Revision 3

Thermal equation of state of Li-rich schorl up to 15.5 GPa and 673 K: Implications for lithium and boron transport in slab subduction

WEI CHEN 1,2,3, SHANRONG ZHANG 1,2, MENGZENG WU 1,2, QIFA ZHONG 1,2, SHIJIE HUANG 1,2, KAI WANG 1,2, WEI ZHAO 1,2, JINGUI XU 1,* , DAWEI FAN 1, WENGE ZHOU 1

1 Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Guizhou Polytechnic of Construction, Guiyang, Guizhou 551400, China

* Corresponding Author: Jingui Xu (xujingui@vip.gyig.ac.cn)

ABSTRACT: The thermal equation of state (EoS) of natural schorl has been established at high temperatures up to 673 K and high pressures up to 15.5 GPa using in-situ synchrotron X-ray diffraction combined with a diamond anvil cell. The pressure-volume (P-V) data were fitted to the third-order Birch-Murnaghan EoS with

\[V_0 = 1581.45 \pm 0.25 \text{ Å}^3, \quad K_0 = 111.6 \pm 0.9 \text{ GPa and } K'_0 = 4.4 \pm 0.2; \]

additionally, when \(K'_0 \) was fixed at a value of 4, \(V_0 = 1581.04 \pm 0.20 \text{ Å}^3 \) and \(K_0 = 113.6 \pm 0.3 \text{ GPa}. \) The \(V_0 \) (1581.45 ± 0.25 Å³) obtained by the third-order Birch-Murnaghan EoS agreed well with the measured \(V_0 \) (1581.45 ± 0.05 Å³) under ambient conditions; this result confirmed the high accuracy of the experimental data in this study. Furthermore, the axial compression data of the schorl at room temperature were also fitted to a “linearized” third-order Birch-Murnaghan EoS, and the obtained axial moduli for the \(a \)- and \(c \)-axes were \(K_a = 621 \pm 9 \text{ GPa and } K_c = 174 \pm 2 \text{ GPa}, \) respectively. Consequently, the axial compressibilities were \(\beta_a = 1.61 \times 10^{-3} \text{ GPa}^{-1} \) and \(\beta_c = 5.75 \times 10^{-3} \text{ GPa}^{-1} \) with an anisotropic ratio of \(\beta_a:\beta_c = 0.28:1.00, \) indicating axial compression anisotropy. In addition, the compositional effect on the axial
compressibilities of tourmalines was also discussed. Fitting our
pressure-volume-temperature ($P-V-T$) data to the high-temperature third-order
Birch-Murnaghan EoS provided the following thermal EoS parameters: $V_0 = 1581.2 \pm 0.2 \, \text{Å}^3$, $K_0 = 110.5 \pm 0.6 \, \text{GPa}$, $K'_0 = 4.6 \pm 0.2$, $(\partial K/\partial T)_P = -0.012 \pm 0.003 \, \text{GPa K}^{-1}$ and
$\alpha_{V0} = (2.4 \pm 0.2) \times 10^{-5} \, \text{K}^{-1}$. The obtained thermal EoS parameters in this study were
also compared with those of previous studies on other tourmalines. The potential
factors influencing the thermal EoS parameters of tourmalines were further discussed.

Keywords: Schorl; Equation of state; High pressure and high temperature; X-ray
diffraction; Diamond anvil cell

INTRODUCTION

Tourmaline is the most abundant and widespread borosilicate mineral on Earth. It
forms over a wide range of temperature and pressure conditions, and typically occurs
in a wide variety of granites, granitic pegmatites, sedimentary, metamorphic rocks,
and even (ultra)high pressure metamorphic rocks (Slack 1996; Dutrow and Henry
2011; van Hinsberg et al. 2011; Nabelek 2021; Ertl et al. 2022; Han et al. 2023;
Vincent et al. 2023). Therefore, tourmaline is stable in environments that extend from
the crust to ultrahigh pressure conditions prevailing in the upper mantle (Ota et al.
2008; Dutrow and Henry 2011; van Hinsberg et al. 2011; Henry and Dutrow 2012)
and can maintain equilibrium with a variety of geological fluids (Meyer et al. 2008;
Konzett et al. 2012; Berryman et al. 2016). The diffusion rate of the main and trace
elements in tourmaline is extremely low (van Hinsberg et al. 2011); thus, tourmaline
may preserve textural, compositional, and isotopic features during growth and hence
reveal considerable details regarding its crystallized environment (e.g., Maloney et al.
2008; van Hinsberg et al. 2011; Berryman et al. 2017; Kotowski et al. 2020; Qiu et al.
2021; Feng et al. 2022; Li et al. 2022; Guo et al. 2023). More importantly, as a
dominant carrier of light elements (e.g., lithium and boron), tourmaline plays a vital
role in the lithium and boron cycles in the deep Earth, especially in subduction zones
(e.g., Nakano and Nakamura 2001; Bebout and Nakamura 2003; Ota et al. 2008; van
Hinsberg et al. 2011; Liu and Jiang 2021; Srivastava and Singh 2022). Thus, studies
of the thermal stability and equation of state (EoS) of tourmaline in the subduction slab can aid in the assessment of the lithium and boron cycle depth and explain the formation of lithium deposits.

Tourmaline is a kind of ring-silicate mineral, and its structure can be expressed as $\text{X}Y_3\text{Z}_6\text{T}_6\text{O}_{18}(\text{BO}_3)_3\text{V}_3\text{W}$, where $X = \text{Na}^+, \text{K}^+, \text{Ca}^{2+}, \text{vacancy}$; $Y = \text{Mg}^{2+}, \text{Fe}^{2+}, \text{Al}^{3+}, \text{Li}^+, \text{Fe}^{3+}, \text{Cr}^{3+}, \text{V}^{3+}, \text{Mn}^{2+}$; $Z = \text{Al}^{3+}, \text{Fe}^{3+}, \text{Cr}^{3+}, \text{V}^{3+}, \text{Mg}^{2+}, \text{Fe}^{2+}$; $T = \text{Si}^{4+}, \text{Al}^{3+}, \text{B}^{3+}$; $B = \text{B}^{3+}$; $V = (\text{OH})^-$, O^{2-}; $W = (\text{OH})^-$, F^-, O^{2-} (Hawthorne and Henry 1999; Henry et al. 2011). Tourmaline has a trigonal crystal system and belongs to the $R3m$ space group (Fig. 1). Its structure consists of two alternating basic structural layers. One consists of sixfold rings of tetrahedra (T sites) with a threefold axis along the c direction. The other consists of octahedral clusters on top of the tetrahedral rings, with three inner Y sites and six outer Z sites arranged concentrically. The X site occupies a nine-coordinate polyhedron above the center of the sixfold ring. B atoms form $[\text{BO}_3]^{3-}$ triangles linked to the Y- and Z-octahedra, almost perpendicular to the c-axis.

The chemical composition of tourmaline is diverse, and there are many isomorphic substituents in its structure (Hawthorne and Henry 1999; Bosi et al. 2022). The physical properties of tourmaline, such as the intrinsic dipole moment (Kim et al. 2018) and bulk modulus (Berryman et al. 2019; Chen et al. 2022), depend on the type of cation at the X, Y, and Z positions. Schorl (Fe-rich tourmaline) is the most common in the tourmaline supergroup, occurring in pegmatites and granites (e.g., Novák et al. 2004; Filip et al. 2012; Chakraborty 2021; Zhao et al. 2022). In addition, schorl is also an important petrogenetic indicator due to its ubiquity and sensitivity to $f\text{O}_2$ conditions (e.g., Foit et al. 1989; Fuchs et al. 2002; Pieczka and Kraczka 2004).

To date, pressure-volume (P-V) EoS studies of tourmalines (e.g., uvite, dravite, schorl, maruyamaite, magnesio-foitite, olenite, and elbaite) have been widely carried out using synchrotron X-ray diffraction (XRD) combined with a diamond anvil cell (e.g., Li et al. 2004; Xu et al. 2016; O’Bannon III et al. 2018; Berryman et al. 2019; Likhacheva et al. 2019; Chen et al. 2022). For instance, Li et al. (2004) performed the first in situ high-pressure synchrotron energy-dispersive XRD experiments on a natural schorl up to 27.8 GPa using a methanol-ethanol-water mixture (16:3:1) as the
pressure medium. They obtained a bulk modulus $K_0 = 184(4)$ GPa with a fixed pressure derivative of $K'_0 = 4$. However, O’Bannon III et al. (2018) conducted synchrotron single-crystal XRD measurements on a natural dravite at high pressures up to ~24 GPa using neon as the pressure medium and obtained $K_0 = 109.6(3.2)$ GPa and $K'_0 = 4.6(8)$. The K_0 of dravite obtained by O’Bannon III et al. (2018) is significantly less than that of schorl obtained by Li et al. (2004). Later, Likhacheva et al. (2019) studied the compressibility of natural maruyamaite using synchrotron XRD up to 20 GPa with a helium pressure medium, and the obtained $K_0 = 112(3)$ GPa was also clearly less than that of Li et al. (2004). In addition, Berryman et al. (2019) collected synchrotron single-crystal XRD patterns of five synthetic Mg-Al tourmalines (dravite, K-dravite, magnesio-foitite, oxy-uvite, and olenite) at high-pressures up to 60 GPa with a neon pressure medium, and the reported K_0 ranged from 97(6) GPa to 116(6) GPa. Moreover, Chen et al. (2022) recently investigated the EoS of natural elbaite using in situ synchrotron XRD at high pressures up to 21.1 GPa with a neon pressure medium and concluded that the reasonable range of K_0 for tourmalines was 106-128 GPa. Therefore, the K_0 of the schorl reported by Li et al. (2004) seems abnormally high and unreasonable. However, further studies on the EoS are needed to resolve this discrepancy.

To the best of our knowledge, few experimental studies on the pressure-volume-temperature ($P\text{-}V\text{-}T$) EoS of tourmaline under high pressure and high temperature conditions are available. To date, the only previous $P\text{-}V\text{-}T$ EoS study of tourmaline was by Xu et al. (2016), who tested a natural uvite up to 18 GPa and 723 K and obtained its thermal EoS parameters. However, the $P\text{-}V\text{-}T$ EoS of other tourmalines has not yet been reported. Thus, additional $P\text{-}V\text{-}T$ EoS studies on tourmalines with different compositions are needed to evaluate the compositional influence on the thermal EoS parameters (Fan et al. 2015b; Ye et al. 2019; Li et al. 2022; Xu et al. 2020, 2022a).

In this study, we investigated the $P\text{-}V\text{-}T$ relationships of schorl up to 15.5 GPa and 673 K, using a diamond anvil cell combined with in situ synchrotron XRD. First, the compressibility of the schorl under room temperature and high pressure conditions
was determined. In addition, we compared the compressibility of schorl and elbaite, and analyzed the possible influencing factors. Moreover, the anisotropic linear compressibilities of schorl and elbaite were also discussed. Finally, the thermal EoS properties of the schorl were obtained by fitting the P-V-T data to the high temperature Birch-Murnaghan EoS. Our results were also compared with those of previous studies on other tourmalines.

SAMPLE AND EXPERIMENT

The tourmaline selected in this study is a natural sample with a good columnar crystal morphology. Chemical analyses (Table 1) were carried out by various methods, including electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

The chemical composition of the tourmaline sample was determined by EMPA with a JEOL JXA-8230 instrument using a 15 kV accelerating voltage, a 20 nA beam current, and a beam diameter of 5 μm. The element peaks and backgrounds were measured for all elements with counting times of 10 s and 5 s, respectively. The following standards were used: hornblende (SiO$_2$, TiO$_2$, MgO, CaO, Na$_2$O, K$_2$O, and Al$_2$O$_3$), gahnite (ZnO), olivine (NiO), pyrope (FeO, MnO, and Cr$_2$O$_3$) and fluorite (F). The data were reduced online using the ZAF program. More detailed experimental conditions for the EMPA measurements are reported by Chen et al. (2022, 2023).

Because some significant components (e.g., Li, B and H$_2$O) cannot be directly determined by EMPA, the concentrations of Li and B in the tourmaline sample were investigated by LA-ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences. An Agilent 7500 ICP-MS instrument was connected to a GeoLas Pro 193-nm ArF excimer laser ablation system. A beam diameter of 15 μm with a laser repetition rate of 10 Hz was used. Helium was used as the carrier gas and was mixed with argon via a T-connector before entering the ICP-MS instrument. The glass standard NIST610 was used for external calibration. More detailed analysis conditions are reported by Tang et al. (2020).
Previous studies have shown that the OH content can be relatively accurately determined by the charge balance (e.g., Henry et al. 2002). Thus, the amount of OH at the V- and W-sites can be evaluated from bond valence sum calculations. The Windows program WinTcac developed by Yavuz et al. (2014) was used to calculate the chemical formula of the tourmaline sample from the EMPA and LA-ICP-MS data. In this study, the OH content was calculated by considering $OH + O + F = 4$ apfu and $V = OH = 3$ apfu. The estimated chemical formula was

$\text{(Na}_{0.75}\text{Ca}_{0.04}\text{K}_{0.01}\Box_{0.20})\text{(Al}_{0.78}\text{Li}_{0.74}\text{Fe}_{1.32}\text{Mn}_{0.04}\text{Mg}_{0.08}\text{Zn}_{0.01}\text{Ti}_{0.03})\text{Al}_{6}\text{Si}_{6.09}\text{O}_{18}(\text{BO}_{3})_{3}(\text{OH})_{3}(\text{OH}_{0.27}\text{F}_{0.03}\text{O}_{0.70})$, where \Box indicates vacancy. Finally, the species of the tourmaline sample was additionally verified by the spreadsheet of Henry et al. (2011), and the chemical composition corresponded to the schorl species (Li-rich schorl).

The pure schorl mineral grains were selected by hand under a microscope and then ground under ethanol in an agate mortar for 4-6 h to an average grain size of ~10 μm. The ground samples were heated at 100 °C in a constant temperature furnace for 2 h to eliminate the absorbed water before being used in the subsequent synchrotron XRD experiments.

High pressure and high temperature experiments were carried out by using a modified Merrill-Bassett diamond anvil cell with a pair of 500 μm culet-size diamond anvils. The sample chamber was prepared from a rhenium gasket with a preindented thickness of ~60 μm and a 300 μm-diameter hole in the center of the indented region. The schorl powder was mixed with 3 wt.% platinum powder as the pressure calibrant by mechanically grinding the mixture for approximately 2 h. Subsequently, the mixture was lightly pressed between two opposing diamond anvils to form an approximately 25 μm thick disk, and a piece of the pressed sample approximately 100 μm in diameter was loaded into the sample chamber. A methanol-ethanol-water mixture (16:3:1) was used as the pressure transmitting medium. The pressure was determined using the thermal EoS of platinum (pressure marker) (Fei et al. 2007). Heating was carried out by using a resistance-heating system, and the temperature was measured by a Pt$_{90}$Rh$_{10}$-Pt$_{100}$ thermocouple attached to one of the diamond anvils.
approximately 500 μm away from the diamond culet. The resistance-heating system
provides a stable and uniform temperature distribution within the pressure chamber
and reliable temperature control by means of a thermocouple. Moreover, the
exceptional thermal conductivity of the diamond anvil has the major advantage of
transferring heat to the sample inside the pressure chamber. Thus, obtaining a stable
and uniform temperature distribution within the pressure chamber highly depends on
the stabilization time at high temperature and the tightness of the thermocouple glued
to the diamond. Thus, to ensure that the thermocouple correctly reflected the
temperature of the sample chamber, we tightly glued the thermocouple to the diamond.
Each *in situ* XRD pattern was collected after the experimental temperature was
maintained for 600 s for temperature stability. The temperatures of the sample
chamber were actively stabilized using a temperature controller with a self-tuning
function, and the fluctuation temperature displayed by the temperature controller was
within ±1 K. The exposure time for collecting diffraction patterns of the sample was
600 s. Details of the experimental setup and cell assembly were described in
previously published articles (e.g., Fan et al. 2010).

In situ high pressure and high temperature angle-dispersive XRD experiments were
conducted at the 4W2 beamline of the Beijing Synchrotron Radiation Facility (BSRF).
A Pilatus detector was used to collect diffraction patterns. The wavelength of the
monochromatic X-ray beam was 0.6199 (1) Å, which was calibrated by scanning
through the Mo metal K-absorption edge. The beam size was focused to 20 × 30 μm²
by a pair of Kirkpatrick-Baez mirrors (Kirkpatrick and Baez 1948). The tilting and
rotation of the detector relative to the incident X-ray beam were calibrated using
cerium dioxide (CeO₂) powder as the XRD standard. The sample-detector distance
was calculated from the powder CeO₂ diffraction pattern under ambient conditions.
The diffraction patterns were integrated to generate conventional one-dimensional
profiles using the *Fit2D* program (Hammersley et al. 1996). The diffraction peak
positions were fitted by *Origin* 8.5 software. The unit-cell parameters and volumes
were calculated using *UnitCell* software (Holland and Redfern 1997).
RESULTS

The typical XRD patterns of the schorl at various pressures and temperatures are shown in Figure 2. With increasing pressure at different temperatures (Fig. 2), all peaks shifted toward higher 2θ angles. Moreover, the number of peaks in the diffraction data of the schorl sample did not change over the experimental pressure-temperature range (Fig. 2), indicating that no structural transition occurred. The unit-cell parameters and volumes of the schorl at various pressure and temperature conditions are listed in Tables 2 and 3. Figures 3 and 4 show the volumetric and axial compression of the schorl in this study. In addition, the XRD data collected under ambient conditions yielded the unit-cell parameters and volumes of $a_0 = 15.9532$ (3) Å, $c_0 = 7.1751$ (3) Å, and $V_0 = 1581.45$ (5) Å3.

We first fitted the $P-V$ data collected at the 300 K isotherm to the room-temperature Birch-Murnaghan EoS. Then, we employed another common method, the high-temperature Birch-Murnaghan EoS approach, to derive the thermal EoS parameters from the measured $P-V-T$ data.

Room-temperature Birch-Murnaghan equation of state

The pressure-volume ($P-V$) relationships were determined by fitting the room temperature data to a third-order Birch-Murnaghan EoS, which is represented as follows (Birch 1947):

$$P = \frac{3}{2}K_0[(V_0/V)^{2/3}-(V_0/V)^{5/3}+\{1+(3/4)(K'_0-4)((V_0/V)^{2/3}-1)\}]$$

where V_0, K_0, and K'_0 are the zero-pressure unit-cell volume, zero-pressure isothermal bulk modulus and its pressure derivative, respectively. Analyses of Eq. (1) by the EoSFit program (Angel et al. 2014; Gonzalez-Platas et al. 2016) with all parameters free yielded: $V_0 = 1581.45 \pm 0.25$ Å3, $K_0 = 111.6 \pm 0.9$ GPa, and $K'_0 = 4.4 \pm 0.2$ (Table 4). The refined value of V_0 (1581.45 (25) Å3) was within approximately 1σ compared with the V_0 (1581.45 (5) Å3) measured by XRD under ambient conditions; this indicated the excellent accuracy of the refined results (Angel 2000). With K'_0 fixed at 4, the results were $V_0 = 1581.04 \pm 0.20$ Å3, and $K_0 = 113.6 \pm 0.3$ GPa. In addition, with V_0 fixed at 1581.45 Å3, the results were $K_0 = 111.6 \pm 0.4$ GPa, and $K'_0 = 4.4 \pm 0.1$.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
To evaluate the quality of our third-order Birch-Murnaghan EoS fitting, the relationship between the Eulerian definition of finite strain $f_E (f_E = [(V_0/V)^{2/3} - 1]/2)$ and the “normalized stress” $F_E (F_E = P/3f_E(1+2f_E)^{3/2})$ (Birch 1978) is plotted and shown in Figure 5a. The weighted linear fit of the data points yielded an intercept value of $F_{Ea}(0) = 111.9 (4)$ GPa, which was in good agreement with the isothermal bulk modulus obtained by the third-order Birch-Murnaghan EoS ($K_0 = 111.6 (9)$ GPa). Moreover, the functions of F_E and f_E had a slightly positive slopes, indicating that K'_0 was greater than 4; this results was consistent with $K'_0 = 4.4 (2)$ from the third-order Birch-Murnaghan EoS. Therefore, the obtained EoS parameters from the third-order Birch-Murnaghan EoS fitting are a reasonable description of the P-V data in this study.

The normalized unit-cell parameters (a/a_0 and c/c_0) of schorl at room temperature are plotted as a function of pressure in Figure 4. By fitting the unit-cell parameters of the schorl at room temperature using a “linearized” third-order Birch-Murnaghan EoS with the EosFit program (Angel et al. 2014; Gonzalez-Platas et al. 2016), the obtained a_0 and c_0 are 15.9532 (3) Å and 7.1751 (3) Å, respectively. The refined unit-cell parameters are consistent with the results obtained from the XRD measurements under ambient conditions in this study due to their uncertainties (Table 2). The refined linear moduli and their pressure derivatives are $K_a = 621 (9)$ GPa, $K_c = 174 (2)$ GPa and $K'_a = 16 (3)$, $K'_c = 8.7 (5)$, respectively. In addition, the weighted linear fit of the F_E-f_E data points yields intercepts of $F_{Ea}(0) = 620 (6)$ GPa for the a-axis and $F_{Ec}(0) = 174 (1)$ GPa for the c-axis; these results effectively agree with the results from the “linearized” third-order Birch-Murnaghan EoS. Moreover, the slopes obtained from the linear fits of the F_E-f_E plots are positive for the a-axis and negative for the c-axis (Figs. 5b and 5c). The results are in good agreement with $K'_a > 12$ and $K'_c < 12$ from the “linearized” third-order Birch-Murnaghan EoS fits.

The axial compressibility β_i under ambient conditions has the following form (Angel et al. 2014):

$$\beta_i = 1/K_i \quad (2)$$
In analyses using Eq. (2) with K_l, we obtained the compressibility of the a- and c-axes and they were determined to be 1.61×10^{-3} GPa$^{-1}$ and 5.75×10^{-3} GPa$^{-1}$, respectively; these results indicated that schorl has axial compressive anisotropy. The c-axis of the schorl was 3.57 times more compressible than the a-axis under ambient conditions (Fig. 4).

High-temperature Birch-Murnaghan equation of state

The $P-V-T$ data (Table 3) were used to determine the thermal EoS parameters of schorl up to ~15.50 GPa and 673 K. The third-order Birch-Murnaghan EoS was applied to our high pressure and high temperature data as follows:

$$
P = \frac{3}{2}K_{T0}[(V_{T0}/V)^{7/3}-(V_{T0}/V)^{5/3}]\times\{1+(3/4)(K'_{T0}-4)(V_{T0}/V)^{2/3}-1\} \quad (3)
$$

In this equation, the thermal dependences of the zero-pressure unit-cell volume V_{T0} and bulk modulus K_{T0} at different isotherms are expressed using the following equations:

$$
V_{T0} = V_0 \exp \int_{300}^{T} \alpha_T dT \quad (4)
$$

$$
K_{T0} = K_0 + (\partial K_T/\partial T)_P \times (T-300) \quad (5)
$$

where V_0 is the volume at zero-pressure and room-temperature, and the temperature derivative of V_{T0} can be estimated by a function of the thermal expansion α_T (Eq. 4). The thermal dependence of the bulk modulus K_{T0} is expressed by a linear function of temperature (Eq. 5), assuming that the temperature derivative $(\partial K_T/\partial T)_P$ is constant in the temperature range of this study.

The obtained thermal EoS parameters αV_0, $(\partial K_T/\partial T)_P$, K_0 and K'_{0} for the schorl in this study are shown in Table 4, and are compared with those from other tourmalines in previous studies. Fitting of the $P-V-T$ data to the high-temperature third-order Birch-Murnaghan EoS yields the following results for the schorl: $V_0 = 1581.2 \pm 0.2$ Å3, $K_0 = 110.5 \pm 0.6$ GPa, $K'_0 = 4.6 \pm 0.2$, $(\partial K_T/\partial T)_P = -0.012 \pm 0.003$ GPa K$^{-1}$ and $\alpha V_0 = (2.4 \pm 0.2) \times 10^{-5}$ K$^{-1}$. The obtained V_0, K_0 and K'_0 determined here are very consistent with those from the $P-V$ data fitting at 300 K within their uncertainties. The measured unit-cell volumes are plotted in Figure 6 as a function of pressure together with the isotherms calculated using the thermal EoS parameters derived from the current fits;
the results show good agreement between the fit and the measured $P-V-T$ data.

DISCUSSION

The $P-V$ EoS of various tourmalines (e.g., uvite, dravite, maruyamaite, foitite, olenite, and elbaite) has been investigated in previous high-pressure XRD experiments, but $P-V$ EoS studies on schorl are limited. To date, only Li et al. (2004) reported the $P-V$ EoS of schorl, they measured the compressibility of a natural tourmaline (schorl) at high pressures up to 27.8 GPa using the synchrotron XRD method. Although they did not characterize the composition of their tourmaline sample, they reported that the natural tourmaline sample was schorl (Li et al. 2004). They used a methanol-ethanol-water (at a ratio of 16:3:1) pressure medium and obtained an unusually high K_0 value of 184 (4) GPa (with fixed $K'_0 = 4$). In contrast, the obtained K_0 (113.6 (3) GPa) of schorl in this study (with fixed $K'_0 = 4$) is ~38% lower. From Figures 3 and 4, the volumetric and axial compression of the schorl from Li et al. (2004) is not only very scattered and irregular but also significantly greater than the volumetric and axial compression of the schorl in this study and of the elbaite in the study by Chen et al. (2022). Notably, the experimental maximum pressure (~27.8 GPa) from the study by Li et al. (2004) greatly exceeded the hydrostatic pressure condition (~10.5 GPa) of their pressure medium (Angel et al. 2007; Klotz et al. 2009a). Thus the previously reported $K_0 = 184$ (4) GPa by Li et al. (2004) should be considered unreasonable and inaccurate.

In this study, we also used a methanol-ethanol-water mixture with a ratio of 16:3:1 for the pressure media. This pressure medium solidifies at pressures above ~10.5 (± 0.5) GPa, and therefore the hydrostatic pressure environment in the sample chamber may be significantly influenced (Angel et al., 2007; Klotz et al. 2009a). However, we did not collect data far above the hydrostatic limit of the pressure medium, as in Li et al. (2004). In addition, previous studies have demonstrated that the hydrostatic limits can be considerably increased by modest heating (Klotz et al. 2009b). Thus, the sample chamber in this study was heated to 673 K at pressures for the relaxation of deviatoric stress (Fan et al. 2017b). Furthermore, to evaluate the possible influence of...
nonhydrostatic conditions on the P-V-T EoS fitting results, we also fitted the P-V-T
EoS of schorl after removing the experimental data with pressures greater than \sim12
GPa, and obtained the following results for the schorl: $V_0 = 1581.4 \pm 0.5$ Å3, $K_0 =$
111.5 ± 1.5 GPa, $K'_0 = 4.6 \pm 0.3$, $(\partial K_T/\partial T)_P = -0.009 \pm 0.003$ GPa K$^{-1}$ and $\alpha_{V0} = (2.1 \pm$
$0.2) \times 10^{-5}$ K$^{-1}$. These values are very consistent with all the P-V-T data fitting results
within their uncertainties (Table 4). Based on the above analysis, we deduce that the
sample chamber in this study maintains a good hydrostatic pressure environment at
pressures up to 16.05 GPa.

Recently Chen et al. (2022) summarized the results from previous experiments and
discussed in detail the potential factors behind the discrepancies in K_0 and K'_0 among
tourmalines. They concluded that the different pressure media, K'_0 values and mineral
compositions could all contribute to the discrepancies in the reported bulk moduli of
tourmalines. They further inferred that excluding the influence of external factors
such as the pressure medium, reasonable ranges of K_0 and K'_0 could be 106-128 GPa
and 3.5-5.0, respectively. The obtained K_0 (111.6 (9) GPa) and K'_0 (4.4 (2)) of the
schorl in this study are both within the aforementioned range. Thus the above analysis
not only indicates that our results are more reasonable but also further confirms the
reliability of the K_0 and K'_0 ranges summarized by Chen et al. (2022). In addition,
there are similarities between the composition of tourmaline in this study and that of
Chen et al. (2022); specifically, both are Li- and Fe-bearing tourmaline. Thus, the
obtained P-V EoS parameters of the schorl in this study and those of the elbaite from
Chen et al. (2022) enable the further exploration the compositional influence (e.g., Fe
or Li) on the volumetric and axial compressibilities of Li-bearing tourmalines.

Table 4 also shows that the K_0 and K'_0 of the elbaite reported by Chen et al. (2022)
are \sim2.8% and \sim4.5% greater than those of the schorl in this study, respectively. In
static compression studies, a trade-off exists between the fitted K_0 and K'_0, which are
negatively correlated. Considering the correlation between K_0 and K'_0 in an EoS fit,
we cannot only compare K_0 and neglect the K'_0. Thus, to accurately evaluate the
difference between the K_0 values obtained in this study and those reported by Chen et
al. (2022), we compared the results with a fixed K'_0 value of 4.0. From Table 4, the K_0

CHEN ET AL., THERMAL EQUATION OF STATE OF LI-RICH SCHORL

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title, American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2023-9150. http://www.minsocam.org/
values of this study and Chen et al. (2022) with a fixed K'_0 of 4.0 are 113.6(3) GPa and 116.4(4) GPa, respectively. The obtained K'_0 in this study for schorl is ~2.4% lower than that reported by Chen et al. (2022).

By carefully examining the composition characteristics of elbaite [(Na$_{0.62}$Ca$_{0.04}$☐$_{0.34}$)(Al$_{1.90}$Li$_{0.98}$Fe$_{0.09}$Mn$_{0.02}$)Al$_6$Si$_6$O$_{18}$(BO$_3$)$_3$(OH)$_3$(OH$_{0.20}$,F$_{0.48}$,O$_{0.32}$)] from Chen et al. (2022) and schorl (Na$_{0.75}$Ca$_{0.04}$K$_{0.01}$☐$_{0.20}$)(Al$_{0.78}$Li$_{0.74}$Fe$_{1.32}$Mn$_{0.04}$Mg$_{0.08}$Zn$_{0.01}$Ti$_{0.03}$)Al$_6$Si$_6$O$_{18}$(BO$_3$)$_3$(OH$_{0.27}$F$_{0.03}$O$_{0.70}$) in this study, the X sites in these samples are relatively simple. They are predominantly occupied by Na, some of them are vacant (☐), and the other elements (e.g., Ca and K) are negligible. However, the compositional variation at the X site in tourmalines merely leads to changes in the neighboring O1–H1 bond without any identifiable changes in the lattice-bonding environment (Berryman et al. 2016). Thus, the X-site-occupying ion does not have a demonstrable effect on the compression behavior of tourmaline (Berryman et al. 2019; Chen et al. 2022).

However, in comparison to the simple compositional variation at the X site of these two tourmalines in this study and that reported by Chen et al. (2022), the compositional characteristics at the Y site are more complex. For the elbaite sample from Chen et al. (2022), the Y site is predominantly occupied by Al and Li, with a few other elements (e.g., Fe and Mn). In contrast, except for Al and Li, the schorl sample in this study contains a significant amount of Fe at the Y site. The effective ionic radii of Fe$^{2+}$(VI) (0.776 Å) are ~41.9% larger than those of Al$^{3+}$(VI) (0.547 Å) (Bosi 2018). As a consequence, the mean bond length of Fe$^{2+}$-O (2.1536 Å) at the Y site is ~13.1% greater than the mean bond length of Al$^{3+}$-O (1.9043) (Bačík and Fridrichová 2021). Accordingly, the bond strength of Fe$^{2+}$-O in the schorl is weaker than that of Al$^{3+}$-O. Therefore, the schorl exhibits greater compressibility and a smaller isothermal bulk modulus.

Thus, based on the above discussion, the bond strengths of Fe$^{2+}$-O at the Y site may mainly contribute to the different compressibilities between the schorl in this study and the elbaite in Chen et al. (2022). This reasoning is consistent with the conclusion
of Chen et al. (2023), who suggested that the bond strengths of the corresponding
bonds at the \(Y \) site likely have a significant effect on the expansibility of Li-bearing
tourmaline. Furthermore, to the best of our knowledge, there have been only two
previous studies on the \(P-V \) EoS of Fe-bearing tourmalines, one study by Chen et al.
(2022) investigated the \(P-V \) EoS of Fe-bearing elbaite, while the other one by
Likhacheva et al. (2019) examined the \(P-V \) EoS of Fe-bearing maruyamaite
(K-tourmaline) with the composition of
\[
(\text{Na}_{0.28}\text{Ca}_{0.19}\text{K}_{0.54})(\text{Al}_{1.17}\text{Fe}_{0.39}\text{Mg}_{1.13}\text{Ti}_{0.14})(\text{Al}_{3}\text{Mg})[\text{Si}_{5.95}\text{Al}_{0.05}\text{O}_{18}](\text{BO}_{3})_{3}(\text{OH}_{2.31}\text{O}_{1.69}).
\]
Thus, in this study, based on the obtained \(P-V \) EoS of the schorl and combining our
results with the \(P-V \) EoS of previous studies (Likhacheva et al. 2019; Chen et al.
2022), we constructed a relationship between the \(K_0 \) values and the Fe content at the \(Y \)
site of Fe-bearing tourmalines (Fig. 7). In addition, to accurately evaluate the
influence of the Fe content on the \(K_0 \) of Fe-bearing tourmalines, we compared their \(K_0 \)
values while keeping \(K'_0 \) fixed at 4.0. The \(K_0 \) of the Fe-bearing tourmalines shows a
linear relationship with the Fe content. Within the experimental uncertainties, \(K_0 \)
decreases linearly with increasing Fe content (Fig. 7):
\[
K_0 = 116.59 (0.05) - 6.8 (0.1) X_{Fe} \quad (R^2 = 0.999) \quad (6)
\]
where \(X_{Fe} = \text{Fe} / (\text{Fe} + \text{Mg} + \text{Li} + \text{Al}) \) is the Fe content at the \(Y \) site of the tourmalines.
Thus, the above equation further indicates that the bond strength of \(\text{Fe}^{2+} - \text{O} \) at the \(Y \)
site likely has a significant effect on the compressibility of Fe-bearing tourmaline.

The axial compressibility of the schorl in this study indicates that the \(c \)-axis is
softer than the \(a \)-axis. The calculated axial compressibilities are \(\beta_a = 1.61 \times 10^{-3} \text{ GPa}^{-1} \)
and \(\beta_c = 5.75 \times 10^{-3} \text{ GPa}^{-1} \), resulting in an anisotropic ratio of \(\beta_c/\beta_a = 0.28:1.00 \). Thus,
our results reinforce the highly anisotropic elasticity of tourmaline. Similar
anisotropic compression behaviors have been reported for natural elbaite, dravite,
uvite, maruyamaite, and synthetic Mg-Al tourmalines (Xu et al. 2016; O’Bannon III
et al. 2018; Berryman et al. 2019; Likhacheva et al. 2019; Chen et al. 2022). There are
two possible reasons for the anisotropic compression behaviors of tourmalines with \(\beta_c > \beta_a \) (Chen et al. 2022). One reason is the incorporation of relatively larger water
molecules in the c-parallel structural channels of tourmalines (Bosi 2018). Another reason is that the [Si₆O₁₈] rings and cationic octahedral layers are arranged in the c-axis direction of tourmalines, which can be refilled with larger cations with large voids (Bosi and Lucchesi 2007; Bosi 2018).

Furthermore, the obtained linear moduli of the schorl in this study and their pressure derivatives under ambient conditions are different from those reported for the elbaite ($K_a = 201 (4)$ GPa, $K_c = 60 (1)$ GPa and $K'_a = 6.9 (4)$, $K'_c = 2.8 (1)$) by Chen et al. (2022). Based on the relevant analysis of a recent article (Basu et al. 2023), the evident difference between our results and those of Chen et al. (2022) is the formalism used in Chen et al. (2022) where the unit-cell parameters were cubed to obtain a nonexistent volume, and a bulk finite strain formalism was used to determine axial compressibility. Thus, we refitted the linear moduli and their pressure derivatives of elbaite using the data from Chen et al. (2022) by the “linearized” third-order Birch-Murnaghan EoS. The refitted results for elbaite are as follows (Table 5): $K_a = 610 (8)$ GPa, $K_c = 182 (1)$ GPa, $K'_a = 20 (1)$, and $K'_c = 8.2 (1)$.

From Table 5, within their uncertainties, the axial compressibility of the a-axis for the schorl in this study is similar to that of the elbaite in Chen et al. (2022), but the axial compressibility of the c-axis for the schorl is smaller than that of the elbaite (Fig. 4 and Table 5). These results indicate that the axial compressibility anisotropy of the schorl in this study is larger than that of elbaite. Considering that the c-axis of tourmaline is correlated with the ZO_6 octahedron, the substitution of Al by larger cations (e.g., Fe) at the Y site will reduce the strength of the ZO_6 octahedra along the c-axis and perturb the degree of puckering of the six-membered SiO₄ rings, resulting in greater compressibility along the c-axis direction. Thus, the lower axial compressibility along the c-axis of the schorl can be attributed to the reduced stiffness of the ZO_6 octahedra.

Table 4 also provides a comparison between the αV_0 of the schorl obtained in this study and those from previous studies. The αV_0 obtained by P-V-T EoS fitting in this study is \sim49% greater than the αV_0 obtained for the same schorl sample through T-V
EoS fitting by Chen et al. (2023). Because both studies used the same tourmaline sample, the difference in the α_V cannot be attributed to compositional variations.

Moreover, the obtained α_V (4.39 \times 10^{-5} K$^{-1}$) for a natural uvite from the P-V-T EoS fitted by Xu et al. (2016) is more than double or triple the α_V derived from other investigations (α_V = 1.34-2.05 \times 10^{-5} K$^{-1}$) via T-V EoS fitting (Celata et al. 2021; Ballirano et al. 2022; Chen et al. 2023; Hovis et al. 2023). Excluding the compositional effects, the α_V obtained by P-V-T EoS fitting (this study and Xu et al. 2016) is notably greater than that obtained by T-V EoS fitting. This phenomenon occurs not only in tourmalines but also in many other silicate minerals, such as pyroxene (Hovis et al. 2021; Ye et al. 2021; Xu et al. 2022b), garnet (Gréaux et al. 2011; Fan et al. 2017a), amphibole (Tribaudino et al. 2022), epidote (Li et al. 2021), clinohumite (Ye et al. 2013; Qin et al. 2017), topaz (Huang et al. 2020; Liu et al. 2023; Zhao et al. 2023), beryl (Fan et al. 2015a). There are likely two main reasons for this phenomenon. First, the thermal expansion coefficient α_T is dependent on the temperature range and temperature interval. Compared with T-V EoS fitting, the number of T-V data points at ambient pressure used for P-V-T EoS fitting is significantly lower. For instance, only five V-T data points between 298 and 673 K were used for P-V-T EoS fitting in this study. However, thirteen T-V data points between 298 and 663 K were used for T-V EoS fitting by Chen et al. (2023). Second, α_T and $\frac{\partial K}{\partial T}_P$ will affect each other in the processing of P-V-T EoS fitting. Thus, to obtain an accurate thermal expansion coefficient in future high pressure and high temperature XRD experiments, narrower temperature intervals and wider temperature ranges are needed (Liu et al. 2023).

Table 4 also shows a comparison of $\frac{\partial K}{\partial T}_P$ for schorl in this study with that for uvite by Xu et al. (2016). The $\frac{\partial K}{\partial T}_P$ obtained for schorl is in good agreement with that for uvite within their uncertainties (Table 4). Therefore, based on existing data, the $\frac{\partial K}{\partial T}_P$ of tourmalines may not be significantly affected by their composition; this reasoning is similar to the findings of some previous studies (e.g., Nishihara et al. 2005; Zou et al. 2012; Fan et al. 2015b) that considered that the $\frac{\partial K}{\partial T}_P$ for other silicate minerals exhibit similar values regardless of their mineral chemistry.
In this study, we examined the thermal EoS and stability of schorl at high temperatures and pressures (up to 673 K and 16 GPa) using synchrotron radiation XRD. Depending on the exact chemistry of tourmaline, the expected thermodynamic stability of tourmaline ranged between 5-7 GPa at 500 °C, and between 800-1000 °C at 4 GPa (Ota et al. 2008; Dutrow and Henry 2011; van Hinsberg et al. 2011; Henry and Dutrow 2012).

Our results on the thermal EoS are vital thermodynamic data that can aid in the refinement of the P-T stability field of tourmaline. For full thermodynamic data, enthalpy, entropy, and heat capacity results are crucial and available for limited chemistry (Garofalo et al. 2000; Ogrodova et al. 2004; 2012). Tourmalines (e.g., schorl and uvite) likely have the potential to transport light elements into the Earth’s interior via subduction zones and can release the light elements once they decompose as the geotherm intersects the P-T phase boundary. The released light elements accordingly affect the geochemical processes in the deep Earth (Nakano and Nakamura 2001; Bebout and Nakamura 2003; Zack et al. 2003; Bebout et al. 2007). For example, the breakdown of tourmaline can cause the release of boron, which largely influences the boron budget during the subduction of Earth’s crust to mantle depths at convergent plate margins (Guo et al. 2022). Therefore, this potentially results in mantle B isotope anomalies near convergent margins (Nakano and Nakamura 2001). Moreover, in the subduction zones, as the pressure and temperature of the slab increase, the decomposition of the lithium-bearing minerals (e.g., tourmaline, phengite, and epidote) releases the fluxing elements such as lithium and fluorine, which can induce partial melting and form lithium-rich magmatism (e.g., Halama et al. 2009; Li et al. 2018; Liu et al. 2020). Simultaneously, weathering in arid areas in the hinterland of an orogenic belt can promote lithium enrichment in the basin, leading to the formation of lithium deposits (e.g., Sun et al. 2007; Chen et al. 2014).

ACKNOWLEDGMENTS AND FUNDING

We are thankful to Associate Editor Mainak Mookherjee and two anonymous
reviewers for their valuable comments and advices which helped to improve the manuscript substantially. We also acknowledge Dr. Y.W. Tang for the LA-ICP-MS experiments assistance. This project was supported by National Natural Science Foundation of China (U2032118 and 42172048), Hundred Talents Program of the Chinese Academy of Sciences, Guizhou Provincial Science and Technology Projects (QKH PTRC-YQK[2023]035 and QKHJC-ZK[2021]ZD042), and Guizhou Provincial 2020 and 2021 Science and Technology Subsidies (Nos. GZ2020SIG and GZ2021SIG). The high-pressure and high-temperature XRD experiments were conducted at the 4W2 of the Beijing Synchrotron Radiation Facility (BSRF).

REFERENCES CITED

CHEN ET AL., THERMAL EQUATION OF STATE OF LI-RICH SCHORL

CHEN ET AL., THERMAL EQUATION OF STATE OF LI-RICH SCHORL

metacarbonates.

https://doi.org/10.1016/j.lithos.2021.106548

https://doi.org/10.1007/s00410-009-0378-5

https://doi.org/10.1080/08957959608201408

https://doi.org/10.1016/j.lithos.2012.08.013

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
https://doi.org/10.2138/am-2021-7495
Mineralogy, Petrology and Geochemistry (ES Grew & LM Anovitz, eds.). Reviews
in Mineralogy and Geochemistry, 33, 559-644.
series from sapphire bearing pegmatites, proterozoic higher Himalayan Crystalline
Cretaceous plate subduction in the west Pacific. Earth and Planetary Science
Letters, 262(3), 533-542. https://doi.org/10.1016/j.epsl.2007.08.021
LA-ICP-MS U-Pb geochronology of wolframite by combining NIST series and
common leadbearing MTM as the primary reference material: implications for
https://doi.org/10.1016/j.gr.2020.02.006
Tribaudino, M., Hovis, G.L., Almer, C., and Leaman, A. (2022) Thermal expansion of
minerals in the amphibole supergroup. American Mineralogist, 107, 1302-1312.
https://doi.org/10.2138/am-2022-7988
indicator of its host environment. Canadian Mineralogist, 49, 1-16.
https://doi.org/10.3749/canmin.49.1.1
Tourmaline and zircon trace the nature and timing of magmatic-hydrothermal
episodes in granite-related Sn mineralization: Insights from the Libata Sn ore field.
Xu, J.G., Fan, D.W., Li, B., Tkachev, S.N., Zhang, D.Z., Yang, G.Z., Zhou, Y., Song,
J.M., and Zhou, W.G. (2022a) Thermal equation of state of Cr - pyrope:

CHEN ET AL., THERMAL EQUATION OF STATE OF LI-RICH SCHORL
implications for entrapment pressure of Cr-pyrope inclusion in diamond.

Contributions to Mineralogy and Petrology, 177, 69.
https://doi.org/10.1007/s00410-022-01932-7

Phase Transition of Enstatite-Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction.
https://doi.org/10.1029/2020GL087363

https://doi.org/10.1007/s00269-015-0796-z

http://dx.doi.org/10.1016/j.cageo.2013.10.012

https://doi.org/10.1007/s00410-012-0823-8

https://doi.org/10.1016/j.gr.2020.12.001

Figure Captions

Figure 1. Crystal structure of schorl, visualized using the software package CrystalMaker. (Color online)

Figure 2. Representative X-ray diffraction patterns of schorl in this study up to 15.50 GPa and 673 K.

Figure 3. The volumetric compression of schorl, the solid circles represent the data points of schorl in this study, the hollow square represent the data points of schorl from Li et al. (2004), the hollow circles represent the data points of elbaite from Chen et al. (2022), and the solid line was obtained by third-order Birch-Murnaghan EoS fitting of schorl in this study.

Figure 4. The axial compression (a/a₀: black font; c/c₀: red font), the solid circles represent the data points of schorl in this study, the hollow square represent the data points of schorl from Li et al. (2004), the hollow circles represent the data points of elbaite from Chen et al. (2022), and the solid lines were obtained by third-order Birch-Murnaghan EoS fitting of schorl in this study. (Color online)

Figure 5. Volumetric (a) and axial (b and c) Eulerian strain-normalized pressure (F_E-f_E) plot of schorl. The solid lines represent the linear fit through the data.

Figure 6. Unit-cell volume of schorl as a function of pressure and temperature. The solid lines represent isothermal compression curve from fitting High-temperature Birch-Murnaghan EoS at 300, 373, 473, 573, and 673 K with the following parameters: V₀ = 1581.2 ± 0.2 Å³, K₀ = 110.5 ± 0.6 GPa, K’₀ = 4.6 ± 0.2, (∂K/∂T)₀ = -0.012 ± 0.003 GPa K⁻¹ and α₀ = (2.4±0.2) × 10⁻⁵ K⁻¹. The error bars of the data points are smaller than the symbols.

Figure 7. The variation of K₀ of Fe-bearing tourmalines with Fe content at Y site (X_Fe,Fe/Fe+Mg+Li+Al). The solid line represents a linear fit to the K₀ values of Fe-bearing tourmalines.
Figure 1
Figure 2
Figure 3

Figure 4

![Graph showing thermal equation of state of Li-rich schorl.](image)

- Symbols: Schorl, this study, Schorl, Li et al. (2004), Elbaite, Chen et al. (2022).
- BM3 EoS of this study.

Pressure (GPa) vs. *I/I₀* and *c/c₀*.
Figure 5

(a) Normalized pressure, F_s, (GPa)

$F_s(0) = 111.9 (4)$ GPa

Normalized pressure, F_s, (GPa)

$F_s(0) = 620 (6)$ GPa

Normalized pressure, F_s, (GPa)

$F_s(0) = 174 (1)$ GPa
Figure 6
Figure 7

\[K'_0 = 116.59 \pm 0.05 - 6.8 \pm 0.1 \chi_{sv} \]

\[R^2 = 0.999 \]

\[K'_0 = 4 \text{ (fixed)} \]

\[\text{Fe}/(\text{Fe}+\text{Mg}+\text{Li}+\text{Al}) \]
Table 1 Chemical compositions of schorl in this study

<table>
<thead>
<tr>
<th>Compositions (wt.%) (6)*</th>
<th>Schorl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.03(22)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.23(3)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>33.58(31)</td>
</tr>
<tr>
<td>B₂O₃*</td>
<td>10.35(27)</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01(1)</td>
</tr>
<tr>
<td>MgO</td>
<td>0.30(7)</td>
</tr>
<tr>
<td>FeOᵇ</td>
<td>9.35(5)</td>
</tr>
<tr>
<td>MnO</td>
<td>0.30(1)</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.08(2)</td>
</tr>
<tr>
<td>CaO</td>
<td>0.21(1)</td>
</tr>
<tr>
<td>Li₂O*</td>
<td>1.09(8)</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.29(5)</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.05(1)</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.01(1)</td>
</tr>
<tr>
<td>F</td>
<td>0.05(4)</td>
</tr>
<tr>
<td>Total</td>
<td>93.93</td>
</tr>
</tbody>
</table>

Data in the parentheses of compositions represent standard derivations

* Number of electron microprobe analyses in parentheses

ᵇ Total Fe as FeO

* LA-ICP-MS analyses
Table 2 Unit-cell parameters and volumes of schorl at high pressure and room temperature conditions

<table>
<thead>
<tr>
<th>P (GPa)</th>
<th>a (Å) (Pt)</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>V (Å3)</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>-</td>
<td>15.9532(3)</td>
<td>7.1751(3)</td>
<td>1581.45(5)</td>
<td>2.2234</td>
</tr>
<tr>
<td>0.87(5)</td>
<td>3.91904(9)</td>
<td>15.9303(10)</td>
<td>7.1406(11)</td>
<td>1569.3(3)</td>
<td>2.2309</td>
</tr>
<tr>
<td>1.75(8)</td>
<td>3.91499(9)</td>
<td>15.9076(12)</td>
<td>7.1071(13)</td>
<td>1557.5(4)</td>
<td>2.2383</td>
</tr>
<tr>
<td>2.75(8)</td>
<td>3.91046(9)</td>
<td>15.8825(14)</td>
<td>7.0725(13)</td>
<td>1545.0(5)</td>
<td>2.2457</td>
</tr>
<tr>
<td>3.63(3)</td>
<td>3.90655(8)</td>
<td>15.8633(14)</td>
<td>7.0382(13)</td>
<td>1533.8(5)</td>
<td>2.2539</td>
</tr>
<tr>
<td>4.35(1)</td>
<td>3.90338(8)</td>
<td>15.8475(13)</td>
<td>7.0147(14)</td>
<td>1525.7(5)</td>
<td>2.2592</td>
</tr>
<tr>
<td>4.97(3)</td>
<td>3.90069(9)</td>
<td>15.8355(13)</td>
<td>6.9919(13)</td>
<td>1518.4(5)</td>
<td>2.2648</td>
</tr>
<tr>
<td>5.40(1)</td>
<td>3.89885(9)</td>
<td>15.8247(13)</td>
<td>6.9793(13)</td>
<td>1513.6(5)</td>
<td>2.2674</td>
</tr>
<tr>
<td>6.05(1)</td>
<td>3.89608(8)</td>
<td>15.8091(14)</td>
<td>6.9595(13)</td>
<td>1506.3(6)</td>
<td>2.2716</td>
</tr>
<tr>
<td>6.60(1)</td>
<td>3.89376(9)</td>
<td>15.7983(14)</td>
<td>6.9413(14)</td>
<td>1500.4(6)</td>
<td>2.2760</td>
</tr>
<tr>
<td>7.50(1)</td>
<td>3.89001(8)</td>
<td>15.7765(16)</td>
<td>6.9163(15)</td>
<td>1490.8(6)</td>
<td>2.2811</td>
</tr>
<tr>
<td>8.20(1)</td>
<td>3.88713(9)</td>
<td>15.7636(15)</td>
<td>6.8937(15)</td>
<td>1483.5(7)</td>
<td>2.2867</td>
</tr>
<tr>
<td>8.95(1)</td>
<td>3.88408(8)</td>
<td>15.7467(17)</td>
<td>6.8720(18)</td>
<td>1475.7(7)</td>
<td>2.2914</td>
</tr>
<tr>
<td>9.38(3)</td>
<td>3.88235(9)</td>
<td>15.7387(18)</td>
<td>6.8623(17)</td>
<td>1472.1(8)</td>
<td>2.2935</td>
</tr>
<tr>
<td>10.00(5)</td>
<td>3.87988(9)</td>
<td>15.7268(20)</td>
<td>6.8456(19)</td>
<td>1466.3(9)</td>
<td>2.2974</td>
</tr>
</tbody>
</table>

Numbers in parenthesis represent standard deviations.
<table>
<thead>
<tr>
<th>P (GPa)</th>
<th>a (Å) (Pr)</th>
<th>T (K)</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>V (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.96(3)</td>
<td>3.91192(8)</td>
<td>373</td>
<td>15.8835(11)</td>
<td>7.0712(12)</td>
<td>1545.0(1)</td>
</tr>
<tr>
<td>3.48(4)</td>
<td>3.90959(7)</td>
<td>373</td>
<td>15.8726(12)</td>
<td>7.0517(13)</td>
<td>1538.6(4)</td>
</tr>
<tr>
<td>6.45(8)</td>
<td>3.89666(9)</td>
<td>373</td>
<td>15.8055(11)</td>
<td>6.9546(14)</td>
<td>1504.6(3)</td>
</tr>
<tr>
<td>6.84(7)</td>
<td>3.89501(8)</td>
<td>373</td>
<td>15.7977(13)</td>
<td>6.9420(13)</td>
<td>1500.4(4)</td>
</tr>
<tr>
<td>11.23(6)</td>
<td>3.87715(8)</td>
<td>373</td>
<td>15.7065(12)</td>
<td>6.8228(16)</td>
<td>1457.6(3)</td>
</tr>
<tr>
<td>11.62(6)</td>
<td>3.87562(9)</td>
<td>373</td>
<td>15.6987(13)</td>
<td>6.8122(13)</td>
<td>1453.9(5)</td>
</tr>
<tr>
<td>15.77(7)</td>
<td>3.85992(9)</td>
<td>373</td>
<td>15.6247(18)</td>
<td>6.7167(17)</td>
<td>1420.1(8)</td>
</tr>
<tr>
<td>3.44(5)</td>
<td>3.91309(9)</td>
<td>473</td>
<td>15.8782(15)</td>
<td>7.0618(15)</td>
<td>1541.9(5)</td>
</tr>
<tr>
<td>4.00(6)</td>
<td>3.91057(8)</td>
<td>473</td>
<td>15.8654(12)</td>
<td>7.0414(16)</td>
<td>1535.0(4)</td>
</tr>
<tr>
<td>6.61(5)</td>
<td>3.89914(8)</td>
<td>473</td>
<td>15.8075(15)</td>
<td>6.9604(13)</td>
<td>1506.2(6)</td>
</tr>
<tr>
<td>6.90(7)</td>
<td>3.89790(9)</td>
<td>473</td>
<td>15.8013(13)</td>
<td>6.9508(14)</td>
<td>1503.0(6)</td>
</tr>
<tr>
<td>11.67(6)</td>
<td>3.87836(8)</td>
<td>473</td>
<td>15.7045(18)</td>
<td>6.8171(16)</td>
<td>1456.1(8)</td>
</tr>
<tr>
<td>11.86(7)</td>
<td>3.87761(8)</td>
<td>473</td>
<td>15.7006(17)</td>
<td>6.8113(15)</td>
<td>1454.1(8)</td>
</tr>
<tr>
<td>16.05(5)</td>
<td>3.86165(8)</td>
<td>473</td>
<td>15.6229(14)</td>
<td>6.7150(16)</td>
<td>1419.4(7)</td>
</tr>
<tr>
<td>3.84(8)</td>
<td>3.91464(9)</td>
<td>573</td>
<td>15.8741(16)</td>
<td>7.0558(18)</td>
<td>1539.8(8)</td>
</tr>
<tr>
<td>7.08(9)</td>
<td>3.90033(8)</td>
<td>573</td>
<td>15.8022(18)</td>
<td>6.9535(17)</td>
<td>1503.7(8)</td>
</tr>
<tr>
<td>11.83(6)</td>
<td>3.88070(8)</td>
<td>573</td>
<td>15.7071(13)</td>
<td>6.8194(13)</td>
<td>1457.0(4)</td>
</tr>
<tr>
<td>15.50(4)</td>
<td>3.86651(9)</td>
<td>573</td>
<td>15.6373(12)</td>
<td>6.7285(12)</td>
<td>1424.9(3)</td>
</tr>
<tr>
<td>3.75(5)</td>
<td>3.91847(9)</td>
<td>673</td>
<td>15.8804(13)</td>
<td>7.0656(15)</td>
<td>1543.1(5)</td>
</tr>
<tr>
<td>7.38(7)</td>
<td>3.90225(8)</td>
<td>673</td>
<td>15.8018(17)</td>
<td>6.9507(15)</td>
<td>1503.1(7)</td>
</tr>
<tr>
<td>11.97(5)</td>
<td>3.88315(9)</td>
<td>673</td>
<td>15.7082(14)</td>
<td>6.8199(14)</td>
<td>1457.3(5)</td>
</tr>
</tbody>
</table>

Numbers in parenthesis represent standard deviations.
Table 4 The thermal equation of state parameters of tourmalines

<table>
<thead>
<tr>
<th>Sample</th>
<th>K_0</th>
<th>K'_0</th>
<th>V_0</th>
<th>αV_0</th>
<th>$(\partial K/\partial T)_P$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schorl</td>
<td>111.6(9)</td>
<td>4.4(2)</td>
<td>1581.45(25)</td>
<td>—</td>
<td>—</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>111.6(4)</td>
<td>4.4(1)</td>
<td>1581.45(fixed)</td>
<td>—</td>
<td>—</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>113.6(3)</td>
<td>4.0(fixed)</td>
<td>1581.04(20)</td>
<td>—</td>
<td>—</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>110.5(6)</td>
<td>4.6(2)</td>
<td>1581.2(2)</td>
<td>2.4(2)</td>
<td>-0.012(3)</td>
<td>This study</td>
</tr>
<tr>
<td>Schorl</td>
<td></td>
<td></td>
<td>1581.41(4)</td>
<td>1.61(3)</td>
<td>—</td>
<td>Chen et al. (2023)</td>
</tr>
<tr>
<td></td>
<td>184(4)</td>
<td>4.0(fixed)</td>
<td>1595.52(198)</td>
<td>—</td>
<td>—</td>
<td>Li et al. (2004)</td>
</tr>
<tr>
<td>Elbaite</td>
<td>114.7(7)</td>
<td>4.2(1)</td>
<td>1540.7(6)</td>
<td>—</td>
<td>—</td>
<td>Chen et al. (2022)</td>
</tr>
<tr>
<td></td>
<td>116.4(4)</td>
<td>4.0(fixed)</td>
<td>1540.1(4)</td>
<td>—</td>
<td>—</td>
<td>Chen et al. (2022)</td>
</tr>
<tr>
<td>Maruyamaite</td>
<td>112(3)</td>
<td>4.5(4)</td>
<td>1588(1)</td>
<td>—</td>
<td>—</td>
<td>Likhacheva et al. (2022)</td>
</tr>
<tr>
<td></td>
<td>115.6(9)</td>
<td>4.0(fixed)</td>
<td>1587.2(7)</td>
<td>—</td>
<td>—</td>
<td>Likhacheva et al. (2022)</td>
</tr>
<tr>
<td>Uvite</td>
<td>96.6(9)</td>
<td>12.5(4)</td>
<td>1537.1(11)</td>
<td>4.39(27)</td>
<td>-0.009(6)</td>
<td>Xu et al. (2016)</td>
</tr>
</tbody>
</table>

Numbers in parenthesis represent standard deviations.
Table 5 The axial compressibility of tourmaline

<table>
<thead>
<tr>
<th>Sample</th>
<th>K_a (GPa)</th>
<th>K'_a (Å)</th>
<th>a_0</th>
<th>K_c (GPa)</th>
<th>K'_c (Å)</th>
<th>c_0</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schorl</td>
<td>621(9)</td>
<td>16(3)</td>
<td>15.9532(3)</td>
<td>174(2)</td>
<td>8.7(5)</td>
<td>7.1751(3)</td>
<td>This study</td>
</tr>
<tr>
<td>Elbaite</td>
<td>610(8)</td>
<td>20(1)</td>
<td>15.8305(9)</td>
<td>182(1)</td>
<td>8.2(1)</td>
<td>7.0991(9)</td>
<td>Chen et al. (2022)</td>
</tr>
</tbody>
</table>

Refitting using the data presented in Chen et al. (2022). Numbers in parenthesis represent standard deviations.