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Abstract 21 

Analysis of optical microscopic image data is crucial for the identification and 22 

characterization of mineral phases, and thus directly relevant to the subsequent methodology 23 

selections of further detailed petrological exploration. Here we present a novel application of Swin 24 

Transformer, a deep learning algorithm to classify metal mineral phases such as arsenopyrite, 25 

chalcopyrite, gold, pyrite, and stibnite, in images captured by optical microscopy. To speed up the 26 

training process and improve the generalization capabilities of the investigated model, we adopt 27 

the “transfer learning” paradigm by pretraining the algorithm using a large, general-purpose, image 28 

dataset named ImageNet-1k. Further, we compare the performances of the Swin Transformer with 29 

those of two well-established Convolutional Neural Networks (CNNs) named MobileNetv2 and 30 

ResNet50, respectively. Our results highlight a maximum accuracy of 0.92 for the Swin 31 

Transformer, outperforming the CNNs. To provide an interpretation of the trained models, we 32 

apply the so-called Class Activation Map (CAM), which points to a strong global feature extraction 33 

ability of the Swin Transformer metal mineral classifier that focuses on distinctive (e.g., colors) 34 

and microstructural (e.g., edge shapes) features. The results demonstrate that the deep learning 35 

approach can accurately extract all available attributes, which reveals the potential to assist in data 36 

exploration and provides an opportunity to carry out spatial quantization at a large scale (cm-mm). 37 

Simultaneously, boosting the learning processes with pre-trained weights can accurately capture 38 

relevant attributes in mineral classification, revealing the potential for application in mineralogy 39 

and petrology, as well as enabling its use in resource explorations. 40 

 41 

Keywords: Swin Transformer metal mineral classifier; Microscopy images; Transfer learning; 42 

Deep learning; Class Activation Map  43 
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Introduction 44 

Petrographic studies at the microscopic scale and mineral identification constitute the 45 

fundamental step in many geological studies (e.g., igneous, metamorphic and sedimentary 46 

petrology or mineral exploration) and industrial productions (Schrader and Zega 2019; Deng et al. 47 

2020a; dos Anjos et al. 2021; Sheldrake and Higgins 2021; Azeuda Ndonfack et al. 2022). In 48 

petrographic investigations at microscopic scale, the first step mostly relies on optical microscopy 49 

involving the identification of mineral phases and textures (Su et al. 2020; Leichter et al. 2022; 50 

Faria et al. 2022; Qiu et al. 2023c). In recent years, optical microscopic observations are further 51 

supported by more advanced techniques, like electron-based imaging and X-ray techniques (Fu 52 

and Aldrich 2019). Meanwhile, many software like ImageJ (Schneider et al. 2012) or scripting 53 

languages, such as Python (Petrelli 2021) or MATLAB (Trauth et al. 2007) now support 54 

quantitative petrographic investigations like the segmentation processes or crystal size distribution 55 

analyses (Santosh et al. 2009; Tarquini and Favalli 2010; Jungmann et al. 2014; Y. Wang et al. 56 

2021; Zhang et al. 2021). Despite the recent analytical advancements and the possibilities of 57 

automation in quantitative petrographic studies, the initial investigation of new samples still relies, 58 

mostly, on the manual identification of mineral phases by expert petrologists, by optical 59 

microscopy (Deng et al. 2020b). This procedure is time-consuming, often subjective, and 60 

sometimes biased since many minerals share similar textural and optical properties (Santosh 2010; 61 

Młynarczuk et al. 2013; Xu et al. 2021; Zhong et al. 2021; Qiu et al. 2023b). 62 

In the framework detailed above, the development of automatic identification techniques can 63 

significantly support the handling and processing of large raw microscopy images (Alférez et al. 64 

2021; Faria et al. 2022). To achieve this goal, the use of Machine Learning (ML) techniques 65 

deserves attention, since these have been successfully applied in many fields of visual data 66 
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investigations (Petrelli and Perugini 2016; Endert et al. 2017; Acosta et al. 2019; Y. D. Wang et 67 

al. 2021; Zhou et al. 2022; Qiu et al. 2023a). 68 

Among ML techniques, the developments of deep learning algorithms have drastically 69 

boosted the application of the Artificial Intelligence (AI) in many scientific fields, including image 70 

analysis and processing (Xing et al. 2018; Zhichao Liu et al. 2021). Examples are image 71 

classification (Obaid et al. 2020), object detection (Zhao et al. 2019; Wu et al. 2020) and image 72 

segmentation (Ghosh et al. 2019; Leichter et al. 2022; Tang et al. 2022). In particular, the recent 73 

development of new network algorithms in natural language processing (NLP) favored the growth 74 

of an architecture named Transformer (Vaswani et al. 2017). Transformers are at the base of the 75 

so-called foundation models (Bommasani et al. 2021), implementing the concept of “transfer 76 

learning” (Thrun and Mitchell 1995; Polat et al. 2021). The idea behind “transfer learning” is to 77 

use the “knowledge” that is learned from one task, and apply it to solve a different problem. In 78 

deep learning, the transfer learning is often achieved by the so-called “pretraining” (Bommasani 79 

et al. 2021) on large data set. More specifically, a deep learning model is typically trained to solve 80 

a non-specific task, and then adapted to the problem of interest through fine-tuning, drawn by a 81 

specific and more focused data set (Bommasani et al. 2021). 82 

In this study, we investigate the application of the “transfer learning” paradigm using a 83 

Transformer known as “Swin Transformer” (Ze Liu et al. 2021). The investigated Transformer has 84 

been previously pre-trained using a large, general-purpose, public computer vision dataset. Our 85 

main aim is to tap the benefit from the “transfer learning” paradigm by fine-tuning the “Swin 86 

Transformers” in the classification of five metallic minerals (i.e., arsenopyrite, chalcopyrite, gold, 87 

pyrite and stibnite) in optical microscopy images. To achieve this goal, we set up and trained the 88 

Swin Transformer plus two widely-used Convolutional Neural Networks (CNNs) models. Then, 89 
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we evaluated and compared the performances of each model. Finally, we used a feature 90 

visualization technique named Class Activation Map (Zhou et al. 2016) to attempt at understanding 91 

the internal behavior of the investigated models, which is often perceived as a “black box” 92 

(Castelvecchi 2016). 93 

Materials 94 

Raw images were captured using optical microscopes (AXIOSCOPE-A1, Leica DM4P, and 95 

Olympus BX51) through employing cellSens Entry and Stream Essentials software under reflected 96 

light conditions. The raw data resolutions varied from 1608*1608, 1936*1216, and to 4800*3600 97 

pixels. The process of collecting images involved several manual steps. Firstly, the thin-sections 98 

were observed through optical microscopy, the target minerals were located, and the mineral 99 

images were captured, particularly focusing on grains larger than 10 μm in width to ensure accurate 100 

mineral identification under the microscope. Notably, the collected images may show different 101 

colors for the same mineral, whereas the same/similar colors are seen for different minerals. This 102 

discrepancy arises because the original data are from different deposits and the thin-sections vary 103 

in white balance and brightness. 104 

Data composition 105 

Microscopy images of arsenopyrite, chalcopyrite, gold, pyrite, and stibnite were selected as 106 

the research material for our target aimed at classification. The dataset consists of 481 optical 107 

microscopy images of five unprocessed metal minerals from two gold deposits in the Jiaodong 108 

Peninsula of North China (Linglong, and Longkou gold deposits) and six gold deposits in West 109 

Qinling in Central China (Jiagantan, Liba, Xiakanmucang, Yidinan, and Zaorendao gold deposits; 110 

and the Zaozigou gold stibnite deposit). A total of 159 arsenopyrite images, 128 chalcopyrite 111 
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images, 159 gold images, 145 pyrite images and 131 stibnite images of different sizes were used 112 

as the raw data. The characteristics of these five types of metallic minerals under microscope – 113 

that is, the information that manual classification uses–are given in Table 1. 114 

Dataset characteristics 115 

As stated above, metal minerals were imaged using optical microscopy. The produced images 116 

contain basic information that characterizes each phase, i.e., the reflected color, microstructural 117 

characteristics, and mineral paragenesis. These characteristics constitute the building blocks for 118 

the classification of the metal mineral phase with direct observation. 119 

In detail, gold (Au; Figures 1a-d) is bright yellow under the microscope, with relatively 120 

smooth edges. Gold mainly coexists with arsenopyrite, pyrite, chalcopyrite and stibnite. Pyrite 121 

(FeS2; Figures 1e-h) is a homogeneous mineral appearing light yellow under the microscope with 122 

the edges of the grains being relatively smooth, as for gold. It is widely distributed with a number 123 

of minerals especially gold, arsenopyrite and chalcopyrite. In addition, the images show that 124 

chalcopyrite (CuFeS2; Figures 1i-l) is characterized by copper-yellow, weakly homogeneous, and 125 

often heteromorphic granular aggregates. The reflective color always shows yellow-green. Under 126 

the microscope, chalcopyrite has broken edges. Arsenopyrite (FeAsS; Figures 1m-p) is bright 127 

white with cream, yellow, or red color (i.e., is weakly polychromatic) and radial aggregates can be 128 

observed. Arsenopyrite has smooth edges and is often arsenic-bearing pyrite and arsenopyrite. 129 

Stibnite (Sb2S3; Figures 1q-t) of the white or light off-white variants can be easily confused with 130 

arsenopyrite. Similar to arsenopyrite, the strongly homogenous stibnite coexisted with pyrite with 131 

smooth edges under the microscope. 132 
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Gold, pyrite, and chalcopyrite are all yellow under the microscope and tend to coexist in gold 133 

deposits. The gold and pyrite grains in the dataset have relatively smooth edges, whereas 134 

chalcopyrite has broken boundaries. The arsenopyrite and stibnite all have a reflective color of 135 

gray with relatively smooth edges and similar mineral morphology. 136 

From the above-mentioned features, it is obvious that large-scale manual classification by 137 

observing these metal minerals with the naked eye (or directly under the microscope) poses a 138 

significant challenge. The similarity in reflected colors and morphology complicates their 139 

classification, and would consume long of time with manual studies, especially when dealing with 140 

large volumes of images for examination, such as in batch studies. 141 

Methods 142 

Swin Transformer and Convolutional Neural Networks 143 

Swin Transformer. In image analysis, “Transformers” (Dosovitskiy et al. 2020) rely on a 144 

self-attention mechanism to model the correlation between various regions within an image. The 145 

self-attention mechanism, often referred to as scaled dot-product attention, stands as a fundamental 146 

concept in the field of deep learning, allowing the model to gauge the significance of distinct 147 

elements in an input sequence, dynamically regulating their impact on the output. Compared with 148 

the local receptive field mechanism of convolution used in CNNs, transformers can learn the 149 

correlation among relatively distant areas, and capture the long-distance dependence of the whole 150 

feature map, and therefore they are characterized by a high global modeling ability (Vaswani et al. 151 

2017). The multi-head self-attention of the transformer that gives the model the ability to focus on 152 

different locations allows the model to learn relevant information in different subspaces and extract 153 

richer feature information (Devlin et al. 2019), thus alleviating the complexity of the neural 154 
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network. The model does not need to input all the information into the neural network for 155 

calculation, but selectively enters some task-related information into the network. However, 156 

“plain” transformers require a large amount of computation for the training (Vyas et al. 2020). The 157 

Swin Transformer algorithm aims to improve upon this by using a hierarchical approach (shifted 158 

window) to decrease the cost of computing the self-attention which is exponential in the image 159 

size. Specifically, Swin Transformer computes self-attention on a local window which is then 160 

moved across the image, and also a multi-scale feature computation method. Swin Transformer 161 

has been used as a feature extraction network in various image tasks with good results (Jiang et al. 162 

2022; Yang and Yang 2023). 163 

In the present study, we optimize computational expenses by employing the Swin 164 

Transformer-base version (Ze Liu et al. 2021). The network architecture adopts a hierarchical 165 

design encompassing four stages (Figure 2). Initially, the RGB image undergoes the Patch Partition 166 

module, segmenting it into non-overlapping patches. Every pixel adjacent to 4*4 is a Patch. The 167 

image is then flattened across the color channel dimension, reshaping the color channel values into 168 

an elongated one-dimensional vector. This sequential vector captures the color information 169 

corresponding to each pixel. Subsequently, the channel data are transformed by a Linear 170 

Embedding layer. This layer is a technique for representing images as dense embedding vectors 171 

and these vectors capture visual features of the image. Following this, feature maps of varying 172 

sizes are constructed through four stages. Except that the image first passes through a Linear 173 

Embedding layer in stage 1, for the remaining three stages, the image is subsampled through a 174 

Patch Merging layer and then through the Swin Transformer Block. The Swin Transformer-base 175 

version is described in detail by Ze Liu et al. (2021). 176 
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Convolutional Neural Networks. Convolutional neural networks (CNNs) constitute a neural 177 

network architecture that is often used to extract features from image data. The Convolutional 178 

layer is the fundamental aspect of CNNs which involves the application of convolution operation 179 

to the input data and plays a crucial role in feature extraction from images with spatial 180 

relationships. The CNNs were first proposed by LeCun et al. (1989, 2015) for handwritten digital 181 

image recognition. In the present study, two general-purpose and widely-used CNN models have 182 

been investigated, namely ResNet50 and MobileNetv2 (Sandler et al. 2018). 183 

ResNet50, a 50-layer variant of ResNet (He et al. 2015) operates through five processing 184 

stages (Figure 3). Stage 1 can be considered as a preprocessing step for the input images. In detail, 185 

for a three-channel RGB input image, it performs a preliminary feature extraction via 64 186 

convolutional layers. Feature normalization is then carried out by a Batch Normalization (BN) 187 

layer that can convert interlayer outputs of a neural network into a standard format by subtracting 188 

the batch mean and then dividing by the batch’s standard deviation, and effectively 'resets' the 189 

distribution of the output of the previous layer to be more efficiently processed by the subsequent 190 

layer (Chang and Chen 2015). Thus, the training convergence speed of the model is made faster 191 

and training process becomes more stable. Feature normalization is followed by a nonlinear feature 192 

mapping via the ReLU activation function layer and, next, a Maximum Pooling layer. 193 

Subsequently, the feature map size is further reduced to a quarter of the input image to reduce 194 

spatial information and parameters, increase computational speed, and reduce the risk of 195 

overfitting. In ResNet50, the remaining four stages have a similar structure, all of which are made 196 

up of different numbers of residual modules (Feng 2017). Finally, the extracted features pass 197 

through a fully connected (FC) layer to integrate feathers together for easy submission to the final 198 

classifier. 199 
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The MobileNetv2 is a common lightweight CNN characterized by the structure reported in 200 

Figure 4. The activation function ReLU is used within the MobileNetv2 because of its simplicity 201 

and efficiency of calculation. In addition, MobileNetv2 has bottleneck layers in the residual 202 

connections that obtain a representation of the input with reduced dimensionality (Sze et al. 2017). 203 

The lightweight depth-wise convolutions are used by the intermediate layer (Alain and Bengio 204 

2016) to filter features as the source of nonlinearity. MobileNetv2 has 32 filters and an initial fully 205 

connected convolution layer followed by 19 residual bottleneck layers. The fully connected 206 

convolution layer, also known as convolutional kernels, can find the most effective filters based 207 

on the task and then combine these filters into more complex patterns. In addition, the output of 208 

some neurons will be 0, which reduces the interdependence of parameters and alleviates the 209 

overfitting problem. 210 

Compared with the traditional CNNs, Swin Transformer has the unique shifted window which 211 

enables the model to gain strong global modeling ability and fewer parameters (Vaswani et al. 212 

2017; Devlin et al. 2019). Due to the hierarchical approach, Swin Transformer has strong 213 

scalability in processing images of different scales. Meanwhile, the shifted window brings high 214 

computational complexity (Vyas et al. 2020). The CNNs usually have lower computational 215 

complexity and memory consumption, which can effectively extract local features in images 216 

(Zhichao Liu et al. 2021). Also, the CNNs can effectively extract local features in images through 217 

weight sharing (Abdel-Hamid et al. 2012; Miao et al. 2016). 218 

The same epoch, batch size and optimizer as Swin Transformer are used in our experiments 219 

of ResNet50 and MobileNetv2. 220 
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Classification workflow 221 

As mentioned in previous sections, we aimed at exploring the effectiveness of deep learning 222 

techniques as a possible substitute to the “by-hand” classification of metal mineral phases in 223 

images acquired by optical microscopes. To achieve our goal, we proposed a four-step workflow 224 

(Figure 5). From the raw images, we cropped the areas and selected those areas that contain only 225 

one mineral phase for further analysis (step 1); from these images, we constructed the training and 226 

test datasets, also using data augmentation techniques (step 2); then, we used the obtained datasets 227 

to train and test the investigated models (step 3); the trained models are finally used to infer the 228 

five metal mineral classes that are the object of the present study (step 4). In the following, we are 229 

going to detail the 4 steps of the proposed workflow (Figure 5).  230 

Step 1: Image Stacks. We started with 481 raw light microscopy images of the five different 231 

metal mineral phases from different outcrops (see Materials Section). We next used the sliding 232 

window technique from OpenCV (Rosebrock 2015) to capture the mineral phases that are present 233 

in the image which we next cropped to equal-sized, non-overlapping, sub-images (256×256 pixels 234 

each, RGB; Figure 5). Subsequently, we removed the images that contain more than one mineral. 235 

The images spatially dominated by a single mineral were manually selected and labeled. 236 

Accordingly, 4524 images were obtained (Table 2), each being labeled with the name of the 237 

(dominant) mineral phase. 238 

Step 2: Preprocessing and Data Augmentation. We resized the size of images to 224×224 239 

because of the requirement of model input. And we then divided the above-mentioned image 240 

dataset into a training set, a validation set, and a test set with a ratio of 3:1:1 (see Table 2). The 241 

scope of the training set is to “educate” the model by determining the weight and bias learning 242 

parameters. The validation set is used to tune hyperparameters and check whether the effect of 243 
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model training goes in a “good” or “bad” direction. In addition, the validation set is used and data 244 

is unseen during the training process. Finally, the test set is used to evaluate the generalization 245 

ability of the final model. In addition, the samples in the test set were selected from different ore 246 

deposits than those in the training set, which alleviates the potential issue of data leakage. 247 

However, due to the limited number of images in the dataset, training can be challenging. To 248 

improve the model’s generalization ability and reduce overfitting, we increased the size and the 249 

robustness of the training set and introduced variations that could be found in “real world data” 250 

using six typical offline data augmentation methods (Supplemental Materials). The first is named 251 

“random erasing” (Zhong et al. 2020). It consists of randomly selecting a rectangular region in an 252 

image and replacing its pixels with random values. This procedure generates new training images 253 

with various levels of occlusion, which, when used for training, reduces the risk of over-fitting and 254 

also makes the model less sensitive to occlusions (i.e., missing portions). The second approach is 255 

the “flipping”. It consists of mirroring the images both horizontally and vertically, along the 256 

vertical and horizontal axes, respectively. The third augmentation method is named “brightness 257 

adjust”. To note, the coloring of a picture can be set using three parameters: hue (H), saturation 258 

(S) and value (V), with the latter mainly governing the brightness. By using the Auto Gamma 259 

Correction method, a non-linear operation 𝑆 = 𝑇(𝑅) = 𝑅!  (where S and R are the values of 260 

brightness in output and original image, respectively, that are mapped to [0 1]) is to automatically 261 

lighten or darken the image (Babakhani and Zarei 2015). The fourth approach is “random zoom”, 262 

which zooms into an image at a random location within the image. The fifth is “random contrast”, 263 

which adjusts the contrast of the images by a random factor. And the last is “random saturation”, 264 

which can adjust the saturation of images by a random factor. These methods can also improve the 265 
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model’s ability to classify based on the color (Supplemental Materials). At the end of the 266 

augmentation process, we increased the number of the training set to 18991 images. 267 

Step 3: Model Training. For the present study, we trained two standard CNNs (i.e., ResNet50 268 

and MobileNetv2) and a “Swin Transformer” algorithm (Figure 5). These architectures are 269 

followed by the max pooling and a fully connected (FC) layer. From the latter, a softmax function 270 

performs the final prediction, selecting the category with the largest softmax value. We trained the 271 

three models using adam gradient descent algorithm (Kingma and Ba 2017), using the first-order 272 

momentum parameter of 0.9, the second-order momentum parameter of 0.999, a learning rate of 273 

1e-6 and a batch size of 16, respectively. The task was set for 20 epochs, each of which contains 274 

136 iterations. At each training iteration, the image fed into the model is forward-propagated to 275 

the output layer, after which the difference between the ground-truth label and predictive label is 276 

measured by a Cross Entropy (CE) loss function. The loss value is then reduced by back-277 

propagating and updating the model’s parameters. To accelerate the training convergence and 278 

possibly increase the generalization capabilities of the models, we used a “transfer learning” 279 

approach by initializing the weights of the models to those from ImageNet-1k (Deng et al. 2009). 280 

In the process of model evaluation, the accuracy for the validation set is calculated after every 281 

epoch and the model’s final accuracy is the highest among 20 epochs (Wu and Chen 2015; Ruby 282 

and Yendapalli 2020; Zhong et al. 2020). 283 

Step 4: Getting the Output. We finally obtained a metal mineral classifier and we evaluated 284 

its performance. 285 



14 

Model evaluation 286 

For the evaluation of the investigated models, we utilized 5 metrics, i.e., accuracy, precision, 287 

recall, F1-score, and training loss, defined as follows. 288 

The model accuracy is defined as 289 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	(1) 290 

TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative 291 

occurrences, respectively. The accuracy is the most common evaluation index in deep learning for 292 

classifiers, i.e., deep learning models used in classification tasks, due to its simple intuition. 293 

The model precision is defined as 294 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	(2) 295 

The precision is the proportion of positive samples predicted correctly by the model from all 296 

samples predicted as positive. 297 

The model recall is defined as 298 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	(3) 299 

The recall is a coverage measure, representing the classification accuracy of positive samples. 300 

The F1-score is given by 301 

𝐹1 = 2 × <
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙=	(4) 302 
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The F1-score is the harmonic mean between precision and recall. A macro F1-score computes 303 

the metric for each category independently and then takes the average (all categories are treated 304 

equally). 305 

Finally, the Cross Entropy function is used to calculate the training loss of the model, which 306 

is defined as 307 

𝐶𝐸(𝑝, 𝑞) = −∑ 𝑝" log(𝑞")#
"$%  (5) 308 

where C denotes the total number of classes, pi denotes the i-th prediction class probability, 309 

and qi denotes the i-th true class of training samples. The smaller the Cross Entropy (CE) loss is, 310 

the distributions of the two probabilities are approximately close, indicating that the model has a 311 

good performance. 312 

Transfer learning 313 

To get benefit from the “transfer learning” paradigm (Torrey and Shavlik 2010; Zhichao Liu 314 

et al. 2021), we set the initial weights of the investigated models to the pre-trained values that have 315 

been obtained after a full training on the natural ImageNet-1k dataset. The ImageNet-1k is a large 316 

public computer vision dataset that is often used as a benchmark to evaluate the performances of 317 

different deep learning models. It consists of 10 million images, characterized by thousand 318 

categories (Deng et al. 2009). The weights trained by ImageNet-1k, when used as the pre-training 319 

weight initialization, can quickly extract the shallow general image features (such as shape, 320 

brightness, and size of underlying image structures), thus future improving the initial accuracy of 321 

the model and accelerating the convergence of training models (Deng et al. 2009; Torrey and 322 

Shavlik 2010). Pre-trained weights for the ResNet50, MobileNetv2 and Swin Transformer are 323 

publicly available at the following repository: https://download.pytorch.org/models. 324 
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Class Activation Map 325 

Although deep learning models are often characterized by good performances, they are 326 

subject to criticism because of their “black box” nature. To unblur the “black box” nature of the 327 

proposed models, we adopted the Class Activation Map (CAM; Zhou et al. 2016), also known as 328 

Class Thermal Maps. The CAM is a feature visualization technique that aims at highlighting the 329 

contribution of the different image regions to a given classification outcome. In detail, a CAM for 330 

a particular class of objects highlights the image regions used by the model to identify the specific 331 

class and shows which feature maps the model is based on for classification. Using a network 332 

architecture comprising convolutional layers, the feature map is extracted and the feather map up-333 

sampled, which could be used as mask information to obtain the model's response value to the 334 

image in the target class. By linearly weighting the feature map with the obtained response values, 335 

the visual CAM mappings are obtained (Wang et al. 2020). In our specific case, the areas 336 

characterized by low- and high-discriminative powers have been highlighted by progressively 337 

shifting the thermal map from the blue to the red color. CAM is fully described in Zhou (2016). 338 

Codes and Libraries 339 

All the tasks are implemented using Python (https://www.python.org; version 3.8) and 340 

Pytorch (https://pytorch.org; version 1.8.1), and finished by Intel(R) Xeon(R) CPU E5-2630 v4 @ 341 

2.20GHz and NVIDIA GeForce RTX 3090 GPU. All the codes and the dataset are available at the 342 

https://doi.org/10.5281/zenodo.10441351 repository. 343 

The following libraries were used to complete the code: Pytorch (https://pytorch.org/) for 344 

computing tensors on graphics processing units; NumPy (https://numpy.org/) for data analysis; 345 

TorchAudio (https://pytorch.org/audio/stable/index.html) and SciPy (https://scipy.org/) for data 346 

processing functions; TensorBoard (https://tensorflow.google.cn/tensorboard) for data 347 
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visualization; OpenCV (https://opencv.org/) and Pillow (https://pypi.org/project/Pillow/) for 348 

image processing; Torchvision (https://pytorch.org/vision/stable/index.html) for image 349 

classification; timm (https://timm.fast.ai/) for loading image model; Safetensors 350 

(https://pypi.org/project/safetensors/) for parameters and weights saving; tqdm 351 

(https://pypi.org/project/tqdm/) for progress prompt; Matplotlib (https://matplotlib.org/) for 352 

plotting the diagrams. 353 

Results 354 

Figure 6 displays the evolution of the training loss and validation accuracy for the Swin 355 

Transformer, ResNet50, and MobileNetv2, respectively. 356 

Swin Transformer 357 

For the Swin Transformer, the accuracy of the validation set gradually increases from 0.74 at 358 

the beginning of the training to 0.92 after 16 epochs (Figure 6a). After seven epochs, the accuracy 359 

reached 0.90. On the training set, the Cross Entropy (CE) loss which is a function that minimizes 360 

the model’s loss is initially 1.42 (Figure 6b). The CE loss on the training set, initially at 1.60, 361 

decreases considerably during the seven epochs and slowly decreases over the course of the 362 

following epochs, reaching a minimum value of 0.01 in twentieth epoch (Figure 6b). 363 

The average F1-score of each category for the Swin Transformer model is 0.92 (Table 3). 364 

Further analysis of the performance of each category shows that gold has the best classification 365 

performance with the F1-score of 0.98, the recall of 1.00 and the precision of 0.96 while pyrite has 366 

the lowest classification performance with the recall of 0.81. Figure 7a further details these insights 367 

by showing the confusion matrix for this model. 368 
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Convolutional Neural Networks 369 

ResNet50. The accuracy of ResNet50 on the validation set gradually increases from 0.40 to 370 

0.91, after 20 epochs (Figure 6a). After about 13 epochs, the accuracy of the validation set has 371 

reached 0.90, and then it begins to stabilize gradually. Initially, the CE loss on the training set is 372 

1.58. During seven epochs, the training loss decreases greatly and drops below 0.1. The training 373 

loss decreases slowly in later epochs and reaches the minimum value of 0.01 after twenty epochs 374 

(Figure 6b). 375 

The average F1-score of each category for the ResNet50 is 0.90 (Table 3). Further analysis 376 

of the performance parameters for each class shows that stibnite has the best classification 377 

performance whose F1-score is 0.98, the recall is 0.98 and the precision is 0.97, whereas 378 

chalcopyrite and pyrite have the worst performance with an F1-scores of 0.84 and 0.80, 379 

respectively. As can be found from the confusion matrix of ResNet50 (Figure 7b), chalcopyrite 380 

and pyrite are not predicted well, while gold is the best. 381 

MobileNetv2. For the MobileNetv2, the accuracy of the validation set gradually increases 382 

from 0.34 to 0.84, achieved after 20 epochs (Figure 6a). After six epochs, the accuracy of the 383 

validation set has reached 0.81, after which it begins to stabilize gradually. The CE loss on the 384 

training set, initially at 1.60, continues to reduce in later epochs until it reaches a minimum value 385 

of 0.01. (Figure 6b). 386 

The average F1-score for each class in the MobileNetv2 is 0.81 (Table 3). Further analysis of 387 

the performance of each class shows that gold is the best classified mineral, while pyrite and 388 

stibnite are the worst, with recall of 0.61, and 0.62, respectively. The confusion matrix (Figure 7c) 389 

shows that the MobileNetv2 can easily predict arsenopyrite and gold. 390 
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Discussion 391 

Model classification performance 392 

The results of the present study demonstrate that the Swin Transformer is characterized by an 393 

excellent prediction performance and a higher accuracy than the other tested models (Table 3). 394 

Comparing the specific scores of the three models, the Swin Transformer greatly improves the F1-395 

scores of chalcopyrite, gold and pyrite, which are difficult to classify by the investigated CNNs 396 

(Table 3). This occurrence results in final average class accuracies of 0.92, 0.91, and 0.81 for the 397 

Swin Transformer, ResNet50, and MobileNetv2, respectively. The Swin Transformer also 398 

provides the lowest final training loss (Figure 6). 399 

Moreover, misclassification occurrences of chalcopyrite and pyrite, often recognized as gold 400 

by ResNet50 (F1-score equal to 0.84 and 0.80, respectively; Table 3), MobileNetv2 (F1-score 401 

equal to 0.83 and 0.75, respectively; Table 3) as highlighted in Figure 7, were greatly reduced by 402 

the use of the Swin Transformer (F1-score of chalcopyrite and pyrite exceeding 0.85). It is also 403 

seen that stibnite is much less likely to be misclassified as arsenopyrite by the Swin Transformer 404 

than the MobileNetv2 (Figure 7). As a drawback, the confusion matrix demonstrates that stibnite 405 

is more likely misclassified as chalcopyrite by the Swin Transformer than the Resnet50 (Figure 7). 406 

This occurrence results in a slightly lower precision value of chalcopyrite of Swin Transformer 407 

(i.e., 0.85) than those characterizing the ResNet50 (i.e., 0.97). By analyzing the cause of the 408 

classification error, it can be inferred that the model easily classifies pyrites as chalcopyrite, 409 

probably due to the limited quality of the input images, thus the two minerals in the images have 410 

a similar yellow color (Figures 8a, b). This feature can confuse the models. Furthermore, 411 

arsenopyrite and stibnite are often misclassified by all models. The visual analysis of these 412 

situations (Figures 8c, d) shows that there are two main reasons for misclassification: (1) As 413 
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stibnite images are from different samples with different image collection parameters, and they 414 

show a variety of colors some of which are similar to the grey reflection color of the arsenopyrite. 415 

(2) For some samples, both minerals have similar crystal forms from euhedral to subhedral, which 416 

can confuse the feature identification of the network. Simultaneously, pyrite and arsenopyrite also 417 

have similar reflection colors which are not easy to distinguish (Figures 8e, f). Also, other minerals 418 

present in the image cause interference, leading to model classification error (Figures 8e, f). 419 

However, these similarities do not affect the overall classification capabilities of the Swin 420 

Transformer, which clearly outperforms the investigated CNNs in most of the scores for the single 421 

classes and all the average performance metrics (Table 3 and Figure 7). In conclusion, our study 422 

supports the Swin Transformer as a metal mineral classifier (abbreviated ST-MMC). 423 

Transfer learning in optical microscopy for the study of metal minerals 424 

A large number of studies have shown that using the transfer learning paradigm to set the 425 

initial weights of a model before starting the training can effectively help in achieving the 426 

convergence. Transfer learning can fine-tune the parameters of the entire model to get initial high 427 

accuracy and a low loss value. (Figure 9; Supplemental Materials). Also, it allows for improving 428 

the generalization capability of a model (Kora Venu 2022). As an example, a number of studies 429 

demonstrated that using the “knowledge” acquired on natural images effectively improves the 430 

capabilities on a model in solving specific problems like the processing of medical or remote 431 

sensing images, even when using limited training sets (Xie et al. 2016; Raghu et al. 2019; Kora et 432 

al. 2021). Collecting metal mineral images with optical microscopes is a time-consuming task, 433 

thus resulting in a limited dataset size. As reported in the method section, we adopted the “pre-434 

trained” weights for the investigated models deriving from a training on the ImageNet-1k dataset. 435 

As highlighted in Figure 6, the accuracy of the first validation, i.e., deriving from the pretraining 436 
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only, was 0.34, 0.40, and 0.74 for the MobileNetv2, ResNet50 and the Swin Transformer, 437 

respectively. The Swin Transformer has a greater response to transfer learning and a higher initial 438 

accuracy. 439 

To further outline the added value of transfer learning in achieving a solution for the problem 440 

investigated in the present manuscript, we trained the Swin Transformer without pre-trained 441 

weights. The training epoch, batch size, and other parameters of both models were the same. As a 442 

result, with the same number of training iterations, we obtained an initial and maximum accuracy 443 

of 0.56 and 0.88, respectively (Figure 9a), less than the accuracy achieved with the support of the 444 

“transfer learning” paradigm, i.e., 0.92. And the use of “transfer learning” paradigm supports lower 445 

initial and minimum loss values, which are 1.42 and 0.01, respectively (Figure 9b). 446 

Model interpretation 447 

Figure 10 shows five images that have been fed as unknowns, classified by the three models 448 

investigated in the present manuscript and output the probabilities. For each image, a blue-to-red 449 

heatmap points to the contribution of the different regions to the classification output. In detail, 450 

Figure 10 highlights that, for minerals with broken edges such as chalcopyrite (Figure 10a), 451 

thermal maps specifically focus on mineral edges. For the other cases (Figures 10b, c, d), the 452 

thermal maps highlight different regions, often focusing on the edges.  453 

Based on the evidence reported above, it can be inferred that the shape of edges effectively 454 

influences the classification and the networks pay attention to their smoothness or sharpness. 455 

Moreover, the occurrences of misclassifications can now be better explained: Arsenopyrite and 456 

stibnite are both grey in color, and they also share smooth edges (Figures 8c, d). Also, both stibnite 457 

and arsenopyrite have void development on their surfaces. Despite the insights provided by CAMs 458 
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do not directly lead us to improved models, they point to the causes that generate misclassifications 459 

and, therefore, suggest a direction for the possible improvement. 460 

Notably, the different investigated networks show significant differences in their CAMs for 461 

the same inputs (Figure 10). The thermal maps of ResNet50 and MobileNetv2 almost focus on the 462 

edge of the minerals, and not inside them. As a consequence, the reflected color and texture may 463 

not be the most important distinctive features of these two models. However, CAMs for the Swin 464 

Transformer also cover the interior of the mineral, rather than just the edge, which suggests that 465 

ST-MMC effectively uses the reflected color and texture of the minerals for its inference, and it 466 

has better global performance. In the thermal map, the mineral area of middle and edge of ST-467 

MMC are redder than the other two CNNs, indicating that these domains have stronger model 468 

response, which reveals that mineral reflection color and texture contribute more to the 469 

classification output of the model. The Swin Transformer also achieved a classification predict 470 

probability over 0.95 for unknown minerals, significantly outperforming the other two CNNs 471 

(Figure 10). This effectiveness in handling unknown samples also demonstrates its capability for 472 

efficient batch image processing. 473 

Implications 474 

Large-dimensional image analyses are dominantly based on digital image datasets, the 475 

automatic identification of the optical microscopic data is still poorly examined, and the mineral 476 

image data is also difficult to collect. Deep learning-based approach (Swin Transformer) with the 477 

transfer learning paradigm fully explores the information of different metal mineral phases to 478 

produce a well-behaved mineral classifier with high accuracy and strong global ability. To 479 

circumvent the ‘black box’ problem commonly associated with deep learning models, CAM (Class 480 

Activation Map) tool was introduced to explain individual predictions. With the increasing amount 481 



23 

of high-throughput mineral image data produced by modern analytical techniques, our ST-MMC 482 

offers the potential to make more data driven decisions such as transparent minerals classification. 483 

Moreover, the “transfer learning” paradigm on large images captured by optical microscopy, will 484 

possibly liberate researchers from tiresome labor, sharpen the accuracy, and increase the 485 

productivity. More widely, the use of “transfer learning” may disclose new perspectives in 486 

petrology and mineralogy, possibly providing a paradigm shift over the current applications of 487 

deep learning in petrology and mineralogy. 488 
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 751 

Figure Captions 752 

Figure 1. The representative images for five minerals which are collected from gold deposits. (a-753 

d) Gold; (e-h) Pyrite; (i-l) Chalcopyrite; (m-p) Arsenopyrite; (q-t) Stibnite. Apy: arsenopyrite; Au: 754 

gold; Cal: calcite; Ccp: chalcopyrite; Py: pyrite; Qz: quartz; Ser: sericite; Stb: stibnite; Tur: 755 

tourmaline. 756 

 757 

Figure 2. Architecture of Swin Transformer. The blocks with different colors represent different 758 

functions. The network has four stages and the last three stages have same structure. The olive 759 

block is patch partition module and patch merging layer. The sage is linear embedding layer. The 760 

light salmon is fully connected layer. And the orange is the classifier. H: height; W: width; C: 761 

color. 762 

 763 

Figure 3. Architecture of ResNet50. The blocks with different colors represent different functions. 764 

The network has five stages and the last four stages have same structure. Stage 1: the dark salmon 765 

block is the convolutional layer. the salmon is the normalization. the light one is the activation 766 

function. and the sage one is the max pooling layer; Stage 2 to stage 5: olive one is the 767 

convolutional block with one convolutional layer; the salmon block is the identity block with two, 768 
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three, five and two convolutional layers, respectively. And the last light salmon is the pooling layer, 769 

and the orange is the classifier。 770 

 771 

Figure 4. Architecture of MobileNetv2. It contains two units: stride=1 and stride=2. Conv 1x1 is 772 

the 1x1 convolutional kernel. ReLU is nonlinear activation function. Dwise 3x3 is depth-wise 773 

convolution with 3x3 convolutional kernel. 774 

 775 

Figure 5. Workflow of the proposed automatic classification. Step 1: dataset compiling. Crop raw 776 

images using OpenCV. Select the processed images that contain only one mineral phase; Step 2: 777 

data splitting and augmentation. The dataset was divided into training set, validation set and test 778 

set (3:1:1). The data augmentation methods include random erasing, flipping, brightness adjust, 779 

random zoom, random contrast and random saturation; Step 3: model training and evaluating. Swin 780 

Transformer, ResNet50 and MobileNetv2 algorithms were used to train the classification models. 781 

The model evaluation metrics include accuracy, precision, recall, and F1-score; Step 4: model 782 

predicting. Put the images to the trained model to predict the five metal mineral classes. 783 

 784 

Figure 6. Changes of (a) validation accuracy and (b) training loss of three algorithms using the 785 

method of transfer learning. The lines reflect the changes of different algorithms’ performance 786 

within 20 epochs (green: Swin Transformer algorithm; red: ResNet50 algorithm; blue: 787 

MobileNetv2 algorithm). 788 

 789 

Figure 7. Confusion matrix of the test set used to evaluate the three algorithms. (a) Swin 790 

Transformer; (b) ResNet50; (c) MobileNetv2. Indicated values are the number of images. The 791 
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horizontal axis represents the predicted label, while the vertical axis denotes the true label. The 792 

horizontal axis is the predicted label, while the vertical axis is the true label. Apy: arsenopyrite; 793 

Ccp: chalcopyrite; Au: gold; Py: pyrite; Stb: stibnite. 794 

 795 

Figure 8. Presentation of erroneous classification results from Swin Transformer metal mineral 796 

classifier. The model misclassified (a) pyrite and (b) chalcopyrite, (c) arsenopyrite and (d) stibnite, 797 

as well as (e) pyrite and (f) arsenopyrite. Apy: arsenopyrite; Ccp: chalcopyrite; Py: pyrite; Stb: 798 

stibnite.  799 

 800 

Figure 9. Changes in (a) validation accuracy and (b) training loss of Swin Transformer with 801 

transfer learning and without transfer learning respectively. The lines reflect the changes of 802 

different algorithms’ performance within 20 epochs (dark green: Swin Transformer with transfer 803 

learning; light green: Swin Transformer without transfer learning). 804 

 805 

Figure 10. CAMs of three models with five-classes metal minerals image classification. The 806 

redder the mapping, the higher the response of the corresponding area of the original image to the 807 

model’s classification output. The numbers on the mappings represent the output probability of 808 

the model for unknown minerals. Ccp: chalcopyrite; Py: pyrite; Au: gold; Apy: arsenopyrite; Stb: 809 

stibnite. 810 

 811 

 812 

 813 

 814 
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 815 

 816 

 817 

 818 

 819 

 820 

Table 821 

Table 1 Characteristics of Metal Minerals Under the Microscope 822 

Note: Reflectivity is the reflective quality or power of the mineral surface; Reflection color is the color of the mineral polished surface under vertical illumination; Homogeneity is the property of 823 
crystalline mineral of isometric system and amorphous mineral. The mineral is dark in the field of view under the polarizer, and the darkness level does not change when the platform is rotated; 824 
Heterogeneity is the property of crystalline mineral of non-isometric system. When the orientation of the mineral is changed by rotating the platform, the brightness and the color through the upper 825 
polarizer will change with the variation of orientation. 826 

 827 

Table 2 Summary of the Training, Validation and Test Sets of Image Dataset 828 

 gold pyrite chalcopyrite arsenopyrite stibnite 

Chemical 
composition 

Au FeS2 CuFeS2 FeAsS Sb2S3 

Reflectivity 
Gold 480: 33.97; 546: 

70.67; 589: 80.09; 656: 
85.88 

White: 54.5; 470: 46; 546: 
53; 589: 54; 650:5 4 

White: 44~46.1; 470: 34; 
546: 47; 589: 48; 650: 49 

White: 51.7~55.7; 470: 
51~55; 546: 52~54; 589: 

53~54; 650: 53 

White: 30.2~40; 470: 
31~53; 546: 31~48; 589: 

30~45; 650: 30~42 

Reflection 
color 

Golden yellow, bright 
yellow Light yellow Copper yellow 

Bright white with cream or 
red color, weak 
polychromatic 

White to light off-white 

Homogeneity 
and 

heterogeneity 
Homogenous Homogenous Weak heterogeneity Strong heterogeneity Strong heterogeneity 

Morphological 
characteristics 

Polymeric crystals between 
octahedral, hexahedral, 

tetrahexahedral, triangular 
trioctahedral, and 

rhomboid dodecahedron; 
Irregularly granular 

Euhedral crystals in the 
form of cubes, pentagonal 

dodecahedral and 
octahedron 

Irregular granular crystals 

Diamond-shaped, 
elongated columnar, spear-
headed and other euhedral 

crystals 

Columnar long and 
granular crystals 

Mineral 
combination 

Arsenopyrite, pyrite, 
chalcopyrite, pyrrhotite, 

galena, sphalerite, stibnite, 
calcite, tellurite and quartz 

Iron, copper, lead, zinc, 
silver sulfide, gold, rutile, 

graphite, etc. 
Associated with sulfides 

Pyrite, loellingite, 
tetrahedrite, magnetite, 

galena, sphalerite, stibnite, 
etc. 

Berthierite, pyrite, 
arsenopyrite, sphalerite, 
tetrahedrite, scheelite, 

gold, realgar, orpiment, 
etc. 

References 
(Shang and Lin 1990; 
Piller 2012; Ramdohr 

2013) 

(Cameron 1961; Chen et 
al. 1979; Ramdohr 2013) 

(Piller 1966; Zussman and 
others 1967; Santosh et al. 

2007) 

(Picot and Johan 1977; Lu 
and Peng 2010) 

(Craig et al. 1981; Criddle 
and Stanley 2012)  
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 Arsenopyrite Chalcopyrite Gold Pyrite Stibnite Total 

Training 548 505 490 574 596 2713 

Validation 182 170 164 191 198 905 

Test 183 169 163 192 199 906 

Total 913 844 817 957 993 4524 
 829 

 830 

 831 

Table 3 Mineral Classification Performance on the Test Set 832 

Method Metric Arsenopyrite Chalcopyrite Gold Pyrite Stibnite Metric Value 

Swin-
Transformer 

Acc      0.92 
Pre 0.85 0.83 0.96 1.00 0.99 0.93 
Rec 0.99 0.97 1.00 0.81 0.84 0.92 
F1 0.91 0.89 0.98 0.90 0.91 0.92 

ResNet50 

Acc      0.91 
Pre 0.97 0.78 0.88 0.94 0.97 0.91 
Rec 0.98 0.89 0.99 0.70 0.98 0.91 
F1 0.97 0.84 0.93 0.80 0.98 0.90 

MobileNetv2 

Acc      0.81 
Pre 0.64 0.77 0.91 0.98 1.00 0.86 
Rec 1.00 0.90 0.99 0.61 0.62 0.82 
F1 0.78 0.83 0.95 0.75 0.76 0.81 

Note: Acc: abbreviation for model evaluation indicator accuracy; Pre: abbreviation for model evaluation indicator precision; Rec: 833 

abbreviation for model evaluation indicator recall; F1: abbreviation for model evaluation indicator F1-score. 834 
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