1 Revision 1

2	Enrichment and fractionation of rare earth elements (REEs) in ion-adsorption-
3	type REE deposits: Constraints of an iron (hydr)oxide–clay mineral composite
4	
5	XIAOLIANG LIANG ^{1, 3, *} , PUQIU WU ^{1, 3} , GAOLING WEI ² , YIPING YANG ¹ ,
6	SHICHAO JI ¹ , LINGYA MA ^{1,3} , JINGWEN ZHOU ^{1,3} , WEI TAN ^{1,3} , JIANXI
7	ZHU ^{1, 3} , YOSHIO TAKAHASHI ⁴
8	
9	¹ CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key
10	Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry,
11	Chinese Academy of Sciences, Guangzhou 510640, P.R. China;
12	² National-Regional Joint Engineering Research Center for Soil Pollution Control
13	and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-
14	environmental Pollution Control and Management, Institute of Eco-environmental
15	and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, P.R.
16	China;
17	³ University of Chinese Academy of Sciences, Beijing 100049, P.R. China;
18	⁴ Department of Earth and Planetary Science, Graduate School of Science, The
19	University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
20	

^{*} Corresponding author. E-mail: liangxl@gig.ac.cn (X.L. LIANG). # The authors contribute equally.

21

ABSTRACT

Ion-adsorption-type rare earth element (REE) deposits are the source of more than 90% 22 of global heavy REEs (HREEs). Thus, understanding the ore genesis of REEs, 23 particularly the distribution characteristics and enrichment mechanisms of HREEs, is 24 vital for efficient exploration and mining of ion-adsorption-type REE deposits 25 26 worldwide. The characteristics and petrogenesis of bedrock, and the aqueous mobility of REEs, are known to be important factors controlling REE accumulation and 27 fractionation in the weathering crust of REE deposits. However, the effect of REE 28 29 adsorption on secondary minerals, which is a crucial step in deposit formation, remains poorly understood. This problem was addressed by the study described herein, which 30 involved a systematic analysis of the complete weathering profile (78 m) of the Renju 31 32 ion-adsorption-type REE deposit in South China and a simulated adsorption experiment. Clay minerals and iron (Fe) (hydr)oxides are the dominant REE adsorbents in the 33 weathering crust and most are micro-to-nanosized particles. Thus, the fine particle 34 35 fraction (< $2 \mu m$) was separated from field samples, to better disclose their effects on the concentration and redistribution of REEs. Phase compositions and morphologies 36 characterized by X-ray diffraction, Mössbauer 37 were spectrometry, and scanning/transmission electron microscopy (SEM/TEM), which revealed that various 38 clay minerals and Fe (hydr)oxides form composites along the profile of the deposit. 39 Composites of ferrihydrite-kaolinite, goethite-kaolinite/halloysite, and hematite-40 kaolinite/halloysite were found to be distributed in the semi-weathered, completely 41 weathered, and topsoil layers, respectively, with different sizes and shapes. The 42

43 concentrations and partition patterns of REEs in different occurrence states were distinguished after sequential extraction. Ion-exchangeable-REEs were the major state 44 and enriched in the upper completely weathered layer. These species were found to be 45 adsorbed onto kaolinite and halloysite via electrostatic attraction, without obvious 46 47 fractionation. Fe (hydr)oxides were determined to comprise ca. 20% of REEs at most 48 depths and over 50% of REEs in the topsoil and semi-weathered layer. It was found that Fe (hydr)oxides scavenge REEs through complexation and oxidation, resulting in 49 HREE enrichment and a positive cerium (Ce) anomaly, respectively. In addition, 50 51 compared with crystalline Fe (hydr)oxides, amorphous Fe (hydr)oxides immobilize more REEs but exhibit weaker preferential adsorption of HREEs. The above-described 52 findings are consistent with the results of simulated experiments for REE adsorption 53 54 onto a clay mineral-Fe (hydr)oxide composite (Bt-60), which was obtained from hydrothermal processing of biotite. Furthermore, the distributions and stabilities of 55 56 LREEs and HREEs were distinguished by TEM-energy-dispersive spectroscopy (EDS) 57 of Bt-60 before and after REE extraction by ammonium sulfate. The phase transformation pathways of clay minerals and Fe (hydr)oxides, and their different 58 enrichment and fractionation characteristics in REEs, were also discussed in terms of 59 60 the structure and surface properties of minerals, adsorption mechanisms, and variations in chemical properties across the REE group. The results shed new light on how clay 61 minerals and Fe (hydr)oxides affect the enrichment and fractionation of REEs in ion-62 adsorption-type deposits. 63

64 Keywords: Ion-adsorption-type REE deposit; clay minerals; Fe (hydr)oxides;

- adsorption; fractionation; weathering
- 66

67

INTRODUCTION

Rare earth elements (REEs) encompass lanthanide-group elements plus yttrium (Y) and 68 scandium, and are critical metals for various modern industries. Compared to light 69 70 REEs (LREEs; lanthanum (La) to europium (Eu)), there are lower crustal concentrations of heavy REEs (HREEs; gadolinium (Gd) to lutetium (Lu) + yttrium 71 (Y)), but HREEs are more important in renewable energy and high-technology 72 73 industries (Chakhmouradian and Wall, 2012). The growing demand for HREEs coupled with the decrease in HREE supplies from China has led to HREE resources to become 74 a popular exploration target worldwide. Currently, ion-adsorption-type REE deposits 75 76 account for more than 90% of global HREE supply (Borst et al., 2020), and thus have become a focus of interest. 77

To date, over 200 ion-adsorption-type REE deposits have been identified 78 79 predominantly in South China (Sanematsu and Watanabe, 2016), with sporadic identification globally, e.g., Madagascar (Berger et al., 2014), the Democratic Republic 80 of Congo (Kasay et al., 2022), Brazil (Costa et al., 2020), and Southeast Asia 81 82 (Sanematsu et al., 2013). These deposits are generated by *in-situ* weathering processes and thus are invariably located in temperate or tropical regions, where the moderate-to-83 high temperatures, precipitation rates and strong microbial activities facilitate the 84 decomposition of REE-bearing minerals and the downward transfer of soluble REEs 85 (Li et al., 2022). Subsequently, aqueous REEs are adsorbed onto secondary minerals 86

87	and accumulated in regolith, resulting in the fractionation into LREEs and HREEs (Li
88	et al., 2019). Interestingly, only 10% of REE deposits are enriched in HREEs, with the
89	total concentration (Σ) of HREE oxides comprising greater than 50% of the total REE
90	resource (Li et al., 2019). Nevertheless, in all of these deposits, compared with the
91	concentrations of REEs (and especially HREEs) in parent rocks, those in regolith can
92	be up to ten-fold greater. Thus, it is imperative to systematically investigate the
93	enrichment of HREEs during the weathering of REE deposits to enhance the
94	understanding of ore formation.
95	Various factors have been reported to control the redistribution and fractionation of
96	REEs, such as the composition of REE-bearing minerals in parent rocks (Xu et al.,
97	2017), solution complexation and differential mobilities of REE complexes (Quinn et
98	al., 2006), and adsorption of REEs by secondary minerals (Coppin et al., 2002). It is
99	generally accepted that the REE patterns in regolith are largely inherited from those in
100	parent rocks and that HREE-enriched deposits predominantly develop on highly
101	differentiated muscovite granites (Li et al., 2017). In parent rock, fragile HREE-bearing
102	minerals including parasite-(Y), synchysite-(Y), titanite, and gadolinite, are the source
103	of HREEs (Li et al., 2017). During the weathering process, REE-bearing minerals are
104	decomposed by acidic soil water at shallow depths, leading to the release of REE ions
105	into leachate. REE ions then form complexes with organic or inorganic substances, or
106	transfer as REE(III), and migrate downward (Li et al., 2021; Tang and Johannesson,

107 2010). Compared with LREEs, HREEs bind more strongly to several ligands (e.g.,

108 humic acid, fluoride, and carbonate) (Luo and Byrne, 2004). Thus, LREEs typically

accumulate at shallow depths, whereas HREEs are transported to deeper depths (Li et
al., 2019). As pH increases with depth, REEs are adsorbed onto secondary minerals,
e.g., clay minerals and Fe (hydr)oxides (Borst et al., 2020). However, compared with
what is known regarding parent rock and solution complexation, the effect of adsorption
on the fractionation between LREEs and HREEs has been less explicit, especially in
terms of the following aspects.

(1) Clay minerals, typically kaolinite and halloysite, are the primary adsorbents of 115 REEs. The adsorption experiment showed that although REE adsorption increased with 116 117 pH, there was no fractionation under reaction conditions identical to those in soil and ground water (Yang et al., 2019). However, calculations showed that LREEs are 118 preferentially adsorbed by clay minerals (Coppin et al., 2002). Additionally, in the 119 presence of high concentrations of ligands (e.g., humic acid and carbonate), more 120 aqueous LREEs than HREEs were removed by kaolinite, whereas HREEs were 121 strongly complexed and remained in solution. REE adsorption is also affected by the 122 123 properties of minerals, e.g., crystallinity, morphology, and surface properties. For example, in the Zudong deposit, the world's largest regolith-hosted HREE deposit, 124 weathering transforms microcrystalline kaolinite into large, highly crystalline 125 vermicular kaolinite, with the latter having the specific surface area (SSA), porosity, 126 and adsorption-site availability that are substantially different from those of the former 127 (Li and Zhou, 2020). These variations probably give rise to the contrasting adsorption 128 ability of different soil horizons and accordingly the redistribution of REEs, although 129 this has yet to be confirmed by careful analysis of field samples. 130

131	(2) In addition to clay minerals, Fe (hydr)oxides are ubiquitous in regolith and are
132	formed by the dissolution and recrystallization of ferric silicate minerals, e.g., biotite
133	and chlorite in the bedrock (Galán and Ferrell, 2013). With large surface areas, abundant
134	surface hydroxyl groups, and strong oxidation abilities, Fe (hydr)oxides are important
135	REE scavengers (Ohta et al., 2009a). Sequential extraction of a typical weathering crust
136	revealed that the REE concentration in Fe (hydr)oxide-associated fraction was second
137	only to that in an ion-exchangeable fraction (Huang et al., 2021b). Moreover, Fe
138	(hydr)oxides can immobilize REEs through surface complexation and have a higher
139	adsorption capacity for HREEs than LREEs (Ohta et al., 2009b). This implies that REE
140	adsorption on Fe (hydr)oxides is crucial for their fractionation and availability, which
141	has yet to be comprehensively investigated.
142	(3) During progressive weathering, both Fe (hydr)oxides and clay minerals undergo

crystallization and phase transformation (Cornell and Schwertmann, 1996; Galán and 143 Ferrell, 2013). In most cases, Fe (hydr)oxide particles adhere to clay minerals to form 144 145 nanosized composites. This decreases the particle sizes and thus increases their SSAs, which in turn increases the adsorption capacity for REEs. On the other hand, the loading 146 of Fe (hydr)oxides onto clay minerals causes a shift in the zero point of charge (ZPC) 147 to a higher pH (Sakurai et al., 1990). This suggests that the adsorption capacities of 148 composites for REEs differ from those of individuals. However, little is known about 149 the phase composition, surface properties, and REE adsorption capacities of Fe 150 (hydr)oxide and clay mineral composites in the weathering crust, or their relative 151 contributions to REE enrichment and fractionation. 152

Accordingly, in this study, the Renju ion-adsorption-type REE deposit was 153 investigated. Weathering profile samples were collected from the deposit by core 154 drilling, and then particles less than 2 µm in size were extracted and used as the object 155 of this study. This approach was used for two reasons. Most clay minerals and Fe 156 (hydr)oxides are smaller than 2 µm in such deposits. On the other hand, secondary REE-157 158 bearing minerals, e.g., apatite, allanite, monazite, etc, are absent from fine particle samples, which facilitates sequential extraction-based analysis and nanoscale 159 morphological observation. Additionally, compared with coarse particles, fine particles 160 161 have larger SSAs and higher mobilities, and thus are more involved in the transport and enrichment of REEs (Li and Zhou, 2020). The obtained fine particle samples were 162 analyzed to determine their mineral compositions and surface properties, and the type 163 and concentrations of REE species they contained. REE-adsorption simulation 164 experiments were also carried out using hydrothermally treated biotite, followed by 165 microscopic characterization. 166

167

168

SAMPLEING AND ANALYTICAL METHODS

169 Geological background

The Renju deposit is located in Pingyuan County, Meizhou City, Guangdong Province, South China. The deposit contains a total rare-earth oxide (REO) resource of 20,467 tons with a grade of 0.153%-0.197% REOs. It is hosted in the weathered crust of the Renju pluton, an early Yanshanian granitoid pluton with an exposed area of 29.3 km². The Renju granites consist of biotite granite, granite porphyry and quartz diorite. More details on the geological background of Renju deposit are provided in Figure S1and Text S1.

177

178 Sampling and sample preparation

179 A 78.0-m-long drill core from laterite to fresh granitewas extracted using a custom-180 made double-tube drilling system. The outermost part of each sample in the drill core was scraped off, and then the uncontaminated samples from different weathering stages 181 were collected by quartering. 182 The fraction of fine particles (<2 µm) was collected as follows. First, a 250-g sample 183 was added to a 5-L cylinder filled with deionized water, and the resulting suspension 184 was dispersed by vigorous shaking and ultrasonication in a bath for 15 min. Next, the 185 186 fine particle fraction was obtained through sedimentation for 25 h, according to Stokes' law (Anderson et al., 1981), and subsequently dried at 60 °C to drive off non-crystalline 187 188 water. 189

190 Sample characterization

191 Particle size distribution

The particle size distributions of samples were analyzed on an LS I3 320 laserdiffraction particle size analyzer, which had a detection range of 0.2–2000 μm and an
error of less than 5%.

195

196 pH measurement

The pH of samples was measured through the following procedure. A 10-g sample
was mixed with 25 mL of deionized water. The resulting suspension was stirred for 8
h, and the pH of the liquid supernatant was monitored using a Mettler-Toledo FiveEasy
Plus[™] pH meter.

201

202 X-ray diffraction (XRD) analysis

XRD patterns were collected from 2° to 70° (2 θ) for powder samples and oriented 203 samples at a scanning speed of 3° min⁻¹ on a Bruker D8 Advance X-ray diffractometer, 204 205 operated at 40 kV and 40 mA, using nickel (Ni)-filtered copper (Cu) K-α radiation. Oriented samples were prepared by carefully pipetting a clay suspension onto a glass 206 slide and allowing the coated slide to air-dry at room temperature. Some of the resulting 207 samples were solvated with ethylene glycol vapor in a glass desiccator at 60 °C for 24 208 h. This allowed ethylene glycol to intercalate into any swelling clay minerals (e.g., 209 210 montmorillonite and chlorite) that were present, thereby causing their interlayer spacing 211 to increase, which would be demonstrated by the shifting of their (001) diffraction peak to a low angle. Similarly, formamide intercalation was used to detect the presence of 212 213 kaolinite and halloysite (Churchman et al., 1984). Thus, some of the oriented samples 214 were sprayed with formamide solution and then air dried for 2 h. After such a treatment, halloysite has basal spacing of 10-11 Å, whereas kaolinite retains its original basal 215 spacing, i.e., ca. 7 Å. The relative proportions of these two minerals were determined 216 by computing $I_{10}/(I_7 + I_{10})$ ratios from the XRD patterns, in which I_7 and I_{10} denote the 217 intensity peaks near 7 and 10 Å, respectively. Refinement and quantification of powder 218

- 219 XRD data were conducted using Java Agent Development Framework 6.5 software.
- 220

221 Major element analysis

Samples were dry-ashed at 900 °C to remove carbonate and organic matter. 222 Subsequently, approximately 0.50 g of each treated sample was combined with 4 g of 223 224 a flux composed of lithium metaborate and lithium tetraborate, and the resulting mixture was fused into discs at 1200 °C. The discs were then analyzed using a Rigaku 225 ZSX100e X-ray fluorescence (XRF) spectrometer with an analytical accuracy and 226 227 precision of less than 1%. The concentration of major element in bulk sample was analyzed in TABLE S1. Subsequently, the major element concentrations were used to 228 calculate the chemical index of alteration (CIA) as follows (Eq. (1)): 229

230
$$CIA = Al_2O_3/(Al_2O_3 + CaO + Na_2O + K_2O) \times 100\%$$
 (1)

231

232 Trace element analysis

Powder samples were obtained from the drill core, dried at 105 °C for 3 h, and then 233 baked at 550 °C for 3 h to remove organic material. Subsequently, approximately 0.04 234 g of each solid sample was dissolved in a mixture of hydrofluoric acid (HF), 235 hydrochloric acid (HCl), and nitric acid (HNO₃) at 180 °C, and the trace element 236 concentration in the resulting solution was analyzed using a Thermo Scientific iCAP 237 Oc inductively coupled plasma-mass spectrometry (ICP-MS) system. Quantification 238 was achieved by comparison against multi-element synthetic certified standard 239 solutions and a rhodium standard solution, which served as the internal standard. 240

Accuracy and precision were greater than 3% for all of the analyzed elements.

242

243 Mössbauer spectral analysis

The ⁵⁷Fe Mössbauer spectra were collected at room temperature or 14 K using 244 standard Mössbauer instrumentation (WissEL GmbH, Germany) equipped with a 245 246 closed-cycle cryostat. The ⁵⁷Co in the rhodium matrix was used as a source of 14.4 keV gamma rays. Raw spectra were evaluated using MossWinn software. All of the spectra 247 were calibrated against a standard absorber, which was 7-µm-thick α-Fe foil. The 248 249 spectra were deconvoluted based on least-squares fitting of the Lorentzian line-shaped profile. The obtained sub-spectra attributable to different phases were classified on the 250 basis of their hyperfine parameters, i.e., isomer shift (IS), quadrupole splitting (QS), 251 and magnetic hyperfine field $(B_{\rm hf})$. The proportion of each phase was determined by 252 calculating the area of its corresponding sub-spectrum. 253

254

255 Scanning/transmission electron microscopy and EDX spectroscopy analysis

Micro-to-nanoscale observations of samples were performing by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Backscattered electron images of resin-impregnated polished thin sections were obtained using a Hitachi SU8010 SEM instrument operated at 15 kV. A sample was prepared for TEM and high-resolution TEM (HRTEM) by dispersion in ethanol, and a drop of the resulting suspension was then transferred onto a carbon-coated Cu grid, after which the ethanol was allowed to evaporate. Subsequently, TEM and HRTEM images of the dried sample

263	were obtained using an FEI Talos F200S instrument operated at 200 kV. Selected-area
264	electron diffraction (SAED) patterns and fast Fourier transforms (FFTs) from high-
265	resolution lattice-fringe images were analyzed to characterize mineral phases. EDS was
266	performed using an energy-dispersive X-ray (EDX) detector operating in scanning
267	transmission electron microscopy (STEM) mode.
268	
269	Sequential extraction experiments
270	The following five-step sequential extraction method was used, based on a previous
271	study (Ma et al., 2007).
272	Step 1: Ion-exchangeable portion of REEs. 1.0 g of a fine particulate sample was
273	added to 40 mL of a 0.5 mol \cdot L ⁻¹ solution of ammonium sulfate ((NH ₄) ₂ SO ₄) of pH 5,
274	and the resulting suspension was continuously agitated for 10 h.
275	Step 2: Organic-associated portion of REEs. The solid residue from step 1 was
276	added to 40 mL of a 0.1 mol \cdot L ⁻¹ solution of sodium pyrophosphate of pH 10, and the
277	resulting suspension was agitated for 10 h.
278	Step 3: Amorphous Fe (hydr)oxide-associated portion of REEs. The solid residue
279	from step 2 was treated with 30 mL of a 0.25 mol \cdot L ⁻¹ hydroxylamine hydrochloride
280	(NH ₂ OH·HCl) and 0.25 mol·L ⁻¹ HCl solution of pH 2, and the resulting suspension was
281	heated in a water bath at 60 °C for 2 h.
282	Step 4: Crystalline Fe (hydr)oxide-associated portion of REEs. The residue from
283	step 3 was treated with 40 mL of a 1 mol·L ⁻¹ NH ₂ OH·HCl and 25% acetic acid solution,
284	and the resulting suspension was heated in a water bath at 90 °C for 3 h.

Step 5: Residual REE-bearing minerals. The solid residue from step 4 was washed twice with deionized water and then freeze-dried. The dried solid was added to a mixture of HCl, HNO₃, HF, and perchloric acid, and the resulting suspension was dissolved by heating at 200 °C for 3 h.

In each step, the supernatant was separated from the solids by centrifugation at 4000 rpm for 15 min. Subsequently, the supernatant was passed through a 0.22- μ m filter, and the resulting filtrate was acidified with 1% v/v HNO₃ and then stored at 4 °C until elemental analysis on a Thermo Fisher iCAP Qc ICP-MS system. This revealed the REE concentrations in the supernatant, which were used to calculate the REE concentrations in each fraction. The solid residue was used in the next step of the extraction, as detailed above.

296

297 Synthesis of Fe (hydr)oxide and clay mineral composite

All of the chemicals and reagents were of analytical grade and used as received. The Fe (hydr)oxide and clay mineral composite was synthesized via a hydrothermal method (as detailed below) from biotite, which was collected from Lingshou County, Hebei Province, China. The composite was subsequently purified and then ground into a powder, and the chemical composition of the resulting powder was determined by XRF spectroscopy (TABLE S2).

The hydrothermal reaction was conducted as follows: Refined biotite samples (4.4 g L^{-1}) were added to a solution of 0.60 mol L^{-1} aluminum chloride (AlCl₃) hexahydrate (adjusted to a pH of 2 by addition of HCl) in a molar ratio of 1:100 in a Teflon vessel,

307	which was subsequently sealed in a stainless-steel autoclave and then heated at 150 °C
308	for 60 days. Then, the autoclave was allowed to cool to room temperature and the
309	precipitates were collected by centrifugation at 11,000 rpm for 10 min. The precipitates
310	were washed three times with deionized water to remove residual AlCl ₃ and were then
311	freeze-dried. The resulting solid was labeled "Bt-60d".

312

313 REE adsorption experiment

REEs were adsorbed onto Bt-60d to simulate REE enrichment in a regolithic profile. 314 The adsorption experiment was performed at 25 °C under atmospheric conditions in 315 Teflon bottles to minimize retention of REEs by container walls. The suspension for 316 each experiment was prepared by mixing 100 mg (M) of Bt-60 with 200 mL (V) of an 317 REE solution containing 0–0.5 mg·L⁻¹ of each lanthanide and Y, or 10 mg L⁻¹ of 318 neodymium (Nd) or ytterbium (Yb). The pH of each suspension was adjusted to by the 319 addition of 0.1 mol L⁻¹ HNO₃ or 0.1 mol L⁻¹ NaOH, and the resulting suspension was 320 321 agitated for 24 h until an equilibrium was established. The pH of each suspension was determined before and after the adsorption experiments, and the variation was found to 322 323 be less than 0.25. Each adsorption experiment was performed three times using the same protocol to enable correction for experimental error. After adsorption, a solid 324 sample was separated from the solution by centrifugation at 11,000 rpm for 20 min and 325 subsequently analyzed by TEM-EDS analysis and REE desorption by (NH₄)₂SO₄. The 326 supernatant was passed through a 0.22-µm filter, and the filtrate was acidified to pH by 327 treatment with 1% v/v HNO3. The resulting sample was analyzed by ICP-MS to an 328

329 accuracy and precision of better than 3%. The adsorption concentration $(q_e, \mu g \cdot g^{-1})$ and adsorption coefficient $(K_d, mL \cdot g^{-1})$ were 330 calculated by Eqs. (2) and (3), as follows:

332
$$q_e = (C_0 - C_e)V/m$$

333
$$K_{\rm d} = (C_0/C_{\rm t} - 1)V/M \tag{3}$$

(2)

334 where C_0 and C_t are the initial and equilibrium concentrations of REEs in solution, respectively. 335

The adsorption isotherms were fitted by a three-parameter Sips isotherm model that 336 describes heterogeneous systems and is given by Eq. (4): 337

338
$$q_e = q_m K_s C_e^{ns} / (1 + K C_e^{ns})$$
 (4)

where $q_{\rm m}$ (mg/g) is the maximum adsorption concentration and $K_{\rm s}$ (L^{ns}mg^{-ns}) is the Sips 339 340 isotherm constant; and ns is the Sips isotherm exponent, which ranges from -1 to +1. The Sips model becomes the Langmuir model when ns = 1 and becomes the Freundlich 341 model at low C_0 , and thus can represent most gas- or liquid-phase adsorption systems. 342 343 The Ce anomaly (δ Ce) was calculated using Eq. (5), as follows:

344
$$\delta Ce = C_{Ce} / [(C_{La} + C_{Pr})/2]$$
 (5)

where C_{Ce} , C_{La} , and C_{Pr} are the concentrations of Ce, La, and Pr in each fraction after 345 346 normalization to the concentration in parent rock, respectively.

347

331

RESULTS 348

Characteristics of the profile of the Renju deposit 349

From the top to down, the weathering profile of the Renju deposit can be divided into 350

351	four zones based on CIAs: a lateritic horizon (A horizon, $0-9$ m, CIA > 90), a
352	completely weathered horizon (B horizon, $9-59$ m, CIA = $75-90$), a semi-weathered
353	horizon (C horizon, 59–85 m, CIA = 70–75), and a fresh bedrock (P horizon, 85–90 m,
354	CIA < 70) (Figure 1). The thickness of the completely weathered horizon in the Renju
355	deposit (50 m) is greater than the reported thicknesses of the weathering crusts in other
356	typical deposits, e.g., the Zudong (6-30 m) (Li and Zhou, 2020), Dingnan (10 m)
357	(Murakami and Ishihara, 2008), Zhaibei (12 m) (Borst et al., 2020), and Huashan (12.5
358	m) (Bao and Zhao, 2008) deposits in China; the Antsirabe deposit (13.5 m) in
359	Madagascar (Ram et al., 2019); and the Phuket deposit (12 m) in Thailand (Sanematsu
360	et al., 2013).

The bedrock is fine-grained (0.5–2.0 mm) equigranular quartz diorite (Figure S2a), 361 composed mainly of plagioclase, hornblende, quartz, potassium feldspar (K-feldspar), 362 biotite, and chlorite, with the latter being the hydrothermal alteration product of 363 amphibole and biotite. REEs are primarily hosted in accessory minerals, such as allanite, 364 365 titanite, apatite, xenotime, zircon, and monazite, with increasing weathering resistance. The C horizon is yellow-green (Figure S2b), owing to extensive chloritisation of biotite 366 and hornblende. The protolith rock is decomposed, and fragments are widespread in 367 368 weathered fractures. The lower B horizon is a mottled brownish-yellow (Figure S2c), whereas the upper B horizon is a mottled red and white and is less compact, probably 369 due to the heterogeneous distribution of Fe (hydr)oxides in clay mineral aggregates 370 (Figure S2d). Weathered quartz remnants were observed at the macroscopic scale. The 371 A horizon is red and has a loose structure containing a few pores (Figure S2e). This 372

horizon is mainly composed of supergene minerals and contains some rounded residual
quartz grains, but almost no primary feldspar or biotite.

With the increase of depth, the pH gradually increases from 4.3 at the topsoil to 7.3 375 in C horizon (Figure 1). The variation of weathering degree and pH greatly alters the 376 distribution of main elements along the profile of the deposit. From the bottom up, the 377 378 proportion of silica gradually increases, from 56.4% in the bedrock to 78.8% in the A horizon. In contrast, the proportion of alumina remains relatively stable, varying from 379 12.3% to 22.6%. Massive Fe (hydr)oxide particles are present in the upper B horizon, 380 381 but the proportion of ferric oxide (Fe₂O₃) fluctuates along the profile of the deposit. For example, the proportion of Fe_2O_3 in the A horizon (3%) is higher than that in the upper 382 B horizon (1%). This is ascribable to the weak acidic environment in the regolith, as 383 384 this would contribute to the decomposition of minerals and the downward migration of more alkali metals and alkaline earth metals (e.g., potassium (K), sodium (Na), 385 magnesium, and calcium (Ca)). In contrast, Fe is concentrated in the lower B horizon, 386 with a maximum concentration of 11.8% at 54 m. This is probably ascribable to the 387 abundance of Fe-bearing minerals with high weathering resistance (e.g., chlorite and 388 biotite) in the bedrock, as these would not be affected by the initial stage of weathering. 389 The variation in the concentration of manganese dioxide (MnO₂) was found to be 390 similar to that of Fe₂O₃, but the concentration of MnO₂ is much lower than that of Fe₂O₃ 391 (i.e., the Fe-to-Mn ratio is 10–100). 392 Regarding the distribution of REEs (Figures 1 and S3), it was found that the \sum REE 393

concentration in bedrock is 496 ppm, which is markedly higher than the average $\sum \text{REE}$

395	concentration of granites in South China, i.e., 150-250 ppm (Li et al., 2017). The
396	chondrite-normalized REE pattern is right-inclined and has an (LREEs/HREEs) _N of 4.8,
397	indicating the relative enrichment of LREEs over HREEs. In the C horizon, the \sum REE
398	concentration and (LREEs/HREEs)_N are near-constant, at 350 ppm and 4.0–4.6,
399	respectively. In addition, the \sum REE concentration increases as the extent of weathering
400	increases. For example, in the lower B horizon, there is a high \sum REE concentration
401	(762 ppm) at 50 m, and the REE fractionation displays a slight HREE enrichment, as
402	the (LREEs/HREEs) _N is $1.1-2.7$, which is lower than that of bedrock. In the upper B
403	horizon (10–32 m), the \sum REE concentration rapidly increases and reaches a maximum
404	(3343 ppm) at 16 m that is ca. 6.6 fold higher than that in the bedrock. Moreover, in
405	this horizon, there is a substantial accumulation of LREEs and the (LREEs/HREEs) $_{\!\rm N}$
406	(5.0–17.8) is much larger than that of bedrock (4.8). In the A horizon, the $\sum REE$
407	concentration decreases to 350-550 ppm, close to that of parent rock. However, unlike
408	in bedrock, the REEs in this horizon are dominated by Ce, due to a strong positive Ce
409	anomaly, resulting in a high (LREEs/HREEs) $_{\rm N}$ (14.0). Thus, in the Renju profile,
410	LREEs and HREEs are concentrated in the upper and lower B horizon, respectively,
411	while Ce is enriched in the topsoil. These distribution characteristics are identical to
412	those of other typical deposits, e.g., the Zudong (Li et al., 2017) and Longnan deposits
413	(Bao and Zhao, 2008) in Jiangxi Province, China.
414	The bulk sample was divided into three fractions based on particle size: a fine particle

- 415 (< 2 μ m) fraction, a medium particle (2–20 μ m) fraction, and a large particle (>20 μ m)
- 416 fraction. Generally, the proportion of the fine-particle fraction increased from the

417	bottom to the top of the soil profile (Figure 2a). In the C horizon (e.g., 66 m), the fine
418	and large particle fractions comprised ca. 7% and 65% of the soil profile, respectively.
419	As the weathering degree increased, the proportion of the fine particle fraction
420	gradually increased, reaching 15%–35% in the B horizon and more than 40% in the A
421	horizon. In contrast, the proportion of large particle fraction steadily decreased as the
422	degree of weathering increased, reaching less than 5% in the A horizon. An analogous
423	trend was recently identified in the Zudong deposit (Li and Zhou, 2020).
424	In the current study, although the fine particle fraction was not predominant, its
425	contribution to REE enrichment was equal to or greater than that of the large particle
426	fraction. That is, in the A and upper B horizons (at depths of 2–20 m), the concentrations
427	of REEs in the fine particle fraction were comparable to those in the large particle
428	fraction (Figure 2b). Moreover, at greater depths (20-66 m), i.e., in the lower B and C
429	horizons, there was less of the fine particle fraction than of the other fractions, but REEs
430	were preferentially enriched in the fine particle fraction. For example, at 36 m,
431	approximately 88% of REEs were present in the fine particle fraction. Thus, given the
432	vital role of fine particles in REE mineralization, the fine particle fraction was extracted
433	to allow an in-depth investigation of its mineral composition, surface physicochemical
434	properties, and REE distribution.

435

436 Mineral composition

437 XRD

438 The main mineral phases were identified from the diffraction positions and intensities

439	in the XRD patterns of bulk samples (Figure S4). In the weathering crust, kaolinite (or
440	halloysite-7Å), quartz, and orthoclase were found to be the dominant minerals, as they
441	accounted for more than 70% of the mineral composition. In addition, their distribution
442	changes with the degree of weathering. Kaolinite and halloysite are predominant in the
443	A and upper B horizons (25%-50%), while orthoclase, a rock-forming mineral is
444	enriched in the lower part of the B horizon (25%–55%). In contrast, quartz is a mineral
445	resistant to weathering and is thus present in the same proportion across the whole
446	profile. The minor components detected include illite, muscovite, and plagioclase, but
447	these are rock-forming minerals or intermediate weathering products, and therefore
448	present only at the bottom of the B horizon such as at 55 m in Figure S4.
449	Compared with the bulk sample, the fine particle fraction (<2 μ m) was found to
450	contain more clay minerals and thus have more defined XRD patterns (Figure 3a).
451	Similar to the bulk samples, kaolinite and/or halloysite-7Å prevail along the profile of
452	the deposit, with characteristic (001), (020), and (002) reflections at ca. 7.17, 4.47, and
453	3.58 Å, respectively. Therefore, oriented samples before and after the intercalation of
454	formamide or ethylene glycol were investigated to determine the clay minerals that
455	were present (Figure 4). This was done as the preparation of oriented samples can reveal
456	the preferential orientation of clay minerals, since it enhances the intensity of
457	characteristic (001) reflections. Specifically, intercalation of formamide can distinguish
458	halloysite-7Å from kaolinite, as they have interlayer spacings in the range of 10–11 Å
459	and ca. 7 Å, respectively. Similarly, intercalation of ethylene glycol increases the
460	interlayer spacing of swelling clay minerals, which is revealed by the shifting of the

(001) diffraction to a low angle. This allows montmorillonite (a swelling clay mineral)
to be distinguished from chlorite (a non-swelling clay mineral). The XRD patterns of
oriented samples of all of the fine particle fractions except for that collected from the C
horizon (i.e., at 65 m) resembled those with ethylene glycol intercalation, thereby
demonstrating that swelling clay minerals are absent at most depths in the deposit.

466 By means of the aforementioned treatments, the mineral composition of the fine particle fraction was resolved (Figure 4). In topsoil (e.g., at 2 m), the patterns of oriented 467 samples without and with formamide intercalation, respectively, exhibited no 468 469 diffractions at 10 Å. This shows that in topsoil, halloysite-7Å is not present, whereas kaolinite, which could not be determined in the bulk sample, is predominant. With 470 increasing depth (i.e., at 6–20 m), both halloysite-7Å and kaolinite are present, as there 471 is a diffraction at ca. 10 Å in the patterns of formamide-intercalated samples but not in 472 those of non-formamide-intercalated samples. With a further increase in depth (i.e., 28-473 48 m), the patterns of oriented samples exhibited an unambiguous diffraction at ca. 10 474 475 Å, which is attributable to the (001) reflection of illite. Moreover, the reflections at ca. 5.02 and 4.48 Å correspond to characteristic (004) and (110) reflections of illite, 476 respectively. Interestingly, compared with the air-dried oriented samples, the intensity 477 of the diffractions of the formamide-intercalated samples was slightly stronger, 478 479 suggesting the presence of a small amount of halloysite. Thus, the clay minerals at 28-48 m are mainly kaolinite, halloysite, and illite. The diffraction at ca. 10 Å was also 480 present in the patterns of air-dry oriented samples from the C horizon (e.g., at 55-65 481 m), and its intensity was comparable to that in the patterns of formamide-intercalated 482

483 samples, which shows that halloysite is not present in the C horizon. This diffraction is attributable to the (001) reflection of muscovite. Additionally, there were characteristic 484 (002) and (-112) reflections of muscovite at ca. 4.95 and 3.62 Å, respectively (Figure 485 3a), and there is clearly more of this mineral in the C horizon than at 28–48 m. That is, 486 487 tiny lamellar-structured and weakly orientated illite is dominant at 28–48 m, whereas 488 intact lamellar-structured and strongly oriented muscovite is dominant at 55-65 m. Taken together with the 7 Å diffraction, which is assignable to kaolinite, these results 489 show that the clay minerals in the C horizon are mainly kaolinite and muscovite. 490 491 Additionally, a small amount of montmorillonite was detected in the powder XRD pattern of a sample from 65 m, as indicated by the (001) diffraction at 15 Å. However, 492 this diffraction was not present in the pattern of intercalated or non-intercalated samples, 493 494 which is probably ascribable to a low concentration of lowly crystalline montmorillonite being present. 495

Based on the XRD patterns and aforementioned phase identification, the clay mineral 496 composition in fine particle fraction is obtained (Figure 3b). The variation in the 497 composition was identical to that in the bulk sample. Specifically, in the C horizon, 498 kaolinite and muscovite account for 45%-55% and 10%-35% of the composition, 499 respectively. At greater depths (i.e., at 28-48 m), muscovite is absent, whereas 500 halloysite and illite are present, with the proportion of kaolinite being greatly enhanced 501 (ca. 70%) and higher than those of halloysite (<35%) and illite (<25%). In contrast, at 502 depths subjected to increased weathering (at 6–20 m), illite disappears, and the contents 503 of kaolinite and halloysite fluctuate in the range of 45%-70% and 30%-55%, 504

respectively. In the topsoil, kaolinite is the predominant clay mineral (95%). Compared
with the proportions of quartz and orthoclase in the bulk sample, those in the fine
particle fraction are significantly lower (<10% and <5%, respectively).

508

509 Mössbauer spectroscopy

Interestingly, XRD effectively distinguished the phases of clay minerals but failed to 510 detect Fe (hydr)oxides, even in samples from depths at which the Fe (hydr)oxide 511 proportion is up to 10%. Thus, ⁵⁷Fe Mössbauer spectroscopy was used to analyze 512 513 samples of the fine particle fraction to investigate the variation in the crystallinity and composition of Fe-bearing minerals. All of the spectra collected at room temperature 514 (RT, i.e., 298 K) contained a doublet overlapping one or two small sextets (Figure S5 515 and TABLE S3). The doublet had an IS value of 0.36 mm s⁻¹, which is consistent with 516 ferric ion (Fe(III))-bearing species, such as Fe(III) aluminosilicates and Fe(III)-517 (hydr)oxides, which are super-paramagnetic (SP) at RT but could not be distinguished 518 519 at RT. Along the profile of the deposit, these species host more than 69% of the total Fe. The sextets may be attributable to hematite and goethite, as they have negative QS 520 values similar to those minerals (i.e., -0.19 to -0.25 mm s⁻¹ for hematite and -0.20 to -521 0.26 mm s⁻¹ for goethite). However, the $B_{\rm hf}$ of hematite (49.0–51.0 T) is larger than that 522 of goethite (31.0-31.4 T). Hematite and goethite sextets appeared in the spectra of 523 samples from depths above 16 m and 28-36 m, in proportions of 19%-33% and 22%-524 31%, respectively. The small size of these sextets in the spectra is indicative of a small 525 proportion of highly crystalline hematite and goethite present in the fine particle 526

527	fraction. This accounts for the non-detection of Fe (hydr)oxide minerals by XRD. In
528	addition, the small sextets were absent from samples from depths below 48 m. This is
529	probably due to the fact that at these depths, the Fe(III)-bearing species exist as less
530	crystalline Fe(III)-(hydr)oxides or as Fe(III) in aluminosilicates. In addition, there was
531	a doublet with an IS of 1.14 mm s ⁻¹ in the spectrum of a sample from a depth of 65 m,
532	corresponding to a ferrous-ion (Fe(II))-bearing species. Based on the lithology of the
533	bedrock, this Fe(II)-bearing species is primarily attributable to octahedral Fe(II) in
534	biotite.

535 Cooling the samples to 14 K generated sextets with increased areas, and a doublet, as most Fe(III)-(hydr)oxides are magnetically ordered (Figure S6 and TABLE S4). The 536 Fe(III) sextets were highly similar to those of hematite, goethite, or ferrihydrite. 537 Compared with the hematite sextet detected at RT, that detected at 14 K had a larger IS 538 $(0.43-0.48 \text{ mm s}^{-1})$, QS (-0.25 to -0.16 mm s⁻¹), and B_{hf} (49.7–51.2 T), although this 539 OS value is lower than the classical value reported by Cornell and Schwertmann (1996). 540 541 Schwertmann et al. (2000) attributed this phenomenon to Al substitution in hematite, which is a rather common occurrence in soils. As the depth decreased, the QS value 542 gradually increased, from -0.25 mm s⁻¹ (at 28 m) to -0.16 mm s⁻¹ (at 2 m). This is 543 544 probably related to the decrease in Al substitution in hematite, due to the recrystallization of Fe (hydr)oxides during weathering (Cornell and Schwertmann, 1996). 545 Moreover, spectra obtained at 14 K revealed the presence of hematite not only in topsoil 546 and the upper B horizon (0-16 m), which is accordance with RT spectra, but also in the 547 middle part of the B horizon (16-28 m), suggesting the presence of nanoparticulate or 548

549 lowly crystalline hematite. Overall, the results show that hematite hosts 53%–88% of the total Fe, with its proportion of this total decreasing with depth (Figure 5). 550 The IS $(0.43-0.52 \text{ mm s}^{-1})$ and QS $(-0.32 \text{ to } -0.20 \text{ mm s}^{-1})$ of goethite are identical to 551 those of hematite, but the $B_{\rm hf}$ of goethite (46.9–51.3 T) is lower than that of hematite 552 and close to those reported for a goethite standard (Cornell and Schwertmann, 1996). 553 554 The 14 K spectra demonstrated that goethite is prevalent in the entire B horizon and upper C horizon (28-55 m), whereas the RT spectra demonstrated that goethite is 555 present in only part of the aforementioned area (28-36 m). This illustrates that goethite 556 557 also exists in the C horizon in a nanoparticulate or amorphous form. Thus, hematite is enriched in the upper part, whereas goethite is enriched in the lower part (i.e., in 558 proportions of >45% at 28–55 m). In addition, the $B_{\rm hf}$ of goethite decreases as the depth 559 560 decreases, implying that there is a reduction in magnetism at shallower depths. This is ascribable to the fact that increased weathering not only decreases the crystallinity of 561 goethite but also increases the substitution of Fe by Al and other elements. 562

563 A sample collected from a depth of 28 m had no sextet for ferrihydrite in a spectrum obtained at RT, but did have such a sextet in a spectrum obtained at 14 K, due to 564 magnetic ordering, with an IS of 0.36 mm s⁻¹, a QS of 0.04 mm s⁻¹, and a $B_{\rm hf}$ of 54.2 T. 565 Thus, it was found that ferrihydrite hosts 8% of the total amount of Fe. This is because 566 ferrihydrite is the precursor for most Fe (hydr)oxides in soil, as it is metastable and 567 contains rather small crystallites. Moreover, due to its large surface area, ferrihydrite 568 can be complexed with organic matter (OM), such that it appeared as a doublet in a 569 spectrum obtained at RT but as a sextet with a QS close to 0 in a spectrum obtained at 570

571	14 K (Van Ranst et al., 2019). Compared with the spectrum obtained at RT, the
572	contribution of the doublet was substantially decreased (7%-43%) in the spectrum
573	obtained at 14 K, although it was detectable in the spectra of all of the samples. The IS
574	was 0.37–0.44 mm s ⁻¹ , while the QS was 0.52–0.78 mm s ⁻¹ . At 14 K, most of the Fe(III)
575	(hydr)oxides were magnetically ordered, and thus this sub-spectral pattern is
576	attributable mainly to Fe(III) complexed to OM or within non-Fe-rich silicates. For
577	example, Fe(III) ions in aluminosilicates are too distant from each other to order
578	magnetically and thus are present as a doublet at 14 K (Chen et al., 2019). Additionally,
579	a special doublet with an IS of 0.80 mm s ⁻¹ and a QS of 2.22 mm s ⁻¹ was present in the
580	spectrum of a sample collected from a depth of 2 m, and is probably attributable to an
581	Fe(III)–Fe(II) species complexed with OM in the humid soil environment (Robic et al.,
582	2022). Consistent with the spectrum obtained at RT, Fe(II)-bearing species with an IS
583	of 1.31 mm s ⁻¹ and a QS of 2.27 mm s ⁻¹ were detected in the spectrum obtained at 14 K
584	of a sample collected from 65 m. This is attributable to the small proportion (ca. 5%)
585	of Fe(II) originating from biotite in the C horizon.

586

587 SEM and TEM observations

The SEM images (Figure 6) showed that clay minerals and Fe (hydr)oxides co-exist and form composites in each horizon. Most clay minerals are micro-sized lamellar particles ranging from a few micrometers to nanometers in thickness. Fe (hydr)oxides generally form nano-sized particles that are much smaller than clay mineral species. Therefore, most Fe (hydr)oxide particles are attached to the basal surface of clay minerals, with only a few adhered to the edge of clay minerals.

594	The morphologies and phase compositions of clay–Fe (hydr)oxide composites from
595	different horizons were further investigated by TEM. In the C horizon (Figures 6d and
596	7), kaolinite and muscovite are the main clay minerals, which is in line with the XRD
597	results. Both of these clay minerals have a typical lamellar morphology, with dominant
598	(001) crystal planes. They are distinguished by their chemical composition, as the
599	silicon-to-aluminum (Si-to-Al) ratios of kaolinite and muscovite are close to 1 and
600	larger than 1, respectively. Moreover, kaolinite is devoid of K, whereas muscovite
601	contains 3%–4% K, as detected by EDS analysis. Muscovite is a common rock-forming
602	mineral that has a crystal structure and elemental composition similar to those of illite
603	but contains more K than illite. The HRTEM image showed that it has a euhedral plate-
604	like crystal shape and lattice fringes. Most kaolinite particles occur as irregular slices
605	randomly stacked around fractured flake-like muscovite particles that are 0.5–3.2, 0.2–
606	0.6, and 0.2–0.5 μm in length, width, and thickness, respectively. In addition,
607	ferrihydrite and goethite were found to be present. Ferrihydrite forms micron-sized
608	aggregates, which were readily identified in TEM images. Consistent with the
609	Mössbauer results, ferrihydrite is poorly crystallized, as its SAED pattern shows
610	diffraction rings with d -spacings of 0.15 and 0.26 nm, corresponding to the (115) and
611	(110) planes, respectively. Goethite is present as nano-sized particles in the cavities of
612	ferrihydrite aggregates and has diffraction rings with <i>d</i> -spacings of 0.49 and 0.25 nm,
613	corresponding to the (020) and (021) planes, respectively.
614	In the lower B horizon (Figure 6c and 8), it was found that muscovite is absent,

615 whereas illite is present. The SEM image showed that a small quantity of kaolinite

particles are present, either as thin "booklets", thin-sheet agglomerates, or irregularly 616 layered stacks. Halloysite particles are short (generally less than 0.5 µm) and distributed 617 around kaolinite and illite. Most particles appear as tubular stacks that form disorderly 618 aggregates. Illite grains form lumpy particles that are 0.7–2.0 µm in length and 0.4–1.2 619 μ m in width. EDS revealed that illite contains 1%–2% K, with a Si-to-Al ratio of ca. 2. 620 In the HRTEM image, illite exhibited lattice fringes with a periodicity of 10 Å on the 621 crimped edge (Figure 8b). Kaolinite is obviously larger, with a length, width, and 622 thickness of 1-2, 0.5-1 and 0.5-1 µm, respectively (Figure 8a). Consistent with the 623 624 Mössbauer results, goethite and ferrihydrite are present and form composites, but ferrihydrite remains poorly crystallized and present in a much lower proportion than in 625 the C horizon. Thus, goethite is the dominant Fe (hydr)oxide. In addition, compared 626 with the C horizon, goethite exhibits greatly increased crystallinity and thus forms near-627 acicular crystals with lengths of up to 200-400 nm. Therefore, goethite particles form 628 long strip-shaped aggregates that attach to the edge of kaolinite (Figure 8c). 629 630 Interestingly, the edge of goethite and ferrihydrite composites are amorphized, which is attributable to the dissolution of ferrihydrite and recrystallization of goethite. This 631 632 also explains their variation in concentration (Figure 8d).

In the upper B horizon, additional weathering (Figure 6b and 9) results in "booklet" kaolinite becoming more abundant and larger (thicknesses of $1.5-2.2 \mu m$) than in the lower B horizon, whereas illite is absent (Figure 9a). Moreover, two forms of halloysite are present: long ($3.0-5.0-\mu m$) and smooth tubes that are individually attached to the kaolinite surface (Figure 6b), and nanotubular particles (internal diameters of ca 10-30

638	nm and lengths of 50–200 nm) that are mostly attached to the base or edges of kaolinite
639	with semi-unfolded shapes (Figure 9b). Goethite is present as composites with kaolinite
640	that are long and acicular, but their particle size significantly decreases to 100-300 nm
641	(Figure 9d). In addition, hematite was identified by its SAED pattern: d-spacings of
642	0.36 and 0.25 nm, corresponding to the (012) and (-1-10) planes, respectively. The
643	hematite particles exist as nanocrystal aggregates that are 20–50 nm in size (Figure 9c).
644	In the A horizon, which is subject to intensive weathering, the "booklet" kaolinite
645	form is much thicker than that in the B horizon (Figure 6a and 10). In addition,
646	vermicular kaolinite was found in the bulk sample. Halloysite is mostly present as 1–5-
647	μm long and fine tubes (Figure 6a). The XRD analysis revealed that this is mainly 7Å-
648	halloysite. Hematite is also highly crystalline and present as particles with greater sizes
649	(tens of nanometers) than those in the lower horizons. These hematite particles stack to
650	form aggregates that are widespread on the surfaces or along the edges of kaolinite
651	(Figure 10a-c).

652

653 **REE speciation**

Sequential extraction enabled REEs to be identified in an ion-exchangeable state, an organic-associated state, an Fe–Mn (hydr)oxide-associated state, and a residual REEbearing mineral state. In the fine particle fraction, ion-exchangeable and Fe–Mn (hydr)oxide associated states account for more than 90% of the total REEs (Figure 11). This is due to the ubiquity of clay minerals and Fe (hydr)oxides, and the deficiency of REE-bearing minerals observed in TEM. Organic-associated REEs comprised the smallest proportion of REEs in the A and B horizons (<5%), due to the low concentration of organic carbon in the profile of the deposit (0.03%–0.2%). Thus, the distribution and fractionation characteristics of ion-exchangeable and Fe–Mn (hydr)oxide associated REEs were the focus of this investigation. As the concentration of Fe is much higher than that of Mn (Figure 1g, h), there were no Mn (hydr)oxides detected in TEM observations, and thus REEs are likely bonded to Fe (hydr)oxides rather than to Mn (hydr)oxides.

Along the profile of the deposit, ion-exchangeable REEs are almost invariably 667 668 dominant, in proportions of greater than 70%, except in the A horizon, where the proportions are ca. 25% at 2 m (Figure 11), and in the C horizon, where the proportions 669 are ca. 8% and 50% at 55 and 65 m, respectively. As the extent of weathering increases, 670 the proportions of ion-exchangeable REEs initially increase and then decrease. REEs 671 bound to Fe (hydr)oxides are enriched in the A (a proportion of 70%) and C horizons 672 673 (proportions of 50% and 90%). They are also present in the B horizon but in much 674 smaller proportions (<20%) than the ion-exchangeable REEs. Sequential extraction enabled them to be divided into two portions: a portion bonded to amorphous Fe 675 (hydr)oxides, and a portion bonded to crystalline Fe (hydr)oxides. At most sampling 676 sites, the proportion of the former state (mostly >15%) is significantly higher than the 677 latter state (mostly < 8%). 678

The parent rock and entire weathering profile are generally enriched in LREEs, but the aforementioned REE species are clearly fractionated into LREEs and HREEs (Figure S7). In addition, there is a substantial Ce anomaly: Ce is deficient in the ion-

682	exchangeable state (in the A and B horizons), but concentrated in the Fe (hydr)oxide-
683	associated state (in the A, B, and C horizons), respectively. To eliminate the influence
684	of the Ce anomaly, the fractionation into LREEs and HREEs was discriminated by
685	determining (LREE-Ce)/HREE $_{s/p}$ values (Text S1), which represent the LREE-Ce-to-
686	HREE ratio of a specific state vs. that of parent rock. In ion-exchangeable REEs, the
687	parent rock-normalized REE pattern is right-inclined in the A and upper B horizons
688	(Figure S7.a), with (LREE-Ce)/HREE $_{s/p}$ values of 1.61, 3.83, and 2.87 at the 2, 10, and
689	16 m, respectively (Figure 12a), suggesting that these depths are enriched in LREEs.
690	However, as the depth increases, the ion-exchangeable state preferentially scavenges
691	HREEs, as the patterns change to be left-inclined (Figure S7.b and S7.c), and the
692	(LREE-Ce)/HREE $_{s/p}$ values gradually approach ca. 0.5 in the lower B and C horizons.
693	In amorphous Fe (hydr)oxide-associated REEs, the variation in the fractionation
694	patterns is identical to that in the ion-exchangeable REEs, but is left-inclined at most
695	depths (Figure S7d–S7f). At 2–16 m, the (LREE-Ce)/HREE $_{s/p}$ values (0.64–1.92) are
696	clearly lower than those of ion-exchangeable REEs (0.38–3.83). With increasing depth,
697	these values first decrease to ca. 0.50 and then gradually approach 1 in the C horizon.
698	Conversely, the patterns of crystalline Fe (hydr)oxide-associated REEs are left-inclined
699	across the entire profile (Figure S7g–S7i), and their (LREE-Ce)/HREE $_{s/p}$ values remain
700	below 1 and generally below 0.50.
701	The variation in (LREE-Ce)/HREE $_{s/p}$ values illustrates that in both ion-exchangeable
702	and Fe (hydr)oxide-associated REEs, HREEs are enriched in deeper horizons than

703 LREEs. To further explore this impact, fractionation into LREEs and HREEs was

704	discriminated by determining (LREE-Ce)/HREE $_{s/w}$ values (Figure 12b), which
705	represent the ratio of LREE-Ce-to-HREE for a specific state vs. that of whole rock at
706	the same depth (Figure 1c). This enabled a comparison of the ability of clay minerals
707	and Fe (hydr)oxides to selectively bind LREEs and HREEs, respectively. The (LREE-
708	Ce)/HREEs/w values for ion-exchangeable REEs at most depths are approximately 1
709	(1.05–1.15), suggesting that clay minerals non-selectively adsorb these REEs. In
710	contrast, the (LREE-Ce)/HREE $_{\rm s/w}$ values of crystalline and amorphous Fe (hydr)oxide-
711	binding REEs are mostly less than 1, but those of the former are significantly lower
712	(mostly < 0.5) than those of the latter (0.49–0.82). This indicates that crystalline Fe
713	(hydr)oxide-binding REEs selectively adsorb HREEs rather than LREEs.

714

715 Adsorption experiment

A clay-Fe (hydr)oxide composite was prepared through the hydrothermal 716 717 transformation of biotite to further examine the contribution of Fe (hydr)oxides and 718 clay minerals to the enrichment and fractionation of REEs. The obtained product (Bt-60d) contained clay minerals: predominantly kaolinite, together with Fe (hydr)oxides 719 such as goethite and hematite (Figure S8-S10, TABLE S5). The mineral composition 720 was identical to that of the fine particle fraction at 28 m, which is located in the upper 721 B horizon with the highest REE enrichment. Thus, Bt-60d was used in the adsorption 722 experiment to simulate REE enrichment in weathering crust. 723

Considering that pH varies along the weathering profile, REEs were adsorbed onto
Bt-60d at pH 6, which is similar to the pH measured at 28 m (Figure 1b). The adsorption

isotherms were well fitted by the Sips adsorption model (Figure 13a, coefficient of 726 determination = 0.99), which is a hybrid of the Langmuir and Freundlich models (Wang 727 and Guo, 2020) that is based on the assumption that monolayer REE adsorption occurs 728 at more than one active site. The adsorption capacities of Bt-60d for Nd and Yb were 729 calculated to be 0.64 and 0.69 mg g⁻¹, respectively. 730 Bt-60d was further used to adsorb REEs at the initial concentration of 0.20 mg L⁻¹ 731 for each REE. The total adsorbed concentration of REEs was ca. 4000 µg g⁻¹ (Figure 732 13), which is similar to the REE concentration in the fine particle fraction at 28 m 733 734 (Figure 2). The log K_d of adsorbed REEs is similar throughout the REE group (Figure 13). This is consistent with the fact that the adsorption capacities of Bt-60d for Nd and 735 Yb are similar. Sequential extraction enabled the enrichment pattern of REEs in 736 different fractions to be clarified (Figure 13a). For ion-exchangeable REEs, the pattern 737 is nearly flat, with an (LREE-Ce)/HREE of 1.01, whereas those of amorphous and 738 crystalline Fe (hydr)oxide-associated REEs are weakly and markedly left-inclined, with 739 740 (LREE-Ce)/HREE values of 0.68 and 0.48, respectively. These fractionation characteristics are identical to those of the same species of REEs detected at 28 m, as 741 742 shown by the (LREE-Ce)/HREE_{s/w} values of 0.99, 0.84, and 0.74 for ion-exchangeable, amorphous, and crystalline Fe (hydr)oxide-associated REEs, respectively. Interestingly, 743 there was no Ce anomaly in any REE state in Bt-60d. This is different from the situation 744 at a depth of 28 m, where ion-exchangeable REEs display a negative Ce anomaly (δ Ce 745 = 0.004), whereas amorphous and crystalline Fe (hydr)oxide-associated REEs show a 746 positive Ce anomaly ($\delta Ce = 12.9$ and 9.08, respectively). 747

748	The distribution of LREEs and HREEs on Bt-60d was also observed by TEM-EDS.
749	Nd and Yb were selected as the representative LREE and HREE, respectively, and
750	individually adsorbed onto Bt-60d. In the EDS maps of this Fe (hydr)oxide-clay
751	mineral composite (Figures 14a, d and 15a, d), Fe overlaps Al (Figures 14b, e and 15b,
752	e), with these being characteristic elements of Fe (hydr)oxides and clay minerals,
753	respectively. This indicates that the Fe (hydr)oxide particles were attached onto the
754	surfaces of the clay minerals.
755	Nd was found to be uniformly dispersed, as in most composites with Fe-to-Al mass
756	ratios of 0.32–2.19, the concentration of Nd was 0.67%–0.90% (Figure 14b, c, e and f).
757	(NH ₄) ₂ SO ₄ is a typical lixiviant that is used to extract ion-exchangeable REEs, and after
758	REE desorption by treatment with (NH ₄) ₂ SO ₄ , the Nd concentration greatly decreased.
759	For instance, in the region representing composites with an Fe-to-Al ratio of 0.52, the
760	concentration of Nd was less than 0.14% (Figure 14h-14i). Conversely, Yb was less
761	homogeneously distributed and appeared to be more closely associated with Fe than Al.
762	For example, in the composite with an Fe-to-Al ratio of 0.21, the proportion of Yb was
763	1.47% (Figure 15e, f), whereas in that with an Fe-to-Al ratio of 13.6 (i.e., containing
764	more Fe (hydr)oxides, the proportion of Yb was higher, i.e., 5.54% (Figure 15b, c). This
765	verifies that Fe (hydr)oxide minerals are selectively enriched in HREEs (Ohta et al.,
766	2009b). After extraction by (NH ₄) ₂ SO ₄ , the proportion of Yb was also significantly
767	decreased, e.g., 1.05% remained in the composite with an Fe-to-Al ratio of 5.58.
768	However, the proportion remained high (3.45%) in the region rich in Fe, i.e., with an
769	Fe-to-Al ratio of 179.9 (Figure 15h, i). This indicates that REEs bound to Fe

770 (hydr)oxides are more stable than REEs bound to other species.

771
This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2023-9217. http://www.minsocam.org/

772

DISCUSSION

Chemical weathering is preferentially promoted by temperate and tropical climatic 773 conditions, but the thickness of weathering crust is determined by the equilibrium 774 775 between weathering and denudation processes. Previous studies suggest that ionadsorption-type REE deposits are mainly located in temperate or tropical regions, 776 777 where thick weathering crusts are well preserved (Li et al., 2017; Yaraghi et al., 2020). Thus far, subtropical weathering of granite in South China has led to the formation of 778 numerous ion-adsorption-type REE deposits. For example, in the Renju deposit in 779 South China, a thick weathering crust up to 85 m deep has developed and exhibits 780 dramatic variations in geochemistry and mineralogy with depth. This is resulted from 781 the weathering of parent rock, accumulation of residual primary minerals and 782 generation of secondary minerals. 783

The dissolution of REEs from bedrock into leachate is the basis of deposit formation, 784 which depends on the weathering resistance of REE-bearing minerals. Thus, the 785 786 patterns of REEs in the weathering crust are largely inherited from those of parent rocks (Figure S3). During downward eluviation, REE ions are complexed with humic 787 788 substances and carbonates or REE(III) ions and migrate downwards, and HREEs bond more strongly than LREEs to the aforementioned ligands and thus are transported 789 deeper than LREEs (Ohta et al., 2009b). Hence, LREEs and HREEs are concentrated 790 in the upper and lower parts of weathering crust, respectively (Figure 12a). 791 Subsequently, REE anions are adsorbed by secondary minerals. Moreover, the phases 792 and morphologies of these minerals vary with the extent of weathering, especially those 793

of clay minerals and Fe (hydr)oxides, which are the major carriers of REE ions.

795

796 Variation in clay minerals

Warm and humid climatic conditions accelerate the dissolution of rock-forming minerals (White et al., 2001). This gives rise to the leaching of most mobile elements (e.g., K, Na, and Ca), whereas residual elements (e.g., Al, Si, Fe, and titanium) form clay minerals. In the weathering crust, the variation of geochemical conditions (e.g., pH, fluid activity, and ionic strength) with depth causes the evolution of clay minerals,

resulting in the variation of clay mineral concentrations with depth.

In the parent rock of the Renju deposit, the primary rock-forming minerals are 803 primary chlorite, hornblende, biotite, plagioclase, orthoclase, and quartz, with different 804 degrees of weathering resistance (Bao and Zhao, 2008). This determines their order of 805 disappearance within the weathering crust. In the semi-weathered horizon, which 806 represents an incipient stage of weathering, plagioclase, orthoclase, and quartz are 807 808 preserved, as they have a high weathering resistance; in particular, quartz is barely decomposed and persists across the entire profile (Figure 3). In contrast, chlorite, 809 hornblende, and biotite are completely decomposed, as they have low weathering 810 resistance, and this is accompanied by the emergence of muscovite, montmorillonite, 811 and kaolinite. Muscovite is the weathering product of plagioclase; thus, its 812 concentration increases as that of plagioclase decreases. Analogously, montmorillonite 813 is formed by the decomposition of orthoclase and plagioclase, but is unstable and thus 814 only transitorily retained in this layer. The formation of montmorillonite features the 815

816 transformation of a framework silicate into a layered silicate via a dissolutionrecrystallization mechanism (Wilson, 2004). Initially, orthoclase and plagioclase are 817 dissolved along micro-cracks and bi-crystal planes to form a protocrystalline 818 intermediate containing polymers inherited from the bulk structure. This intermediate 819 820 then crystallizes to form montmorillonite, which requires most structural Al to change 821 from a four-coordinate to a six-coordinate form, the rearrangement of tetrahedral and octahedral units, the precipitation of cations (e.g., K and Na), and the addition of 822 hydroxyl groups and water molecules (Banfield and Eggleton, 1990). Compared with 823 824 muscovite and montmorillonite, kaolinite originates from more species and thus is present in higher concentrations. The mineral composition in parent rock suggests that 825 the formation pathways of kaolinite are (i) plagioclase \rightarrow muscovite \rightarrow halloysite \rightarrow 826 vermicular kaolinite; (ii) plagioclase \rightarrow muscovite \rightarrow microcrystalline kaolinite \rightarrow 827 vermicular kaolinite; (iii) biotite vermiculite 828 montmorillonite/illite/chlorite/mixed-layered mineral \rightarrow kaolinite; (iv) orthoclase \rightarrow 829 830 montmorillonite + illite \rightarrow kaolinite + halloysite; and (v) orthoclase \rightarrow halloysite \rightarrow kaolinite (Jeong, 1998; Papoulis et al., 2004). The above transformation pathways of 831 clay minerals are also found in the weathering of other type of granite (Bao and Zhao, 832 2008). 833

834 Several possible intermediate products, e.g., illite and halloysite, are absent but 835 emerge in the upper part of the weathering crust. This indicates that kaolinite is largely 836 generated from muscovite. In contrast to kaolinite on completely weathered layers, 837 which has a thick "booklet" morphology and large particle sizes (> 1 μ m), kaolinite in semi-weathered layer displays a fragmented shape with a microcrystalline size ($< 1 \mu m$). This is because a low degree of weathering means that decomposition of primary minerals occurs only in confined spaces, e.g., micro-cracks and cleavage joints of minerals, leading to a small particle size. This also suggests that the transformation of muscovite into kaolinite is a topotactic alteration (Singh and Gilkes, 1991).

843 In the lower part of the completely weathered layer, eluviation-illuviation processes and local groundwater flows are intensified, resulting in an increase in intergranular 844 cracks and cleavage, and in the porosity and SSA of minerals. Thus, this layer is 845 846 exposed to the environment and its rocks are extensively affected by water. Under these conditions, rock-formation minerals are substantially affected: muscovite is entirely 847 decomposed, and the concentration of orthoclase significantly decreases (Figure 3). 848 849 Secondary minerals are also affected: montmorillonite is entirely decomposed, and this is accompanied by accumulation of illite and halloysite (Dill et al., 2016). The 850 851 transformation pathways suggest that illite is formed via the weathering of orthoclase 852 and muscovite, which provide sufficient K. However, illite is only present in this layer and its concentration decreases as the depth decreases. The decomposition of illite 853 follows a dissolution-precipitation mechanism, leading to removal of K and Na from 854 855 the interlayer, and thus local supersaturation of Si and Al, resulting in the transformation of illite to 1:1 clay minerals with a more stable structure (e.g., kaolinite and halloysite) 856 (Li and Zhou, 2020; Li et al., 2020a). For example, in a water-saturated environment, a 857 misfit of octahedral sheets with tetrahedral sheets is offset by the rolling and 858 incorporation of interlayer water molecules to form halloysite-10 Å (Yuan et al., 2015). 859

860	Thus, the concentration of halloysite is negatively correlated with that of illite (Figure
861	3). The incipient halloysite exhibits a short and stubby morphology (Figure 6), but in
862	the upper part of the completely weathered layer it gradually changes into a long and
863	tubular morphology. Semi-unfolded halloysite is also present, in close association with
864	kaolinite. Fluctuation in the height of the water table leads to alternating wet and dry
865	conditions in this layer, which results in removal of interlayer water. This causes the
866	tubular morphology to unfold and then transform into kaolinite (Yuan et al., 2012).
867	Compared with the kaolinite in the semi-weathered layer, most of the kaolinite in the
868	lower part of the completely weathered layer has an identical morphology but a larger
869	particle size.

870 In the topsoil, vigorous biological activity and the presence of atmospheric water cause intense chemical and biological weathering. Repeated wetting and drying 871 872 episodes irreversibly dehydrate metastable halloysite-10 Å into halloysite-7 Å (Inoue 873 et al., 2012). Most halloysite-7 Å has a thin and long $(1-5 \mu m)$ tubular structure (Figure 874 6). With prolonged dehydration, these tubes unroll and are transformed into kaolinite, as the removal of interlayer water molecules enables tetrahedral rotation to 875 accommodate the mismatch between octahedral and tetrahedral sheets in platy kaolinite 876 (Sanematsu and Watanabe, 2016). Thus, in the outermost layer of topsoil, kaolinite is 877 the predominant mineral. Interestingly, XRD, SEM, and TEM observations showed that 878 as depth decreases, the crystallinity and lamellar thickness of kaolinite increases. 879 According to a previous study, this is probably ascribable to the substitution of 880 structural Al by Fe (Jige et al., 2018). As shown in the Mössbauer analysis (TABLE S4), 881

there is relatively extensive substitution of Al by Fe in clay minerals in the incipient
weathering period. However, as weathering proceeds, the extent of this substitution
decreases, as Fe is released to form Fe (hydr)oxides. Thus, the inhibition of the kaolinite
growth is weakened.

886

887 Variation in Fe (hydr)oxide minerals

The parent rock of the studied profile is quartz diorite, which contains the rock-888 forming and Fe-bearing minerals, biotite and hornblende. During the weathering 889 890 process, their decomposition results in the dissolution of a large amount of Fe into the fluid. As mentioned, the Mössbauer results show that Fe cations can replace structural 891 Al and Si to form Fe-bearing clay minerals, such as illite, kaolinite, and montmorillonite. 892 893 It is estimated that Fe-bearing clay minerals account for up to 50% of the Fe in soils and sediments (Luan et al., 2015). Moreover, Fe cations precipitate to form 894 (hydr)oxides, which become dominant in the late stage of weathering. Thus, Fe 895 896 (hydr)oxide minerals are common secondary minerals with broad distributions (Navrotsky et al., 2008). The transformation pathways of Fe (hydr)oxides are 897 complicated, as they depend on several environmental factors, such as temperature, pH, 898 899 and redox conditions, and result in the formation of various phases (Larese-Casanova et al., 2012; Schwertmann et al., 2004). Through the Mössbauer and TEM analyses, the 900 main Fe (hydr)oxide minerals in the Renju profile are ferrihydrite, goethite, and 901 hematite, with their relative proportions altering with progressive weathering. 902

In the presence of Si and phosphorus (P), the oxidation of Fe(II) to Fe(III) is

accelerated, and Fe(III) hydrolyzes to form ferrihydrite, which is a short-range-ordered 904 Fe (hydr)oxide (Galvez et al., 1999; Hu et al., 2022). This process is facilitated in the 905 initial weathering stage, as the weathering of rock-forming minerals increases the 906 concentrations of Si and P in the fluid. Moreover, ferrihydrite is a weakly crystalline, 907 metastable mineral, and an important precursor of Fe oxides with higher stability in soil. 908 909 Goethite and hematite are the most common of such Fe oxides; the latter forms from ferrihydrite via thermal dehydration or dehydroxylation reactions leading to structural 910 transformation, whereas the former forms from ferrihydrite via dissolution-911 912 reprecipitation in solution (Schwertmann and Murad, 1983). The weakly acidic (ca. pH 5, Figure 1) semi-weathered layer favors the dissolution of ferrihydrite to Fe(III), 913 followed by the crystallization of goethite (Schwertmann and Murad, 1983). This 914 process can be accelerated by aqueous Fe(II), as high concentrations of Fe(II) are 915 generated through the dissolution of Fe (hydr)oxides in this layer by dissimilating 916 917 reducing bacteria (Tomaszewski et al., 2016). Microbially derived aqueous Fe(II) 918 catalyzes the transformation of ferrihydrite to goethite by accelerating Fe(II)–Fe(III) electron transfer in the aqueous and solid phases (Catalano et al., 2010). The phase 919 920 transformation mechanisms include dissolution/reprecipitation, solid-state recrystallization, and particle-mediated growth (Qafoku et al., 2020). Thus, ferrihydrite 921 and goethite are found together in this layer. However, as the depth decreases, the 922 concentration of goethite increases, and thus is negatively correlated with the 923 concentration of ferrihydrite (Figure 5). 924

In the completely weathered layer and the extensively weathered topsoil, the warm

926 climate and frequent meteoric water cause a more oxidative condition than those in other layers. This favors the formation of hematite (Figure 5). The transformation of 927 ferrihydrite is a two-stage crystallization process, with goethite and hematite being 928 intermediary and dominant products, respectively, at all pHs and temperatures (Das et 929 al., 2011). At RT, the transformation of ferrihydrite into goethite and then into hematite 930 931 occurs via a topotactic mechanism, i.e., dehydration and/or arrangement of FeO₆ octahedral monomers and polymers. That is, a terminal hydroxyl ligand or a water 932 molecule of an FeO₆ octahedron is displaced by a terminal hydroxyl ligand of another 933 934 FeO₆ octahedron to form a corner-sharing linkage (Li et al., 2020b). Based on this mechanism, the transformation of goethite to hematite along the profile of the deposit 935 is attributable to changes in the hydrological environment. The groundwater system in 936 regolith includes a vadose (unsaturated) zone above the groundwater table and a 937 saturated zone below the groundwater table. The saturated zone (low section) contains 938 abundant goethite (Huang et al., 2021a), whereas the vadose zone (upper section) is 939 940 exposed to variations in temperature and humidity that cause the dehydration of goethite, and thus this zone is dominated by hematite (Figure 5). Additionally, the 941 transformation of ferrihydrite and goethite into hematite is constrained by Al 942 substitution. According to previous study (Kubicki et al., 2012), Al substitution slows 943 down the transformation to goethite, as the clustered Al atoms impedes the dissolution 944 of Fe^{3+} as a key step in a dissolution-reprecipitation process. Thus, Al doping favors the 945 formation of hematite over goethite in the transformation of Al-ferrihydrite (Pinney and 946 Morgan, 2013). As the extent of weathering increases, especially in topsoil, the 947

948 dissolution of clay minerals releases abundant Al(III), which are incorporated into Fe949 (hydr)oxides, thereby promoting the formation of hematite.

The XRD and TEM analyses show that ferrihydrite–kaolinite, goethite– kaolinite/halloysite, and hematite-kaolinite/halloysite composites are distributed in the semi-weathered, completely weathered, and topsoil layers, respectively. Owing to the difference between the ZPCs of kaolinite/halloysite (< 4) and those of Fe (hydr)oxides (6–8), the aforementioned types of species display opposite surface charges, resulting in the formation of composites via electrostatic attraction.

956

957 **REE enrichment**

In weathering crust, REEs occur in water-soluble, ion-exchangeable, carbonate-958 binding, humic-acid-binding, Fe-Mn (hydr)oxide-associated, and residual fraction 959 states (Li et al., 2019). Ion-exchangeable REEs adsorbed onto clay minerals are the 960 most common (Figure 11), consistent with other ion-adsorption-type deposits. However 961 962 bedrock debris, in addition to refractory minerals, contains considerable concentrations of residual REEs, which are barely mined or even mobile. This means that the 963 contributions of other REE states (e.g., Fe-Mn (hydr)oxide-associated and humic-acid-964 965 binding fractions) to REE enrichment and transportation are underestimated. Thus, to exclude the effect of residual fractions, the samples collected from the weathering 966 profile were further extracted to obtain fine particles (those $<2 \mu m$ in size). This 967 significantly decreased the proportion of residual fractions in total REEs (Figure 11), 968 such that they were barely detected in the fine particle fraction. This was because 969

compared with common secondary minerals (e.g., clay and Fe–Mn (hydr)oxide minerals), refractory REE-bearing minerals (e.g., monazite and xenotime) have much larger particle sizes and were thus separated in the extraction. In the semi-weathered and completely weathered layers, the proportion of ion-exchangeable REEs in the fine particle fraction (i.e., 60%–90%, Figure 11) is even higher than that in the bulk phase (<60%), especially in the locations that are highly enriched in REEs. This verifies the vital role of clay minerals in the enrichment of REEs.

The distribution of clay minerals in the profile of the deposit shows that its primary 977 978 clay minerals are kaolinite and halloysite (Figure 3). The mechanisms by which these minerals adsorb REEs have been highlighted in numerous recent studies (Borst et al., 979 2020; Yang et al., 2019; Zhou et al., 2022). Kaolinite and halloysite are the most 980 important members of kaolin-group 1:1 layer minerals, which consist of alternating 981 tetrahedral sheets and octahedral sheets, containing Si⁴⁺ and Al³⁺, respectively. The 982 substitution of tetrahedral Si⁴⁺ by Al³⁺ creates a permanent negative charge within the 983 984 layers, but occurs infrequently in kaolin-group 1:1 layer minerals, due to the relatively strong bonding between the 1:1 layers (Balan et al., 2014). Thus, the cation-exchange 985 capacity (CEC) of this group of minerals is typically lower than that of 2:1 layer clay 986 minerals. Instead, most charge is pH-dependent and generated from the aluminol (Al-987 OH) surface of gibbsite basal planes and the hydroxyl groups at edge sites and defects 988 (Liu et al., 2022). Thus, the adsorption capacity of REEs on halloysite and kaolinite is 989 constrained by the pH and ionic strength of weathering fluid. For example, outer-sphere 990 adsorption usually occurs at acidic pHs and low ionic strengths, and results in a full 991

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2023-9217. http://www.minsocam.org/

992 hydration sphere that is loosely adsorbed to a basal surface via electrostatic attraction (Coppin et al., 2002). With increasing pH and ionic strength, inner-sphere complexes 993 become dominant, such that REEs bond directly with Al-O or Si-O groups on Al-OH 994 or siloxane surfaces, or with the edge sites of clay minerals (Borst et al., 2020). Given 995 the pH variation (4-6) and low ionic strength along the weathering profile, the 996 997 enrichment of REEs in kaolinite and halloysite occurs mainly through electrostatic attraction to form outer-sphere complexes, which are more leachable than inner-sphere 998 complexes. This accounts for ion-exchangeable REEs (i.e., Nd and Yb) being 999 1000 extensively extracted by (NH₄)₂SO₄ in the simulated adsorption experiment. Thus, ionadsorption-type REEs deposits are currently mined using in-situ leaching technology, 1001 wherein leaching agents containing (NH₄)₂SO₄ are pumped into ore bodies to recover 1002 REE ions through ion exchange reaction (Moldoveanu and Papangelakis, 2013). 1003 In the REE-enriched layer, kaolinite and halloysite are the main clay minerals and 1004 are present in similar concentrations. However, their contributions to REE 1005 1006 accumulation are not easy to distinguish and remain debated. Theoretically, compared with platy kaolinite, tubular halloysite has a larger surface area and more abundant 1007 pores, and thus a higher adsorption capacity (Zhou et al., 2022). However, the 1008 adsorption experiment showed that kaolinite has a higher SSA-normalized adsorption 1009 capacity than halloysite (Yang et al., 2019). This is probably ascribable to the fact that 1010

in halloysite, active sites (i.e., Al-OH) are located on the internal surface of the tubular
structure, meaning that steric effects hinder REEs' abilities to contact this internal
surface (Yuan et al., 2015). The TEM observations (Figures 6–10) reveal that

morphology, crystallinity, and particle size change with the extent of weathering, which
also affect the adsorption abilities of minerals. This makes it hard to clearly differentiate
the REE enrichment due to kaolinite and halloysite, respectively, and this requires
further investigation.

The Fe-Mn (hydr)oxide-associated fraction of REEs accounts for ca. 20% of REEs 1018 1019 at most depths, but over 50% in the topsoil and semi-weathered layer. This indicates the non-negligible contribution of Fe-Mn (hydr)oxides to REE enrichment. However, 1020 as the concentration of Fe is 10-100 times that of Mn (Figure 1), REEs in these fractions 1021 1022 are likely to be bonded to Fe (hydr)oxides rather than Mn (hydr)oxides. In contrast to the adsorption of REEs onto clay minerals, their adsorption onto Fe (hydr)oxides 1023 largely results in the formation inner-sphere complexes, which are not affected by ionic 1024 strength (Quinn et al., 2006). Ohta et al. (2009a) used extended X-ray absorption fine 1025 structure (EXAFS) spectroscopy to study the local structure of REEs adsorbed onto Fe 1026 1027 (hydr)oxides. They found that REE-O bond distances were largely different from those 1028 in aqueous REEs, as the Fe atom appeared in the second coordination shell and had a coordination number of two. Most studies have suggested that adsorption geometries 1029 include monodentate, bidentate edge-sharing, and bidentate corner-sharing complexes 1030 (Stumpf et al., 2006). Thus, compared with REEs adsorbed onto clay minerals as outer-1031 sphere species, those adsorbed onto Fe (hydr)oxides as inner-sphere species have higher 1032 stability. This also explains the observation in the present desorption experiment using 1033 (NH₄)₂SO₄, i.e., ion-exchangeable REEs were easily removed, whereas most of the Fe 1034 (hydr)oxide-associated fraction was retained. 1035

1036	Thus, both clay minerals and Fe (hydr)oxides are important hosts for adsorbed REEs,
1037	but they adsorb REEs by forming outer-sphere and inner-sphere species, respectively,
1038	via different adsorption mechanisms. Thus, the Sips model has the best fit with the REE
1039	adsorption isotherms, suggesting that REE adsorption occurs at more than one active
1040	site through a combination of physical and chemical adsorption processes. In addition,
1041	the clay mineral and Fe (hydr)oxide composites display identical adsorption
1042	characteristics for heavy metals, e.g., Pb, Ni, Cd, and Zn (Gomez-Gonzalez et al., 2018;
1043	Oliveira et al., 2003), as they do for REEs. The combination of clay minerals with Fe
1044	(hydr)oxides significantly increases the SSA and abundance of micropores, resulting in
1045	this combination showing an enhanced capacity to adsorb the above-mentioned metals
1046	(Zhuang and Yu, 2002).

The chemical composition and TEM/SEM observations show that the concentration 1047 of clay minerals is significantly higher than that of Fe (hydr)oxides in the deposit. 1048 1049 Therefore, as revealed by the sequential extraction results, the proportion of ion-1050 exchangeable REEs is obviously higher than those of amorphous and crystalline Fe (hydr)oxide-associated REEs. Moreover, compared with crystalline Fe (hydr)oxides, 1051 amorphous Fe (hydr)oxides have a larger surface area, and more surface hydroxyl 1052 groups generated from lattice defects, and accordingly scavenge more REEs 1053 (Koeppenkastrop and Carlo, 1992). Thus, variations in mineral phases and 1054 morphologies can explain the distribution characteristics of REEs along the profile of 1055 the deposit. The main species of REEs, i.e., ion-exchangeable and Fe (hydr)oxide-1056 associated species, are enriched in the completely weathered layer (i.e., at 16-28 m, 1057

1058	Figures 2 and 11). In this layer, clay minerals are dominated by kaolinite and halloysite,
1059	while Fe (hydr)oxides mainly include goethite and hematite. The "booklet" kaolinite
1060	and nano-sized semi-unfolded halloysite expose abundant hydroxyl groups at edge sites
1061	and octahedral Al-OH, respectively (Yang et al., 2019). However, compared with other
1062	layers, both goethite and hematite in this layer have significantly lower particle sizes
1063	(100-300 nm and 20-50 nm, respectively), which results in maximal adsorption of
1064	REEs. However, with an increase in depth, Fe (hydr)oxide-associated REEs become
1065	predominant in the semi-weathered layer, accounting for 50%–90% of the REEs. This
1066	is ascribable to the fact that in these layers, Fe (hydr)oxide is mainly ferrihydrite, which
1067	has a large SSA and abundant surface hydroxyl groups. This endows ferrihydrite with
1068	a higher REE-adsorption capacity than those of other species, leading to the adsorption
1069	of more REEs onto (especially amorphous) Fe (hydr)oxides. In the topsoil, the
1070	proportion of Fe (hydr)oxide-associated REEs is also comparable to that of ion-
1071	exchangeable REEs. This is ascribable to the oxidation of Ce(III) by Fe (hydr)oxides
1072	to form cerianite (CeO ₂), which is discussed in the following section.

1073

1074 **REE fractionation**

1075 REE fractionation is controlled by several factors, including aqueous speciation, 1076 oxidation–reduction reactions, and variations in the atomic configurations of REEs 1077 (Wood, 1990). For instance, owing to the regular variation of physicochemical 1078 properties (e.g., variations in ionic radii, which cause LREE–HREE fractionation, and 1079 variations in oxidation states, which cause Ce anomalies) across the REE series (Bau, 1080 1999), REEs are assumed to fractionate during migration and accumulation in the
1081 weathering crust. This accounts for REEs' different fractionation characteristics across
1082 the weathering crust.

1083

1084 Ce anomaly

Ce is the only REE that can be oxidized in the natural environment. Ce(III) is soluble 1085 and readily oxidized to Ce(IV) under aerobic conditions, resulting in its precipitation 1086 as CeO₂ (cerianite) (Janots et al., 2015). When Ce(III) is adsorbed onto clay minerals, 1087 1088 it is preserved in eight- to nine-coordinate outer-sphere-hydrated complexes that do not decouple from other REEs (Borst et al., 2020). Conversely, Ce(III) is adsorbed by Fe-1089 Mn (hydr)oxides through oxidative scavenging (Bau, 1999). Given the redox potential 1090 and semiconducting properties of Mn (hydr)oxides, they promote the oxidation of 1091 Ce(III) to form electron acceptors (Takahashi et al., 2000), whereas Fe (hydr)oxides 1092 catalyze electron transfer between Ce(III) and Mn (hydr)oxides (Bau and Koschinsky, 1093 1094 2009). This indicates that besides Ce oxidation by oxygen to form cerianite, Fe (hydr)oxides rather than clay minerals are significant mediate in Ce oxidation in the 1095 weathering profile. Thus, although the weathering crust contains much less Mn than Fe, 1096 the effect of Mn (hydr)oxides on Ce(III) oxidation is non-negligible. 1097 Throughout the studied profile (2–55 m), the positive Ce anomaly is preserved in the 1098

amorphous and crystalline Fe (hydr)oxide-associated REE fractions, leading to a negative Ce anomaly in the ion-exchangeable REE fraction (Figure S7). Thus, to exclude the effect of the Ce anomaly, the fractionation of LREEs and HREEs was

discriminated by determining (LREE-Ce)/HREE values. Moreover, in the topsoil of an 1102 oxic environment, abundant hematite is present; it functions as a semiconducting 1103 mineral that facilitates electron transfer from Ce(III) to dissolved O_2 (Hu et al., 2023). 1104 Thus, cerianite aggregates usually adhere to nanoscale hematite clusters. This means 1105 that most of the Ce atoms released by the chemical weathering of REE-bearing minerals 1106 1107 fail to migrate with other REEs, and instead adhere to Fe (hydr)oxide surfaces. Therefore, at depths of 2 and 10 m in the deposit, the proportion of Fe (hydr)oxide-1108 associated REEs is comparable to or surpasses that of the ion-exchangeable REEs 1109 1110 (Figure 11). However, in our adsorption experiment, the Ce anomaly was not detected in either the Fe (hydr)oxide-associated or ion-exchangeable fractions, which was 1111 probably due to the short reaction time. 1112

1113

1114 LREE–HREE fractionation

As aforementioned, in the weathering crust environment with a weakly acidic pH 1115 1116 and low ionic strength, REEs are adsorbed onto clay mineral surfaces through electrostatic attraction, such that REEs exist as outer-sphere species with a full 1117 hydration sphere. Borst et al. (2020) reported an eightfold- and nine-fold coordination 1118 sphere for REEs associated with kaolinite and halloysite, combined with the absence of 1119 a second shell of Al or Si atoms, which is similar to those of fluorcarbonates and REEs 1120 in aqueous solution. Thus, the physical adsorption of REEs by clay minerals could not 1121 cause extensive fractionation of LREEs and HREEs. This accounts for the nearly flat 1122 pattern of ion-exchangeable REEs on reacted Bt-60d, corresponding to an (LREE-1123

1124	Ce)/HREE value of 1.01. However, this appears to contradict the pattern of ion-
1125	exchangeable REEs in the Renju profile. For instance, after normalization against the
1126	REE patterns of parent rock, the ion-exchangeable REEs display a right-inclined pattern
1127	with (LREE-Ce)/HREE values larger than 1 in the A and upper B horizons, suggesting
1128	that these horizons are enriched in LREEs. However, as the depth increases, the pattern
1129	changes to left-inclined, with (LREE-Ce)/HREE values decreasing to ca. 0.5 in the
1130	lower B and C horizons, indicating that these horizons are enriched in HREEs.
1131	Such spatial distribution differences are probably ascribable to the differences
1132	between the mobilities of LREEs and HREEs. Theoretical calculations and aqueous
1133	chemistry experiments showed that REEs form strong and predominantly electrostatic
1134	complexes with ligands in aqueous fluids, including fluoride and carbonate
1135	(bicarbonate), with the stability of these complexes increasing as atomic number
1136	increases (i.e., ionic radius decreases) (Wood, 1990). Carbonate (bicarbonate)
1137	complexes of REEs are the most important inorganic species involved in the transport
1138	of REEs in regolithic groundwater (Liu et al., 2017). HREEs have a stronger ability
1139	than LREEs to complex with carbonate (bicarbonate) and are more likely to migrate
1140	downward (Ohta and Kawabe, 2000). However, research shows that carbonate
1141	contribution can be negligible at low pH (< 5.5) under air-equilibrium condition
1142	(Takahashi et al., 1999); thus, REEs probably mobile as bicarbonate complexes and free
1143	REE^{3+} in the upper completely weathered layer with low pH and as carbonate
1144	complexes in the lower layers with higher pH. Besides, inner sphere complexes of REE
1145	with -OH group at clay minerals surface could form above pH 6, which shows a larger

distribution coefficients (K_d) for heavier REEs in REEs adsorption (Takahashi et al., 2004). The above factors lead to the enrichment of LREEs and HREEs in the upper and lower parts of the weathering crust, respectively. Interestingly, when the pattern was normalized by that of whole rock at the same depth to eliminate the effect of complexation by inorganic ligands during downward transfer, the (LREE-Ce)/HREE values at most depths were approximately 1 (1.05–1.15). This further confirms the nonselective adsorption of REEs by clay minerals.

REE adsorption onto Fe (hydr)oxides exhibits a strong dependence on pH and a 1153 negligible dependence on ionic strength, suggesting that it involves chemical 1154 adsorption via the formation of inner-sphere species. This was verified by an Fe atom 1155 being found in the second coordination shell via EXAFS analysis (Ohta et al., 2009a). 1156 Across the REE group, effective ionic radii decrease as atomic numbers increase, 1157 resulting in variations in adsorption configurations. For example, LREEs form 1158 eightfold- and nine-fold coordination spheres, whereas HREEs form only an eightfold 1159 1160 coordination sphere. In addition, with increasing atomic number, REE-Fe distances shorten from 3.72 to 3.41 Å (Ohta et al., 2009a; Ohta et al., 2009b). Moreover, HREEs 1161 are bound in monodentate or bidentate complexes, whereas LREEs are bound in 1162 1163 monodentate complexes.

The adsorption of REEs onto Fe (hydr)oxides can be regarded as the transformation of aqueous hydrated REE cations to dehydrated cations; thus, surface complexation constants can be correlated with the first hydrolysis constants (Wood, 1990), which increase as atomic number increases. This accounts for the greater affinity of HREEs 1168 than LREEs for Fe (hydr)oxides, and thus the depletion of LREEs. Therefore, in fractions in which REEs are associated with crystallized and amorphous Fe 1169 (hydr)oxides, both bedrock and whole-rock normalized (LREE-Ce)/HREE ratios are 1170 mostly less than 1 along the profile of the deposit. Interestingly, unlike in the ion-1171 exchangeable fraction, the complexation of REEs with carbonate ions in the leachate 1172 1173 could not reverse the fractionation of the Fe (hydr)oxide-associated fraction. This is probably ascribable to the enhanced adsorption of REECO₃⁺ and REEs at low carbonate 1174 concentrations. Likewise, on the Bt-60d sample after REE adsorption, both amorphous 1175 1176 and crystalline Fe (hydr)oxide-associated REEs showed weakly and markedly rightinclined patterns, with (LREE-Ce)/HREE values of 0.68 and 0.48, respectively. This is 1177 also reflected in the TEM-EDS mapping: HREEs (e.g., Yb) are mainly distributed on 1178 the surface of Fe (hydr)oxides, most of which could not be desorbed by ion exchange 1179 with (NH₄)₂SO₄ (Leybourne and Johannesson, 2008). Therefore, both the field 1180 observations and adsorption experiments illustrate the prominent contribution of Fe 1181 1182 (hydr)oxides to dominating enrichment in HREEs..

1183 Compared with amorphous Fe (hydr)oxides, crystalline Fe (hydr)oxides more 1184 selectively adsorb HREEs over LREEs. This is evidenced by the smaller (LREE-1185 Ce)/HREE (0.48) and (LREE-Ce)/HREE_{s/w} values of crystalline Fe (hydr)oxides (0.48 1186 and mostly < 0.5, respectively) than those of amorphous Fe (hydr)oxides in Bt-60 and 1187 the fine particle fraction of the Renju profile (0.68 and 0.49–0.82, respectively). This is 1188 related to the atomic structure of REEs and the surface properties of Fe (hydr)oxides. 1189 The crystallization of amorphous Fe (hydr)oxides involves a change in structure and

1190	decrease in SSA. REEs with larger atomic radii are more readily excluded than those
1191	with smaller atomic radii from the structure and surface, resulting in greater retention
1192	of HREEs than LREEs on crystalline minerals (Yang et al., 2021). However, the
1193	coordination number of HREEs (ca. 8) is less than that of LREEs (ca. 8–9). Compared
1194	with amorphous minerals, fewer hydroxyl groups and oxygen vacancies are present on
1195	crystalline oxides (Yan et al., 2015). Thus, crystalline Fe (hydr)oxides with low surface
1196	densities of hydroxyl groups tend to scavenge HREEs, as fewer hydroxyl groups are
1197	required for this process.

- 1198
- 1199

CONCLUSIONS AND IMPLICATIONS

The distribution characteristics and enrichment mechanisms of REEs, especially 1200 1201 those of HREEs, underpin the ore genesis of ion-adsorption-type REE deposits. In the weathering crust, clay minerals and Fe (hydr)oxides are the main secondary minerals 1202 1203 responsible for REE adsorption. To the best of our knowledge, the first time, our study 1204 reports the formation and phase composition of clay minerals and Fe (hydr)oxide composites in a typical deposit, and distinguishes the aforementioned species' 1205 contributions to the accumulation and fractionation of REEs in this deposit. Most REEs 1206 are concentrated in the completely weathered horizon, whereas Ce(III) is oxidized and 1207 preserved in the topsoil. As weathering proceeds, the desilication process transforms 1208 2:1-type to 1:1-type clay minerals, whereas Fe (hydr)oxides undergo dehydration. In 1209 the completely weathered horizon, kaolinite and halloysite are the dominant clay 1210 minerals, and goethite and hematite are the dominant Fe (hydr)oxides, and are the main 1211

adsorbents of REE ions. With further weathering, the crystallinity and particle size of 1212 minerals increases, resulting in a decrease in their REE-adsorption capacities. The 1213 adsorption isotherms of REEs on the composites are well fitted by the Sips model, 1214 implying that monolayer REE adsorption occurs at more than one active site. This 1215 indicates that clay minerals and Fe (hydr)oxides are both active components. Clay 1216 1217 minerals adsorb REEs through electrostatic attraction to form outer-sphere species, which are easily extracted by (NH₄)₂SO₄, a typical lixiviant. These ion-exchangeable 1218 REEs are the predominant REEs but do not show fractionation. Conversely, Fe 1219 1220 (hydr)oxides scavenge REEs through complexation to form inner-sphere species, most of which could not be desorbed by (NH₄)₂SO₄. The proportion of Fe (hydr)oxide-1221 associated REEs is considerable and highly enriched in HREEs along the profile of the 1222 deposit and in Ce in the topsoil. Amorphous Fe (hydr)oxides immobilize more REEs 1223 than crystalline Fe (hydr)oxides, whereas crystalline Fe (hydr)oxides more selectively 1224 1225 adsorb HREEs. This highlights the vital role played by Fe (hydr)oxides in the 1226 enrichment of HREEs.

The aforementioned results support the exploration and mining of ion-adsorptiontype REE deposits. In particular, although the fractionation features of REEs in the weathering crust are largely inherited from bedrock, this study shows that HREEs are preferentially accumulated onto the surface of Fe (hydr)oxides, especially crystalline Fe (hydr)oxides. Thus, it would be instructive to probe HREE resources by examining Fe (hydr)oxides. For example, when concentrations of total REEs are barely detectable, the establishment of spectral parameters of Fe (hydr)oxides would allow rapid 1234 identification of these species via spectroscopic methods, and thus reveal regions enriched in HREEs. However, current mining technology is based on ion-exchange 1235 reactions and thus mainly recovers REEs adsorbed onto clay mineral surfaces, which 1236 do not show a preference between LREEs and HREEs. Moreover, although lower 1237 concentrations of REEs are present on Fe (hydr)oxide surfaces than on ion-1238 1239 exchangeable surfaces, the REEs on the former are almost all HREEs, which have a higher economic value than LREEs. Furthermore, REE adsorption by Fe (hydr)oxides 1240 mainly occurs via surface complexation and thus these REEs cannot be effectively 1241 1242 extracted via current mining methods, making it necessary to develop new extraction methods and lixiviants for REEs. For example, a recently devised method that extracts 1243 REEs through electrification should be applied (Wang et al., 2022), as it enhances 1244 acidification at the cathode and reduces the pH, thus promoting dissolution of Fe 1245 (hydr)oxides to release HREEs. 1246

- 1247
- 1248

ACKNOWLEDGMENTS

This work was financially supported by the National Key R&D Program of China (Grant No. 2021YFC2901701), National Natural Science Foundation of China (Grant No. 42022012), Youth Innovation Promotion Association CAS (Grant No. 2023369) and Science and Technology Planning Project of Guangdong Province, China (Grant No. 2023B1212060048).

1254

1255

1256 APPENDIX A. SUPPLEMENTARY MATERIAL

1257	Supplementary data associated with this article including major element
1258	concentration, mössbauer results, geological map of sampling site, schematic of the
1259	weathering profile, chondrite-normalized REE patterns, X-ray diffraction patterns of
1260	bulk samples, and characterization of Bt-60d sample can be found in the online version,
1261	at XXX.

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2023-9217. http://www.minsocam.org/

1262 **REFERENCES**

1263	Anderson, D.W., Saggar, S., Bettany, J.R., and Stewart, J.W.B. (1981) Particle-size
1264	factions snd their use in studies of soil organic-matter: I. The nature and distribution
1265	of forms of carbon, nitrogen, and sulfur. Soil Science Society Of America Journal,
1266	45(4), 767-772.
1267	Balan, E., Calas, G., and Bish, D.L. (2014) Kaolin-group minerals: from hydrogen-
1268	banded layears to environmental recorders. Elements, 10(3), 183-188.
1269	Banfield, J.F., and Eggleton, R.A. (1990) Analytical transmission electron-microscope
1270	studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay
1271	Minerals, 38(1), 77-89.
1272	Bao, Z.W., and Zhao, Z.H. (2008) Geochemistry of mineralization with exchangeable
1273	REY in the weathering crusts of granitic rocks in South China. Ore Geology
1274	Reviews, 33(3-4), 519-535.
1275	Bau, M. (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron
1276	oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and
1277	lanthanide tetrad effect. Geochimica Et Cosmochimica Acta, 63(1), 67-77.
1278	Bau, M., and Koschinsky, A. (2009) Oxidative scavenging of cerium on hydrous Fe
1279	oxide: Evidence from the distribution of rare earth elements and yttrium between
1280	Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical
1281	Journal, 43(1), 37-47.
1282	Berger, A., Janots, E., Gnos, E., Frei, R., and Bernier, F. (2014) Rare earth element
1283	mineralogy and geochemistry in a laterite profile from Madagascar. Applied

1284 Geochemistry, 41, 218-228.

- 1285 Borst, A.M., Smith, M.P., Finch, A.A., Estrade, G., Villanova-de-Benavent, C., Nason,
- 1286 P., Marquis, E., Horsburgh, N.J., Goodenough, K.M., Xu, C., Kynicky, J., and
- 1287 Geraki, K. (2020) Adsorption of rare earth elements in regolith-hosted clay deposits.
- 1288 Nature Communications, 11(1), 4386.
- 1289 Catalano, J.G., Fenter, P., Park, C., Zhang, Z., and Rosso, K.M. (2010) Structure and
- 1290 oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and
- neutral pH. Geochimica Et Cosmochimica Acta, 74(5), 1498-1512.
- 1292 Chakhmouradian, A.R., and Wall, F. (2012) Rare earth elements: minerals, mines,
 1293 magnets (and more). Elements, 8(5), 333-340.
- 1294 Chen, C.M., Barcellos, D., Richter, D.D., Schroeder, P.A., and Thompson, A. (2019)
- 1295 Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent 1296 iron-oxide crystallinity. Journal of Soils and Sediments, 19(2), 785-797.
- 1297 Churchman, G.J., Whitton, J.S., Claridge, G.G.C., and Theng, B.K.G. (1984)
- 1298 Intercalation method using formamide for differentiating halloysite form kaolinite.
- 1299 Clays and Clay Minerals, 32(4), 241-248.
- 1300 Coppin, F., Berger, G., Bauer, A., Castet, S., and Loubet, M. (2002) Sorption of
- 1301 lanthanides on smectite and kaolinite. Chemical Geology, 182(1), 57-68.
- 1302 Cornell, R.M., and Schwertmann, U. (1996) The iron oxide: Structure, Properties,
- 1303 Reactions, Occurences and Uses. Wiley-VCH Verlag GmbH & Co. KGaA,1304 Weinheim.
- 1305 Costa, N.O., Botelho, N.F., and Garnier, J. (2020) Concentration of rare earth elements

1306	in the Faixa Placha tin deposit, Pedra Branca A-Type Granitic Massif, central Brazil,
1307	and its potential for ion-adsorption-type REE-Y mineralization. Ore Geology
1308	Reviews, 123, 103606.
1309	Das, S., Hendry, M.J., and Essilfie-Dughan, J. (2011) Transformation of two-line
1310	ferrihydrite to goethite and hematite as a function of pH and temperature.
1311	Environmental Science & Technology, 45(1), 268-275.
1312	Dill, H. G. (2016) Kaolin: Soil, rock and ore: From the mineral to the magmatic,
1313	sedimentary and metamorphic environments. Earth-Science Reviews, 16-129.
1314	Galán, E., and Ferrell, R.E. (2013) Chapter 3 - Genesis of Clay Minerals. In F. Bergaya,
1315	and G. Lagaly, Eds. Developments in Clay Science, 5. Elsevier, Amsterdam.
1316	Galvez, N., Barron, V., and Torrent, J. (1999) Effect of phosphate on the crystallization
1317	of hematite, goethite, and lepidocrocite from ferrihydrite. Clays and Clay Minerals,
1318	47(3), 304-311.
1319	Gomez-Gonzalez, M.A., Villalobos, M., Marco, J.F., Garcia-Guinea, J., Bolea, E.,
1320	Laborda, F., and Garrido, F. (2018) Iron oxide-clay composite vectors on long-
1321	distance transport of arsenic and toxic metals in mining-affected areas.
1322	Chemosphere, 197, 759-767.
1323	Hu, E.R., Liu, M.C., Wang, F., Lv, B.S., and Wu, J. (2022) Effects of phosphate, silicate,
1324	humic acid, and calcium on the release of As(V) co-precipitated with Fe(III) and
1325	Fe(II) during aging. Journal of Hazardous Materials, 438, 129478.
1326	Hu, S.W., Zheng, L.R., Zhang, H.Y., Chen, G.J., Yang, Y., Ouyang, Z.Z., Chen, S.L.,

1327 Gao, K., Liu, C.X., Wang, Q., and Liu, T.X. (2023) Hematite-mediated Mn(II)

- abiotic oxidation under oxic conditions: pH effect and mineralization. Journal of
- 1329 Colloid and Interface Science, 636, 267-278.
- 1330 Huang, J., He, H.P., Tan, W., Liang, X.L., Ma, L.Y., Wang, Y.Y., Qin, X.R., and Zhu,
- 1331 J.X. (2021a) Groundwater controls REE mineralisation in the regolith of South
- 1332 China. Chemical Geology, 577, 120295.
- 1333 Huang, J., Tan, W., Liang, X.L., He, H.P., Ma, L.Y., Bao, Z.W., and Zhu, J.X. (2021b)
- 1334 REE fractionation controlled by REE speciation during formation of the Renju
- regolith-hosted REE deposits in Guangdong Province, South China. Ore Geology
- 1336 Reviews, 134.
- 1337 Inoue, A., Utada, M., and Hatta, T. (2012) Halloysite-to-kaolinite transformation by
- dissolution and recrystallization during weathering of crystalline rocks. ClayMinerals, 47(3), 373-390.
- 1340 Janots, E., Bernier, F., Brunet, F., Muñoz, M., Trcera, N., Berger, A., and Lanson, M.
- 1341 (2015) Ce(III) and Ce(IV) (re)distribution and fractionation in a laterite profile
- 1342 from Madagascar: Insights from in situ XANES spectroscopy at the Ce L_{III}-edge.
- 1343 Geochimica Et Cosmochimica Acta, 153, 134-148.
- 1344 Jeong, G.Y. (1998) Formation of vermicular kaolinite from halloysite aggregates in the
- 1345 weathering of plagioclase. Clays and Clay Minerals, 46(3), 270-279.
- 1346 Jige, M., Takagi, T., Takahashi, Y., Kurisu, M., Tsunazawa, Y., Morimoto, K., Hoshino,
- 1347 M., and Tsukimura, K. (2018) Fe-kaolinite in granite saprolite beneath sedimentary
- 1348 kaolin deposits: A mode of Fe substitution for Al in kaolinite. American
- 1349 Mineralogist, 103(7), 1126-1135.

1350	Kasay, G.M., Bolarinwa, A.T., Aromolaran, O.K., Nzolang, C., and Kivava, A.S. (2022)
1351	Rare Earth Element Deposits and Their Prospects in the Democratic Republic of
1352	Congo. Mining Metallurgy & Exploration, 39(2), 625-642.
1353	Koeppenkastrop, D., and Carlo, E.H.D. (1992) Sorption of rare-earth elements from
1354	seawater onto synthetic mineral particles: An experimental approach. Chemical
1355	Geology, 95(3-4), 251-263.
1356	Kubicki, J.D., Aryanpour, M., Kabalan, L., and Zhu, Q. (2012) Quantum mechanical
1357	calculations on Fe-O-H nanoparticles. Geoderma, 189, 236-242.
1358	Larese-Casanova, P., Kappler, A., and Haderlein, S.B. (2012) Heterogeneous oxidation
1359	of Fe(II) on iron oxides in aqueous systems: Identification and controls of Fe(III)
1360	product formation. Geochimica Et Cosmochimica Acta, 91, 171-186.
1361	Leybourne, M.I., and Johannesson, K.H. (2008) Rare earth elements (REE) and yttrium
1362	in stream waters, stream sediments, and Fe-Mn oxyhydroxides: Fractionation,
1363	speciation, and controls over REE plus Y patterns in the surface environment.
1364	Geochimica Et Cosmochimica Acta, 72(24), 5962-5983.
1365	Li, M.Y.H., Kwong, H.T., Williams-Jones, A.E., and Zhou, M.F. (2021) The
1366	thermodynamics of rare earth element liberation, mobilization and supergene
1367	enrichment during groundwater-regolith interaction. Geochimica et Cosmochimica
1368	Acta, 330, 258-277.
1369	Li, M.Y.H., Zhao, W.W., and Zhou, M.F. (2017) Nature of parent rocks, mineralization
1370	styles and ore genesis of regolithhosted REE deposits in South China: An
1371	integrated genetic model. Journal Of Asian Earth Sciences, 148, 65-95.

1372	Li, M.Y.H., and Zhou, M.F. (2020) The role of clay minerals in formation of the
1373	regolith-hosted heavy rare earth element deposits. American Mineralogist, 105(1),
1374	92-108.

- 1375 Li, M.Y.H., Zhou, M.F., and Williams-Jones, A.E. (2019) The genesis of regolith-hosted
- 1376 heavy rare earth element deposits: Insights from the world-class Zudong deposit in

1377 Jiangxi province, South China. Economic Geology, 114(3), 541-568.

- 1378 Li, S.Y., He, H.P., Tao, Q., Zhu, J.X., Tan, W., Ji, S.C., Yang, Y.P., and Zhang, C.Q.
- 1379 (2020a) Kaolinization of 2:1 type clay minerals with different swelling properties.
- 1380 American Mineralogist, 105(5), 687-696.
- 1381 Li, X.R., Liang, X.L., He, H.P., Li, J.T., Ma, L.Y., Tan, W., Zhong, Y., Zhu, J.X., Zhou,
- 1382 M.F., and Dong, H.L. (2022) Microorganisms Accelerate REE Mineralization in
- 1383 Supergene Environments. Applied and Environmental Microbiology, 88(13), 1-18.
- 1384 Li, Y., Yang, M.J., Pentrak, M., He, H.P., and Arai, Y. (2020b) Carbonate-enhanced
- 1385 transformation of ferrihydrite to hematite. Environmental Science & Technology,
- 1386 54(21), 13701-13708.
- 1387 Liu, H.Y., Pourret, O., Guo, H.M., and Bonhoure, J. (2017) Rare earth elements sorption
- 1388
 to iron oxyhydroxide: Model development and application to groundwater. Applied
- 1389 Geochemistry, 158-166.
- 1390 Liu, X.D., Tournassat, C., Grangeon, S., Kalinichev, A.G., Takahashi, Y., and Fernandes,
- M.M. (2022) Molecular-level understanding of metal ion retention in clay-rich
 materials. Nature Reviews Earth & Environment, 3(7), 461-476.
- 1393 Luan, F.B., Liu, Y., Griffin, A.M., Gorski, C.A., and Burgos, W.D. (2015) Iron(III)-

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2023-9217. http://www.minsocam.org/

1394	bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella
1395	putrefaciens CN32. Environmental Science & Technology, 49(3), 1418-1426.
1396	Luo, Y.R., and Byrne, R.H. (2004) Carbonate complexation of yttrium and the rare earth
1397	elements in natural waters. Geochimica Et Cosmochimica Acta, 68(4), 691-699.
1398	Ma, J.L., Wei, G.J., Xu, Y.G., Long, W.G., and Sun, W.D. (2007) Mobilization and re-
1399	distribution of major and trace elements during extreme weathering of basalt in
1400	Hainan Island, South China. Geochimica Et Cosmochimica Acta, 71(13), 3223-
1401	3237.
1402	Moldoveanu, G.A., and Papangelakis, V.G. (2013) Recovery of rare earth elements
1403	adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy,
1404	131, 158-166.
1405	Murakami, H., and Ishihara, S. (2008) REE mineralization of weathered crust and clay
1406	sediment on granitic rocks in the Sanyo Belt, SW Japan and the southern Jiangxi
1407	Province, China. Resource Geology, 58(4), 373-401.
1408	Navrotsky, A., Mazeina, L., and Majzlan, J. (2008) Size-driven structural and
1409	thermodynamic complexity in iron oxides. Science, 319(5870), 1635-1638.
1410	Ohta, A., Kagi, H., Nomura, M., Tsuno, H., and Kawabe, I. (2009a) Coordination study
1411	of rare earth elements on Fe oxyhydroxide and Mn dioxides: Part I. Influence of a
1412	multi-electron excitation on EXAFS analyses of La, Pr, Nd, and Sm. American
1413	Mineralogist, 94(4), 467-475.
1414	(2009b) Coordination study of rare earth elements on Fe oxyhydroxide and Mn
1415	dioxides: Part II. Correspondence of structural change to irregular variations of

- partitioning coefficients and tetrad effect variations appearing in interatomic
 distances. American Mineralogist, 94(4), 476-486.
- 1418 Ohta, A., and Kawabe, I. (2000) Rare earth element partitioning between Fe
- 1419 oxyhydroxide precipitates and aqueous NaCl solutions doped with NaHCO₃:
- 1420 Determinations of rare earth element complexation constants with carbonate ions.
- 1421 Geochemical Journal, 34(6), 439-454.
- 1422 Oliveira, L.C.A., Rios, R.V.R.A., Fabris, J.D., Sapag, K., Garg, V.K., and Lago, R.M.
- 1423 (2003) Clay-iron oxide magnetic composites for the adsorption of contaminants in
- 1424 water. Applied Clay Science, 22(4), 169-177.
- 1425 Papoulis, D., Tsolis-Katagas, P., and Katagas, C. (2004) Progressive stages in the
- formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays and Clay Minerals, 52(3), 275-286.
- Pinney, N., and Morgan, D. (2013) Thermodynamics of Al-substitution in Feoxyhydroxides. Geochimica Et Cosmochimica Acta, 120, 514-530.
- 1430 Qafoku, O., Kovarik, L., Bowden, M.E., Nakouzi, E., Sheng, A.X., Liu, J., Pearce, C.I.,
- and Rosso, K.M. (2020) Nanoscale observations of Fe(II)-induced ferrihydrite
 transformation. Environmental Science-Nano, 7(10), 2953-2967.
- 1433 Quinn, K.A., Byrne, R.H., and Schijf, J. (2006) Sorption of yttrium and rare earth
- 1434 elements by amorphous ferric hydroxide: Influence of solution complexation with
- 1435 carbonate. Geochimica Et Cosmochimica Acta, 70(16), 4151-4165.
- 1436 Ram, R., Becker, M., Brugger, J., Etschmann, B., Burcher-Jones, C., Howard, D.,
- 1437 Kooyman, P.J., and Petersen, J. (2019) Characterisation of a rare earth element-

1438	and	zirconium-bearing	ion-adsorption	clay	deposit	in	Madagascar.	Chemical
1439	Geo	logy, 522, 93-107.						

- 1440 Robic, M., Ristic, M., Krehula, S., and Music, S. (2022) Forced hydrolysis of FeCl₃
- solutions in the presence of guanylurea phosphate. Colloids and Surfaces a-
- 1442 Physicochemical and Engineering Aspects, 634.
- 1443 Sakurai, K., Teshima, A., and Kyuma, K. (1990) Changes in zero point of charge (ZPC),
- specific surface area (SSA), and cation exchange capacity (CEC) of kaolinite and
- 1445 montmorillonite, and strongly weathered soils caused by Fe and Al coatings. Soil
- 1446 Science And Plant Nutrition, 36(1), 73-81.
- 1447 Sanematsu, K., Kon, Y., Imai, A., Watanabe, K., and Watanabe, Y. (2013) Geochemical
- and mineralogical characteristics of ion-adsorption type REE mineralization in
 Phuket, Thailand. Mineralium Deposita, 48(4), 437-451.
- 1450 Sanematsu, K., and Watanabe, Y. (2016) Characteristics and genesis of ion adsorption-
- 1451 type rare earth element deposits Reviews in Economic Geology, 18, 55-79.
- 1452 Schwertmann, U., Friedl, J., Stanjek, H., and Schulze, D.G. (2000) The effect of Al on
- 1453 Fe oxides. XIX. Formation of Al-substituted hematite from ferrihydrite at 25 °C

and pH 4 to 7. Clays and Clay Minerals, 48(2), 159-172.

- Schwertmann, U., and Murad, E. (1983) Effect of pH on the formation of goethite and
 hematite from ferrihydrite. Clays and Clay Minerals, 31(4), 277-284.
- 1457 Schwertmann, U., Stanjek, H., and Becher, H.H. (2004) Long-term in vitro
- transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25 °C.
- 1459 Clay Minerals, 39(4), 433-438.

- 1460 Singh, B., and Gilkes, R.J. (1991) Weathering of a chromian muscovite to kaolinite.
- 1461 Clays and Clay Minerals, 39(6), 571-579.
- 1462 Stumpf, S., Stumpf, T., Dardenne, K., Hennig, C., Foerstendorf, H., Klenze, R., and
- 1463 Fanghanel, T. (2006) Sorption of Am(III) onto 6-line- ferrihydrite and its alteration
- 1464 products: Investigations by EXAFS. Environmental Science & Technology, 40(11),
- 1465 <u>3522-3528</u>.
- 1466 Takahashi, Y., Minai, Y., Ambe, S., Makide, Y., and Ambe, F. (1999) Comparison of
- adsorption behavior of multiple inorganic ions on kaolinite and silica in the
 presence of humic acid using the multitracer technique. Geochimica Et
 Cosmochimica Acta, 63(6), 815-836.
- 1470 Takahashi, Y., Shimizu, H., Usui, A., Kagi, H., and Nomura, M. (2000) Direct
- 1471 observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-
- 1472 absorption near-edge structure (XANES). Geochimica et Cosmochimica Acta,
- 1473 64(17), 2929-2935.
- 1474 Takahashi, Y., Tada, A., and Shimizu, H. (2004) Distribution pattern of rare earth ions
- between water and montmorillonite and its relation to the sorbed species of the ions.Analytical Sciences, 20(9), 1301-1306.
- 1477 Tang, J.W., and Johannesson, K.H. (2010) Ligand extraction of rare earth elements from
- 1478 aquifer sediments: Implications for rare earth element complexation with organic
- 1479 matter in natural waters. Geochimica Et Cosmochimica Acta, 74(23), 6690-6705.
- 1480 Tomaszewski, E.J., Cronk, S.S., Gorski, C.A., and Ginder-Vogel, M. (2016) The role of
- 1481 dissolved Fe(II) concentration in the mineralogical evolution of Fe (hydr)oxides

1482 during redox cycling. Chemical Geology, 438, 163-
--

- 1483 Van Ranst, E., Mees, F., De Grave, E., Ye, L., Cornelis, J.T., and Delvaux, B. (2019)
- 1484 Impact of andosolization on pedogenic Fe oxides in ferrallitic soils. Geoderma, 347,
 1485 244-251.
- 1486 Wang, G.F., Xu, J., Ran, L.Y., Zhu, R.L., Ling, B.W., Liang, X.L., Kang, S.C., Wang,
- 1487 Y.Y., Wei, J.M., and Ma, L.Y. (2022) A green and efficient technology to recover
- rare earth elements from weathering crusts. Nature Sustainability, 6, 81-+.
- 1489 Wang, J.L., and Guo, X. (2020) Adsorption isotherm models: Classification, physical
- 1490 meaning, application and solving method. Chemosphere, 258, 127279.
- 1491 White, A.F., Bullen, T.D., Schulz, M.S., Blum, A.E., Huntington, T.G., and Peters, N.E.
- (2001) Differential rates of feldspar weathering in granitic regoliths. Geochimica
 Et Cosmochimica Acta, 65(6), 847-869.
- 1494 Wilson, M.J. (2004) Weathering of the primary rock-forming minerals: processes,
- 1495 products and rates. Clay Minerals, 39(3), 233-266.
- 1496 Wood, S.A. (1990) The aqueous geochemistry of the rare-earth elements and yttrium .1.
- 1497 Review of available low-temperature data for inorganic complexes and the
 1498 inorganic REE speciation of natural-waters. Chemical Geology, 82(1-2), 159-186.
- 1499 Xu, C., Kynicky, J., Smith, M.P., Kopriva, A., Brtnicky, M., Urubek, T., Yang, Y.H.,
- 1500 Zhao, Z., He, C., and Song, W.L. (2017) Origin of heavy rare earth mineralization
- in South China. Nature Communications, 8, 14598.
- 1502 Yan, X.D., Tian, L.H., He, M., and Chen, X.B. (2015) Three-dimensional
- 1503 crystalline/amorphous Co/Co₃O₄ core/shell nanosheets as efficient electrocatalysts

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2023-9217. http://www.minsocam.org/

1504	for the hydroger	n evolution reaction.	Nano Letters,	15(9),	6015-6021.
	20				

- 1505 Yang, M.J., Liang, X.L., Li, Y., He, H.P., Zhu, R.L., and Arai, Y. (2021) Ferrihydrite
- 1506 transformation impacted by adsorption and structural incorporation of rare earth

elements. ACS Earth and Space Chemistry, 5(10), 2768-2777.

- 1508 Yang, M.J., Liang, X.L., Ma, L.Y., Huang, J., He, H.P., and Zhu, J.X. (2019) Adsorption
- 1509 of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the
- 1510 weathering crust of granite. Chemical Geology, 525, 210-217.
- 1511 Yaraghi, A., Ariffin, K.S., and Baharun, N. (2020) Comparison of characteristics and
- 1512 geochemical behaviors of REEs in two weathered granitic profiles generated from
- 1513 metamictized bedrocks in Western Peninsular Malaysia. Journal of Asian Earth
- 1514 Sciences, 199, 104385.
- 1515 Yuan, P., Tan, D.Y., and Annabi-Bergaya, F. (2015) Properties and applications of
- halloysite nanotubes: recent research advances and future prospects. Applied ClayScience, 112, 75-93.
- 1518 Yuan, P., Tan, D.Y., Annabi-Bergaya, F., Yan, W.C., Fan, M.D., Liu, D., and He, H.P.
- (2012) Changes in structure, morphology, porosity, and surface activity of
 mesoporous halloysite nanotubes under heating. Clays and Clay Minerals, 60(6),
 561-573.
- 1522 Zhou, J.M., Liu, H.M., Liu, D., Yuan, P., Bu, H.L., Du, P.X., Fan, W.X., and Li, M.Y.
- 1523 (2022) Sorption/desorption of Eu(III) on halloysite and kaolinite. Applied Clay
 1524 Science, 216, 106356.
- 1525 Zhuang, J., and Yu, G.R. (2002) Effects of surface coatings on electrochemical

1526 properties and contaminant sorption of clay minerals. Chemosphere, 49(6), 619-

1527 628.

1528
1529 FIGURE CAPTIONS

1530	Figure 1. Variation in chemical alteration index (CIA, a), soil pH (b), total rare earth
1531	element (REE) concentration (c) and major element concentrations (e, f, g, and h) and
1532	ratio of light REEs to heavy REEs (d) with depth in the weathering profile of the Renju
1533	deposit.
1534	Figure 2. Variations in the proportions of fractions of different particle sizes with depth
1535	(a) and the distributions of rare earth elements in the fine particle fraction and bulk
1536	samples at various depths (b).
1537	Figure 3. X-ray diffraction patterns (a) and mineral compositions (b) of the fine particle
1538	fractions in different soil horizons. Abbreviations: Kln = kaolinite; Hal = halloysite; Qtz
1539	= quartz; Or = orthoclase; Ilt = illite; Ms = muscovite; Pl = plagioclase; and Mnt =
1540	montmorillonite.
1541	Figure 4. X-ray diffraction patterns of the fine particle fractions (< 2 μ m) from the A
1542	(a), B (b) and C (c) horizons subjected to different treatments, i.e., air-dried oriented
1543	samples (black line), formamide-intercalated samples (red line), and ethylene glycol-
1544	intercalated samples (blue line). Abbreviations: Kln: kaolinite; Hal: halloysite; Ilt: illite;
1545	Ms: muscovite.
1546	Figure 5. Composition of iron species along the weathering profile.
1547	Figure 6. Scanning electron microscopy images of clay minerals and iron (hydr)oxide
1548	particles in fine particle fractions collected from topsoil (a), the upper completely
1549	weathered layer (b), the lower completely weathered layer (c), and the semi-weathered
1550	layer (d). Abbreviations: Kln = kaolinite; Hly = halloysite; and Ms = muscovite.

1551	Figure 7. Transmission electron microscopy (TEM) images, scanning transmission
1552	electron microscopy (STEM) images, and corresponding selected-area electron
1553	diffraction (SAED) patterns and energy-dispersive X-ray spectroscopy (EDS) spectra
1554	of minerals in the semi-weathered layer. a: TEM image and SAED pattern (lower left
1555	inserts) of kaolinite and its EDS spectrum (lower right insets); b: TEM image and SAED
1556	pattern (lower left insets) of muscovite and its EDS spectrum (upper right insets); c:
1557	STEM image of ferrihydrite-clay mineral composite and its fast Fourier transform
1558	(FFT) pattern (lower left insets); d: high-resolution TEM of goethite and its FFT pattern
1559	(lower left insets). Abbreviations: Kln = kaolinite; Ms = muscovite; Gth = goethite; and
1560	Fh = ferrihydrite.
1561	Figure 8. Transmission electron microscopy (TEM) images, scanning transmission

electron microscopy (STEM) images, and corresponding selected-area diffraction 1562 (SAED) patterns and energy-dispersive X-ray spectroscopy (EDS) spectra of minerals 1563 1564 in the lower completely weathered layer. A: TEM image of kaolinite and its EDS 1565 spectrum (upper right insets); b: TEM image of illite, with d-spacings of 10 Å, and its EDS spectrum (lower left insets); c: STEM and SAED images of ferrihydrite; d: high-1566 resolution TEM image and fast Fourier transform patterns of goethite (upper right insets) 1567 and ferrihydrite (lower left insets). Abbreviations: Kln = kaolinite; Ilt = illite; Gth = 1568 goethite; and Fh = ferrihydrite. 1569

Figure 9. Transmission electron microscopy (TEM) images and scanning transmission

1571 electron microscopy images of clay minerals and iron (hydr)oxide minerals in the upper

1572 completely weathered layer. a: TEM image and selected-area electron diffraction

1573	pattern (lower left insets) of kaolinite and its energy-dispersive X-ray spectroscopy
1574	spectrum (upper right insets); b: TEM image of tubular halloysite; c: high-resolution
1575	TEM (HRTEM) image (lower left insets) of hematite and its fast Fourier transform
1576	(FFT) pattern; d: HRTEM image of goethite and its FFT pattern (lower left insets).
1577	Abbreviations: Kln = kaolinite; Hly = halloysite; Hem = hematite; and Gth = goethite.
1578	Figure 10. High-resolution transmission electron microscopy (HRTEM) and scanning
1579	transmission electron microscopy (STEM) images of clay minerals and iron
1580	(hydr)oxide minerals in the A horizon. a: TEM image with corresponding selected-area
1581	electron diffraction pattern (lower left insets) and energy-dispersive X-ray spectroscopy
1582	spectrum (upper left insets) of kaolinite; b: STEM image of hematite-kaolinite
1583	compound; c, d: HRTEM image of hematite and its fast Fourier transform pattern (inset)
1584	(abbreviations: Kln = kaolinite; Hem = hematite).
1584 1585	(abbreviations: Kln = kaolinite; Hem = hematite).Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar),
1584 1585 1586	(abbreviations: Kln = kaolinite; Hem = hematite).Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar), organic-associated REE-bearing mineral state (blue bar), amorphous iron-manganese
1584 1585 1586 1587	 (abbreviations: Kln = kaolinite; Hem = hematite). Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar), organic-associated REE-bearing mineral state (blue bar), amorphous iron-manganese (Fe-Mn) (hydr)oxide associated REE-bearing mineral state (green bar), crystalline Fe-
1584 1585 1586 1587 1588	 (abbreviations: Kln = kaolinite; Hem = hematite). Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar), organic-associated REE-bearing mineral state (blue bar), amorphous iron-manganese (Fe-Mn) (hydr)oxide associated REE-bearing mineral state (green bar), crystalline Fe-Mn (hydr)oxide-associated REE-bearing mineral state (yellow bar), and residual REE-
1584 1585 1586 1587 1588 1588	 (abbreviations: Kln = kaolinite; Hem = hematite). Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar), organic-associated REE-bearing mineral state (blue bar), amorphous iron-manganese (Fe-Mn) (hydr)oxide associated REE-bearing mineral state (green bar), crystalline Fe-Mn (hydr)oxide-associated REE-bearing mineral state (yellow bar), and residual REE-bearing mineral state (gray bar) in fine particle fractions at different depths.
1584 1585 1586 1587 1588 1589 1590	 (abbreviations: Kln = kaolinite; Hem = hematite). Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar), organic-associated REE-bearing mineral state (blue bar), amorphous iron-manganese (Fe-Mn) (hydr)oxide associated REE-bearing mineral state (green bar), crystalline Fe-Mn (hydr)oxide-associated REE-bearing mineral state (yellow bar), and residual REE-bearing mineral state (gray bar) in fine particle fractions at different depths. Figure 12. Variation in parent-rock normalized light rare-earth elements with cerium
1584 1585 1586 1587 1588 1589 1590 1591	 (abbreviations: Kln = kaolinite; Hem = hematite). Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar), organic-associated REE-bearing mineral state (blue bar), amorphous iron-manganese (Fe-Mn) (hydr)oxide associated REE-bearing mineral state (green bar), crystalline Fe-Mn (hydr)oxide-associated REE-bearing mineral state (yellow bar), and residual REE-bearing mineral state (gray bar) in fine particle fractions at different depths. Figure 12. Variation in parent-rock normalized light rare-earth elements with cerium anomaly/heavy rare-earth elements in specific state/parent rock indicated as (LREE-
1584 1585 1586 1587 1588 1589 1590 1591 1591	 (abbreviations: Kln = kaolinite; Hem = hematite). Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar), organic-associated REE-bearing mineral state (blue bar), amorphous iron-manganese (Fe-Mn) (hydr)oxide associated REE-bearing mineral state (green bar), crystalline Fe-Mn (hydr)oxide-associated REE-bearing mineral state (green bar), and residual REE-bearing mineral state (gray bar) in fine particle fractions at different depths. Figure 12. Variation in parent-rock normalized light rare-earth elements with cerium anomaly/heavy rare-earth elements in specific state/parent rock indicated as (LREE-Ce)/HREE_{s/p} (a) and whole-rock normalized cerium anomaly/heavy rare-earth elements
1584 1585 1586 1587 1588 1589 1590 1591 1591 1592 1593	 (abbreviations: Kln = kaolinite; Hem = hematite). Figure 11. Proportions of ion-exchangeable rare earth element (REE) (orange bar), organic-associated REE-bearing mineral state (blue bar), amorphous iron-manganese (Fe-Mn) (hydr)oxide associated REE-bearing mineral state (green bar), crystalline Fe-Mn (hydr)oxide-associated REE-bearing mineral state (green bar), and residual REE-bearing mineral state (gray bar) in fine particle fractions at different depths. Figure 12. Variation in parent-rock normalized light rare-earth elements with cerium anomaly/heavy rare-earth elements in specific state/parent rock indicated as (LREE-Ce)/HREE_{s/p} (a) and whole-rock normalized cerium anomaly/heavy rare-earth elements in specific state/whole rock, (LREE-Ce)/HREE_{s/w} (b) with depth in ion-exchangeable

1595	Figure 13. (a) Plot of logarithm of absorption coefficient (K_d) as a function of atomic
1596	number for rare-earth elements (REEs) adsorbed onto Bt-60d. Inset: Adsorption
1597	isotherms of Bt-60d for neodymium (black) and ytterbium (red) fitted by the Langmuir
1598	adsorption model. (b) Distribution of REEs in ion-exchangeable (black), amorphous
1599	(red), and crystallized (blue) iron (hydr)oxide-associated states on Bt-60d. q is the REE
1600	concentration in each state, as determined by sequential extraction. q_e is the
1601	concentration of adsorbed REEs.
1602	Figure 14. Transmission electron microscopy image of clay mineral-iron(hydr)oxide
1603	composite and energy-dispersive X-ray spectroscopy mapping of iron (Fe), aluminum
1604	(Al), and neodymium (Nd) on Bt-60d after neodymium (Nd) adsorption (a-f), followed
1605	by the extraction of ion-exchangeable Nd (g-i). Adsorption experiment conditions: Bt-
1606	60d dosage = 0.5 g L ⁻¹ ; initial concentration of Nd = 10 mg L ⁻¹ ; $pH = 6$.
1607	Figure 15. Transmission electron microscopy image of clay mineral-iron (hydr)oxide
1608	composite and energy-dispersive X-ray spectroscopy mapping of iron (Fe), aluminum
1609	(Al), and ytterbium (Yb) on Bt-60d after Yb adsorption (a-f), followed by extraction of
1610	ion-exchangeable Yb (g–i). Adsorption experiment conditions: Bt-60d dosage = 0.5 g
1611	L^{-1} ; initial concentration of Yb = 10 mg L^{-1} ; pH = 6.
1612	

1616

Figure 2

1618

Figure 3

1620

Figure 4

1624

1622

1625 1626

1628 1629

Figure 7

1631

1632

Figure 8

1634 1635

Figure 9

1637 1638

Figure 10

1640

1641

Figure 12

1645

Figure 13

1647

Figure 14

Figure 15