometers and barometers for igneous
- systems and some implications for eruption mechanisms of felsic magmas at arc
- volcanoes. American Mineralogist, 101(4), 841–858.
- 731 Qian, Q., and Hermann, J. (2013). Partial melting of lower crust at 10–15 kbar:
- 732 constraints on adakite and TTG formation. Contributions to Mineralogy and
- 733 Petrology, 165(6), 1195–1224.
- Rezeau, H., and Jagoutz, O. (2020). The importance of H2O in arc magmas for
- the formation of porphyry Cu deposits. Ore Geology Reviews, 126, 103744.
- Richards, J.P. (2018). A shake-up in the porphyry world?. Economic Geology,

- 737 113(6), 1225–1233.
- 738 Ridolfi, F., and Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and
- alkaline magmas: thermobarometric and chemometric empirical equations valid
- vu to 1,130 °C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163(5),
- 741 877–895.
- 742 Ridolfi, F., Zanetti, A., Renzulli, A., Perugini, D., Holtz, F., Oberti, R. (2018).
- AMFORM, a new mass-based model for the calculation of the unit formula of
- amphiboles from electron microprobe analyses. American Mineralogist: Journal
- of Earth and Planetary Materials, 103(7), 1112–1125.
- 746 Sato, H., Holtz, F., Behrens, H., Botcharnikov, R., and Nakada, S. (2005).
- Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part II: Cl/OH
- partitioning between hornblende and melt and its implications for the origin of
- oscillatory zoning of hornblende phenocrysts. Journal of Petrology, 46(2), 339-
- 750 354.
- 51 Shen, Y., Zheng, Y.C., Hou, Z.Q., Zhang, A.P., Huizenga, J.M., Wang, Z.X., and
- 752 Wang, L. (2021). Petrology of the Machangqing complex in Southeastern Tibet:
- 753 implications for the genesis of potassium-rich adakite-like intrusions in collisional
- zones. Journal of Petrology, 62(11), egab066.
- 755 Sillitoe, R.H. (2010). Porphyry copper systems. Economic geology, 105, 3–41.
- 756 Smythe, D.J., Wood, B.J., and Kiseeva, E.S. (2017). The S content of silicate
- 757 melts at sulfide saturation: new experiments and a model incorporating the effects
- of sulfide composition. American Mineralogist, 102(4), 795–803.
- 759 Stock, M.J., Humphreys, M.C., Smith, V.C., Isaia, R., and Pyle, D.M. (2016).

- 760 Late-stage volatile saturation as a potential trigger for explosive volcanic
- reuptions. Nature Geoscience, 9, 249–254.
- 762 Médard, E., and Le Pennec, J.L. (2022). Petrologic imaging of the magma
- reservoirs that feed large silicic eruptions. Lithos, 428, 106812.
- 764 Stock, M.J., Humphreys, M.C., Smith, V.C., Isaia, R., Brooker, R.A., and Pyle,
- 765 D.M. (2018). Tracking volatile behaviour in sub-volcanic plumbing systems using
- apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy.
- 767 Journal of Petrology, 59(12), 2463–2492.
- 768 Tapponnier, P., Peltzer, G.L.D.A.Y., Le Dain, A.Y., Armijo, R., and Cobbold, P.
- 769 (1982). Propagating extrusion tectonics in Asia: New insights from simple
- experiments with plasticine. Geology, 10, 611–616.
- 771 Walker, B.A., Klemetti, E.W., Grunder, A.L., Dilles, J.H., Tepley, F.J., and Giles,
- D. (2013). Crystal reaming during the assembly, maturation, and waning of an
- eleven-million-year crustal magma cycle: thermobarometry of the Aucanquilcha
- Volcanic Cluster. Contributions to Mineralogy and Petrology, 165, 663–682.
- Wang, Z.X., Zheng, Y.C., Xu, B., Hou, Z.Q., Zhang, A.P., Shen, Y., Ma, R., Wu,
- 776 C.D., and Xu, P.Y. (2022). Hydrous Juvenile Lower Crust at the Western Yangtze
- 777 Craton Margin as the Main Source of the Beiya Porphyry–skarn Au Deposit. Acta
- 778 Geologica Sinica–English Edition, 96(3), 972–992.
- 779 Webster, J.D., Goldoff, B., Sintoni, M.F., Shimizu, N., and De Vivo, B. (2014).
- 780 C–O–H–Cl–S–F volatile solubilities, partitioning, and mixing in phonolitic–
- trachytic melts and aqueous–carbonic vapor ± saline liquid at 200 MPa. Journal of
- 782 Petrology, 55, 2217–2248.

- 783 Xu, B., Hou, Z.Q., Griffin, W.L., Zheng, Y.C., Wang, T., Guo, Z., Hou, J.,
- Santosh, M., and O'Reilly, S.Y. (2021). Cenozoic lithospheric architecture and
- metallogenesis in Southeastern Tibet. Earth-Science Reviews, 214, 103472.
- 786 Yao, Z., and Mungall, J.E. (2020). Flotation mechanism of sulphide melt on
- vapour bubbles in partially molten magmatic systems. Earth and Planetary
- 788 Science Letters, 542, 116298.
- 789 Zajacz, Z., Candela, P.A., Piccoli, P.M., and Sanchez-Valle, C. (2012). The
- partitioning of sulfur and chlorine between andesite melts and magmatic volatiles
- and the exchange coefficients of major cations. Geochimica et Cosmochimica
- 792 Acta, 89, 81–101.
- 793 Zhang, Y., 1999. H₂O in rhyolitic glasses and melts: measurement, speciation,
- solubility, and diffusion. Reviews of Geophysics, 37(4): 493–516.

Figure 1. Topographic-geological map of the eastern Indian–Asian collisional
zone (Xu et al., 2021). The thick gray dotted line is Jinshajiang–Ailaoshan suture
(JAS), and the gray continuous line is Indus–Tsangpo suture. The PCDs are
shown as red hammers, including the giant Yulong (age of 43–37 Ma), giant
Beiya (age of 36–34 Ma), medium Machangqing (age of 36–34 Ma) and medium

- 802 Yao'an (age of 33 Ma; Lu et al., 2013b; Huang et al., 2019). The barren
- 803 porphyries along JAS are shown in orange. The black lines represent Cenozoic

- 804 faults (SGF: Sagaing fault; GLGF: Gaoligong fault; XSHF: Xianshuihe fault;
- 805 RRF: Red-River fault; XJF: Xiaojiang faults; LMT: Longenshan thrust fault;
- 806 KLF: Kunlun fault).

808

Figure 2. a–g, Photomicrographs of ore-forming and barren adakite-like

810 porphyries in Sanjiang metallogenic belt. **h and i,** Backscattered-electron (BSE)

- 811 images showing altered amphibole phenocryst (h) and amphibole phenocryst with
- 812 no hydrothermal alteration (i). j and k, Backscattered-electron (BSE) images

- 813 showing apatite microphenocryst (j) and apatite inclusions (k). l,
- 814 Cathodoluminescence (CL) images of apatite from ore-forming and barren
- 815 adakite-like porphyries. Qtz, quartz; Kfs, K-feldspar; Pl, plagioclase; Bt, biotite;
- 816 Am, amphibole; Ap, apatite.

819 **Figure 3.** a. The calculated P–T conditions for the adakite-like porphyries in 820 Sanjiang metallogenic belt. Cross bars indicate the P-T uncertainties (Ridolfi and 821 Renzulli, 2012). Liquidus and near liquidus fields for amphibole, garnet, 822 clinopyroxene are delineated with black solid lines, labelled on their unstable side 823 (Annen et al., 2006). The field of residual garnet amphibolite is shaded. The blue 824 P-T path for partial melting of thickened juvenile lower crust (residual garnet 825 amphibolite; Annen et al., 2006), according to regional tectonic background of 826 Sanjiang region (Hou et al., 2017). The wet granite solidus line and wet basalt 827 liquidus line are delineated with black solid line and dashed line, respectively 828 (Collins et al., 2020). The steep grey dashed lines are undersaturated liquidus 829 (with wt% H₂O labelled) and the subhorizontal dashed lines are H₂O solubility 830 limits (also labelled as H_2O saturated; Gualda et al., 2012; Collins et al., 2020). 831 The cordilleran geotherm is also shown. Abbreviations: Cpx, clinopyroxene; Am, 832 amphibole; Gt, garnet; Wgs, wet granite solidus. **b**, The calculated magma depth 833 vs. magmatic H₂O content for the adakite-like porphyries in Sanjiang 834 metallogenic belt. Cross bars indicate the P-H₂O uncertainties (Ridolfi and 835 Renzulli, 2012). The colored dashed line show the H₂O solubility curves from 836 different methods (Newman and Lowenstern, 2002; Papale et al., 2006; Iacono-

- Marziano et al., 2012; Ghiorso and Gualda, 2015). c, The calculated $T-H_2O$
- 838 conditions for the adakite-like porphyries in Sanjiang metallogenic belt. Cross
- bars indicate the T–H₂O uncertainties (Ridolfi and Renzulli, 2012). The thick
- 840 lines represent the melt compositional evolution modelling with 4% initial H₂O
- content at 1.2 Kbar (wathet dashed line) and 3 Kbar (blue dotted line),
- 842 respectively.
- 843

Figure 4. a, Test for equilibrium between amphibole and melt based on the Fe-

846 Mg exchange coefficient (K_D). K_D values in the range of 0.28 ± 0.11 (Putirka,

847 2016). **b–d**, The calculated melt Cl/OH–H₂O, Cl/OH–T and Cl/OH–P,

848 respectively. Melt Cl/OH is calculated by amphibole compositions according to

- 849 Sato et al. (2005). The pink and gray thick lines illustrate continuous variation
- trends of ore-forming and barren porphyries.

853 Figure 5a, Rhyolite-MELTS thermodynamic modelling for the ore-forming and 854 barren magmas in Sanjiang metallogenic belt. Summary of mineral phase and 855 extent of crystallization at 1.2 Kbar (black dashed line) and 3 Kbar (black dotted 856 line) for cooling and crystallizing. Residual melt MgO (gray) and H_2O (blue) are 857 shown at 1.2 Kbar (dashed lines) and 3 Kbar (dotted lines). The brown dashed and 858 dotted lines represent the trend of estimated sulfur concentration at sulphide 859 saturation (SCSS) at 1.2 Kbar and 3 Kbar, respectively. Meanwhile, the brown 860 continuous line traces the enrichment of sulfur within melts during magma 861 evolutions at 1.2 Kbar and 3 Kbar. Apatites have joined the crystallizing 862 assemblage before H_2O -saturation is achieved at both pressure conditions. **b**-e, 863 Models of fluid migration in shallow magma chambers according to Parmigiani et 864 al. (2017). The Bond number (Bo) is set as 0.5, which can describe the 865 competition between buoyancy and capillary stresses on fluid bubbles in the 866 hydrodynamics migration regime. The representative graphs around each model 867 illustrate how apatite and amphibole compositional trend relate to different fluid

- 868 migration processes. Black dots and squares represent the liquidus of apatite and
- 869 amphibole at different conditions, respectively.

872 **Figure 6a and c,** Isobaric T-H₂O pseudosection for the ore-forming and barren 873 magmas in Sanjiang metallogenic belt with different initial H₂O contents. These 874 phase diagrams are constructed at constant pressures (1.2 Kbar and 3 Kbar, 875 respectively) and shows the influence of different initial H₂O contents at 876 temperatures of 730–1050 °C. The thin dashed lines show calculated crystal 877 volume proportion. The thick dashed and dotted lines represent the boundary of 878 H₂O-saturation at 1.2 and 3 Kbar, respectively. The filled colors represent the 879 volumes of exsolved fluids. The thin continuous lines are the liquidus of minerals. 880 **b** and **d**, Models of fluid migration in shallow magma chambers with different 881 initial H₂O contents according to Parmigiani et al. (2017). Black dots and squares

- represent the liquidus of apatite and amphibole at different conditions,
- 883 respectively.
- 884

903

905 Figure 8. Box and whisker plots of volatile compositions of apatites and P-T-906 H₂O calculated by amphiboles from the adakite-like porphyries in Sanjiang 907 metallogenic belt. Boxes show first to third quartile range with bars showing 908 extremes of data (excluding any outliers). Long and short lines in box show 909 square and mean value, respectively. The points outside boxes represent their 910 extremum values. The thermodynamic modelling of apatite compositional 911 evolution as for Figure 6. The gray dashed lines (in **a**, **c**) are H₂O solubility limits 912 (Ghiorso and Gualda, 2015; Collins et al., 2020). The grey squares in the insets 913 show different data features between no/weak diffusive degassing and extensive 914 focused degassing processes. 915

917 Figure 9. Classification of magma crystallization, fluid migration and degassing 918 patterns as a function of magma storage depths and initial H₂O contents. Three 919 principal mechanisms of degassing process can be distinguished as follows. Fluid 920 exsolution starts at the late trapped bubble stage with no degassing (c); A small 921 amount of degassing with weak fluid migration, forming discontiguous tube ring, 922 and most of exsolved fluids are trapped according to high crystallization (a, d); 923 Extensive fluid exsolution with intense migration and degassing with no trapped 924 fluids, and the integral tube ring controlling focused degassing. Efficient focusing 925 of fluids through a narrow window and cooling across a steep thermal gradient, 926 could make sulphide mineral precipitation in a limited rock volume, creating rich 927 mineralization, and form PCDs. (b). The representative graphs on the left

- 928 illustrate how apatite and amphibole compositional trend relate to different
- 929 degassing processes.
- 930