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Abstract 16 

Raman spectroscopy is a powerful technique in the context of planetary exploration 17 

because it provides mineral identification, chemistry, and abundance information. For Raman 18 

spectrometers with large spot sizes, multiple mineral phases can be investigated via the 19 

collection of a single Raman spectrum. There is a lack of methodology for quantifying mineral 20 

species in mixtures due to independent signal strengths of different materials in Raman spectra. 21 

Two techniques are presented in this work for the quantification of common rock-forming 22 

minerals: partial least squares multivariate analysis and a novel approach called Raman cross-23 
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section proxies (numerical metrics associated with specific Raman features). This paper targets 24 

20 mineral species relevant to the mineralogy of the planet Mars. Mineral end-member samples 25 

and 187 binary mineral-mineral mixtures (mixture of two distinct minerals) are used for 26 

multivariate modeling. Eighteen diamond-mineral mixtures are used to derive Raman cross-27 

section proxies. Mineral abundance proportions are predicted for the binary mineral-mineral 28 

mixtures with known mineralogical content to evaluate the efficacy of the two quantitative 29 

methods. Technique performance is mineral-dependent. The root-mean-square error for unseen 30 

predictions (RMSE-P) using Raman cross-section proxies ranges from ±3.2-17.0 volume%. For 31 

the multivariate models, the cross-validated root-mean-square error (RMSE-CV) ranges from 32 

±8.8 to 26.2 volume%. Although these error estimates are not directly comparable, they provide 33 

the most accurate error estimate currently available. Different scenarios may favor the use of one 34 

or the other of the two quantitative methods. This work provides fundamental groundwork that 35 

can be applied to common rock-forming minerals on terrestrial planets including Mars. 36 

Quantification of mineral abundances aids in answering critical geologic questions related to 37 

ancient primary and altered rocks as well as planetary processes and conditions. 38 

Key Words: Modal Mineralogy, Raman Spectroscopy, Raman Cross-Section 39 

 40 

Introduction 41 

There are several applications for Raman mineral quantification methodologies including 42 

laboratory and field-based measurements, and planetary exploration. Planetary scientists 43 

currently utilize Raman spectroscopy for in-situ measurements of rocks, minerals, organics, and 44 

chemicals on Mars. Similarly, scientists have proposed to use this technique on other terrestrial 45 

bodies such as Venus (Sharma et al., 2011; Clegg et al., 2014) and the Moon (Wang et al., 1995). 46 
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Raman spectroscopy is gaining popularity as a tool among other sample characterization 47 

techniques within the field of planetary science. This work presents unmixing methodologies 48 

pertinent to several geologic applications but highlights its relevance to the study of Mars 49 

mineralogy. Therefore, we utilize a sample suite applicable to primary and secondary (altered) 50 

mineralogy of that planet. 51 

Two Raman instruments were recently deployed on the Mars 2020 Perseverance Rover. 52 

The Scanning Habitable Environments with Raman and Luminescence for Organics & 53 

Chemicals (SHERLOC) instrument utilizes deep ultraviolet resonance for the analysis of 54 

organics, chemicals, and surface mineralogy (Bhartia et al., 2021). SuperCam analyzes surface 55 

materials with a 532 nm laser from long ranges (Wiens et al., 2021). A third Raman 56 

spectrometer, the Raman Laser Spectrometer (RLS) on the ExoMars mission, is planned to arrive 57 

in this decade. It will use a 532 nm laser to analyze powdered samples obtained by a drill (Rull et 58 

al., 2017). The beam sizes of RLS and SHERLOC (~111 μm) are small enough to primarily 59 

probe individual mineral phases, though in some cases SHERLOC has investigated mineral 60 

mixtures (Bhartia et al., 2021; Corpolongo et al., 2023). With the larger spot size of SuperCam 61 

(>1 mm) (Wiens et al., 2016) mixed-mineral spectra are produced (Beyssac et al., 2020). Spectra 62 

of fine-grained materials such as powders and dust are particularly likely to result in mixed-63 

mineral spectra using any of these Raman instruments. The success of data interpretation from 64 

Raman instruments on Mars relies on the availability of appropriate databases (e.g., Wang et al., 65 

1994; Lafuente et al., 2015; Veneranda et al., 2022) and software for mineral identification at 66 

relevant scales.  67 

In addition to identification techniques, quantification methods must also be considered 68 

because it is desirable to know not only which minerals are present, but their relative 69 
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abundances. Complex Raman mixing effects due to different signal strengths of components 70 

make quantification of mixed-mineral spectra difficult (Nasdala et al., 2004). Quantitative 71 

relationships between peak area and mineral abundance are obscured by many complicating 72 

factors: the Raman cross-section of the mineral, exciting laser frequency, crystal orientation, 73 

long-range chemical/ structural ordering in the crystal lattices and experimental factors such as 74 

effective sampling volume (Haskin et al., 1997). Except for the Raman cross-section, these 75 

factors must be held constant (e.g., laser wavelength) or averaged (e.g., large spot sizes for 76 

sample averaging) to minimize their effect on quantification. These issues must be considered for 77 

interpretation of mineral mixtures through either a theoretical method like partial least squares 78 

multivariate analysis algorithms or empirical formulae (e.g., Raman cross-section proxies, a 79 

novel method presented here). There is a lack of methodology to calculate the inherent Raman 80 

signal strength of minerals and therefore quantify mineral abundances in mixtures. In fact, 81 

Raman spectra of mineral mixtures with known quantitative modal abundances do not exist in 82 

any public databases. 83 

To begin to address this deficiency, this work uses partial least squares multivariate 84 

analysis models and introduces a new methodology called “Raman cross-section proxies”. We 85 

test and compare the two quantitative approaches. Raman cross-sections are numerical metrics 86 

for specific Raman features that rely on Raman spectra of physical mixtures between minerals of 87 

interest and a constant reference material such as diamond. This paper explicitly deals with 88 

methods for quantification rather than identification. Inspection of Raman data or a pre-89 

classification step is recommended for mineral identification prior to quantification. 90 

 91 

Background 92 
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Quantification of minerals in mixtures is challenging using Raman spectroscopy because 93 

of complex mixing effects caused by independent signal strengths of different minerals (Figure 94 

1). Figure 1 shows three examples of Raman spectra of binary mineral mixtures. Despite the fact 95 

that two of the three mixtures have 20 volume% calcite (red and yellow), the diagnostic calcite 96 

features at ~1080 cm-1 have different peak intensities. Similarly, although forsterite is present at 97 

80 volume% in two of the mixtures, the intensities of its doublet around ~823 and ~855 cm–1 are 98 

different (red and blue). This effect is mostly due to the Raman cross-section of the other phase 99 

in each mixture (e.g., forsterite versus labradorite for the calcite mixtures) while other 100 

complicating quantification factors are minimized. Raman cross-sections highlight the unmixing 101 

problem that motivates this work.  102 

 103 

Martian Mineralogy 104 

Part of the impetus for this work is the interpretation of Mars data from the Perseverance 105 

rover, including Raman data from both the SuperCam (e.g., Clave et al., 2022; Meslin et al., 106 

2022) and SHERLOC (e.g., Scheller et al., 2022; Corpolongo et al., 2023) instruments. 107 

Accordingly, minerals that occur on Mars were chosen for the sample suite for relevance. 108 

Martian crust and surface evolution is commonly assessed via a framework based on its degree 109 

of alteration (primary versus secondary mineralogy) (Ehlmann et al., 2014). Primary minerals 110 

consist of silicates (olivine, pyroxene, and feldspar), sulfides, and certain oxide minerals (e.g., 111 

ilmenite) (e.g., Morris et al., 2006, 2008; Rogers and Christensen, 2007; Poulet et al., 2009; 112 

Vaniman et al., 2014). Secondary minerals include other oxide minerals (e.g., hematite, goethite, 113 

and ferrihydrite), hydrated silicates including phyllosilicates, carbonates, sulfates, zeolites, 114 

chlorides, and perchlorates (e.g., Ruff, 2004; Morris et al., 2006; Hecht et al., 2009; Bishop et al., 115 
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2009; Osterloo et al., 2008; Vaniman et al., 2014; Ehlmann et al., 2008a; 2010). The sample suite 116 

used in this work is consistent with the primary and secondary mineralogy of Jezero crater (the 117 

target of the Perseverance Rover) and Mars generally. 118 

Jezero crater (~45 km diameter) contains evidence of delta deposits entering an ancient 119 

paleolake (Fassett and Head, 2005; Ehlmann et al., 2008b; Schon et al., 2012). It is located 120 

within Nili Fossae (a set of concentric graben) at the northwest edge of Isidis Basin (Goudge et 121 

al., 2015). Fassett and Head (2005) identified two inlet valleys (north and west) and one outlet 122 

valley (east) linked to Jezero crater. The fluvial activity that formed the surrounding valley 123 

networks and the Jezero paleolake led to diverse geologic units in this region. Outside the crater, 124 

the north and west fan watershed are comprised of the altered basement unit (Fe/Mg-smectite 125 

rich), mottled terrain (olivine and carbonate bearing), and the pitted capping unit (volcanic or 126 

impact melt superimposed on the basement) (Goudge et al., 2015). The crater interior contains a 127 

volcanic floor unit, a light-toned floor unit, north and west fan deposits, a marginal carbonate 128 

unit, and additional mottled terrain (Goudge et al., 2015; Horgan et al., 2020; Zastrow and 129 

Glotch, 2021). The mottled terrain and light-toned unit are stratigraphically equivalent and 130 

precede fluvial activity. Next, the fan deposits were emplaced and lastly the formation of the 131 

volcanic unit occurred (Goudge et al., 2015).  132 

Since the arrival of the Perseverance Rover to Jezero crater, scientific investigations have 133 

focused on two geologic units called the Máaz and the Séítah formations (Bell et al., 2022; Liu et 134 

al., 2022; Farley et al., 2022). The Máaz formation consists primarily of plagioclase and 135 

pyroxene minerals while the Séítah formation is olivine and carbonate bearing with pyroxene 136 

and plagioclase (Liu et al., 2022; Farley et al., 2022). Carbonates, hydrated silicates, sulfates, 137 



 
 

7 

perchlorates, and iron oxides like hematite are present throughout Jezero in low abundances (Bell 138 

et al., 2022). 139 

Using Perseverance’s SHERLOC Raman measurements in Jezero crater, Scheller et al. 140 

(2022) and Corpolongo et al. (2023) evaluated the mineralogical differences between Máaz and 141 

Séítah, described evidence of olivine carbonation, and identified sulfate and perchlorate salt 142 

bearing units. SuperCam Raman measurements also identified materials like carbonate, olivine, 143 

anhydrous Na-perchlorate, and amorphous silica in Jezero crater (Clave et al., 2022; Meslin et 144 

al., 2022).  145 

 146 

Raman Quantification 147 

Previous workers utilized many different techniques to analyze materials using Raman 148 

spectroscopy for terrestrial and planetary geologic applications. These methodologies include 149 

sample mineral/phase identification and classification (e.g., Griffith, 1969; Wang et al., 1994; 150 

Ishikawa and Gulick, 2013; Cochrane and Blacksberg, 2015; Lafuente et al., 2015; Carey et al., 151 

2015a, Berlanga et al., 2019; 2022), chemical characterization (e.g., pyroxene, Wang et al., 2001; 152 

feldspar, Freeman et al., 2008; and olivine, Breitenfeld et al., 2018), and quantification (e.g., 153 

Kristova et al., 2013; Qi et al., 2023; Zarei et al., 2023). Below we provide detail on additional 154 

investigations into Raman quantification of rocks and minerals. 155 

Haskin et al. (1997) warned of the difficulties of quantifying mineral proportions using 156 

Raman spectroscopy (e.g., crystal orientation and experimental factors). The paper presented a 157 

method that relies on the collection of multiple Raman spectra at different locations on the 158 

sample. Next, mineral identification is made for each individual spectrum. This technique is 159 

similar to point counting, a common petrographic method. Using spectra measured at 100 160 



 
 

8 

locations on a lunar sample (14161,7062) and a rock fragment (15273,7039), Haskin et al. (1997) 161 

identified major, minor, and accessory minerals. Ling et al. (2011) also utilized the technique for 162 

similar purposes. This location-based quantification approach is similar to using spectral rasters 163 

that are often acquired on Mars. This method is the most direct way to quantify mineral 164 

proportions in most cases. 165 

Stopar et al. (2005) examined Raman efficiencies of natural rocks and minerals. In this 166 

work, the authors calibrated absolute radiance and measured the laser power at the target. Using 167 

the ratio of irradiance to Raman radiance, it is possible to predict the signal for a given material. 168 

This work has implications to Raman cross-section values. 169 

Lopez-Reyes et al. (2014) examined Ca-, Fe-, Na-, and Mg-sulfate salts with specific 170 

application to the RLS instrument on ExoMars. The paper used principal component analysis, 171 

partial least squares, and artificial neural networks to test identification and quantification 172 

performance. Seventeen spectra of sulfates and artificially mixed spectra were computed as 173 

combinations of the sulfates. Tests of model performance on real samples (mixtures of anhydrite 174 

+ thenardite and thenardite + MgSO4, n=14) demonstrated success. This work relied on artificial 175 

spectral mixtures rather than independently measured physical samples. The high accuracy of the 176 

predictions is likely due to the fact that the different sulfate samples in the project have 177 

comparable Raman cross-sections. However, when mixing components with different Raman 178 

cross-sections, more complicated mixing behaviors would be revealed. 179 

Carey et al. (2015b) suggested an alternate approach to this problem based on whole 180 

spectrum matching (WSM) techniques and specifically the generalized match score (MS) 181 

formulation. The algorithm describes the match score as 182 

, where w is a blending parameter between 0 and 1. The overall distance between 183 
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two spectra is computed by summing MS(yAyB) for all corresponding intensities, y, in the pair 184 

(Carey et al., 2015b). The procedure for mineral unmixing follows several steps including 185 

spectral preprocessing to account for inconsistent factors like the spectral background, WSM, 186 

creating a new query spectrum (zeroing intensities where the MS is below a threshold), repeating 187 

WSM for additional components, and ordering results by composite distances. This work 188 

highlights the potentially confounding effects of particle size, baseline removal, and Raman 189 

cross-section, all of which affect peak intensities. 190 

Yaghoobi et al. (2016) used a related approach called fast non-negative orthogonal 191 

matching pursuit. It works by iteratively subtracting an identified spectrum (from reference data) 192 

from the mixture spectrum to determine the components. This technique proved successful for 193 

identifying components in proportions greater than 10% using Raman spectroscopy (Yaghoobi et 194 

al. 2016). The methodology is primarily useful for identification while rough quantification is 195 

possible.  196 

Breitenfeld et al. (2018a) demonstrated mineral species quantification for olivine group 197 

minerals using two multivariate analysis methods, partial least squares (PLS) and least absolute 198 

shrinkage and selection operator (LASSO). These methodologies demonstrated success in the 199 

quantification of Mg-rich and Fe-rich olivine with Raman spectroscopy. Here, we use similar 200 

multivariate analysis models for predicting mineral abundance estimates rather than mineral 201 

species determination.  202 

Finally, Veneranda et al. (2021) reported semi-quantitative Raman measurements of 203 

olivine, feldspar, and pyroxene binary (n=27) and ternary (n=5) mixtures relevant to future 204 

ExoMars measurements on Mars. The paper utilized intensity ratios to model different mixing 205 
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components and noted that additional spectral factors like area and full width at half maximum 206 

may aid further model optimization.  207 

 208 

Factors Influencing Quantitative Relationships between Spectra and Abundances 209 

Sample Properties. Crystal orientation can influence the Raman active modes that 210 

contribute to a collected spectrum (e.g., calcite; see Bhagavantam, 1940). This challenge can be 211 

mitigated by using a large spot size and a powdered sample to create a spectrum that represents 212 

an average of all of the crystal orientations, as done in this study. 213 

Particle size (Foucher et al., 2013) and texture (Popp et al., 2002) are known to affect 214 

Raman spectra of minerals. Breitenfeld et al. (2018b) examined Raman spectra of olivine, 215 

pyroxene, and feldspar samples at 10 different particle size splits (smallest <25 μm and largest 216 

710-1000 μm). This work found subtle Raman peak intensity differences for the different 217 

particle size fractions. There is a minor Raman intensity increase from <25 μm to between 63 218 

μm and 106 μm, followed by a steady decrease in Raman intensity for increasing particle sizes 219 

out to 710-1000 μm. 220 

 221 

Experimental Factors. When constructing a quantitative model, it is important to hold 222 

as many experimental factors as possible constant (e.g., laser power and integration time). This 223 

allows the dataset to be directly compared to itself. How these factors might scale when 224 

comparing the spectra to outside data collected under different sampling conditions must be 225 

considered. When possible, it is best to compare spectra collected under the same sampling 226 

conditions (e.g., the SuperCam engineering instruments at Los Alamos and the SuperCam 227 

instrument on the Perseverance Rover on Mars). For best results in comparing laboratory and 228 
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mission data, spectral data should be collected on an equivalent system or processed to match the 229 

application dataset. 230 

Different excitation laser wavelengths can be utilized in Raman spectroscopy. For 231 

example, the SHERLOC and SuperCam instruments on the Perseverance Rover have different 232 

laser wavelengths (248.6 nm versus 532 nm laser) (Bhartia et al., 2021; Wiens et al., 2021). A 233 

disadvantage that particularly affects visible investigations is that fluorescence emission can 234 

arise (Long et al., 2002; Edwards et al., 2013). Use of an ultraviolet wavelength (as on the 235 

SHERLOC instrument) can help mitigate this problem. Alternatively, a pulsed laser with a gated 236 

detector like that used by SuperCam can capture the Raman signal and eliminate the fluorescence 237 

component (Kögler and Heilala, 2020). Fluorescence mitigation from sample materials must be 238 

considered for quantitative Raman spectral measurements. Fluorescence can be caused by 239 

biogenic organics (Wang et al., 2020), the presence of rare-earth elements (Panczer et al., 2012), 240 

poorly crystalline materials (Bishop et al., 2004), as well as other effects that can complicate 241 

Raman measurements. Further research is needed to quantify the contribution of fluorescence to 242 

Raman measurements of geologic materials. 243 

 244 

Spectral pre-processing. Raman spectroscopy pre-processing steps are important for 245 

building prediction models. Here, baseline removal and normalization are performed prior to 246 

model construction. Carey et al. (2015c) found that AirPLS outperforms other baseline removal 247 

methods for predicting mineral class, type, group, and species. Additional testing may be useful 248 

for understanding the effect of baseline removal on specific Raman datasets. Other pre-249 

processing techniques like squashing and smoothing can also be tested. It is important to test 250 

spectral pre-processing methods for each unique Raman dataset. 251 
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 252 

Methods 253 

Sample Suite Selection, Preparation, and Characterization 254 

The sample suite consists of 20 mineral end-member samples (Table 1) representing 255 

species that are relevant to the primary and secondary mineralogy of the planet Mars. They 256 

include oxides (hematite, ilmenite), carbonates (calcite, magnesite, siderite), sulfates (anhydrite, 257 

gypsum, rozenite, alunite), a nesosilicate (forsterite), inosilicates (enstatite, diopside, augite), 258 

phyllosilicates (montmorillonite, nontronite, saponite, clinochlore), and tectosilicates 259 

(labradorite, bytownite, chabazite). Sample characteristics including sample name, sieved 260 

particle size range, locality, and supplier information are reported in Table 1. Use of powdered 261 

samples mitigated orientation effects, allowing random mineral orientations to be investigated. 262 

Additionally, due to particle size effects, we chose to make mineral mixtures from sieved 263 

samples where the paired materials shared the same particle size fraction. 264 

Each mineral end-member sample (except the magnesite sample) was analyzed using 265 

electron microprobe analysis (EMPA) by Joe Boesenberg at Brown University to confirm its 266 

composition. All sample compositions are accurately represented by their mineral name except 267 

the rozenite sample that contains Cu with potentially a bonattite impurity. Mineral identification 268 

was also confirmed from the Raman data. EMPA data were also used to accurately estimate 269 

mineral densities of each sample by calculating their chemical formulas and interpolating them 270 

between published density values. Knowing the density of each sample prior to making the 271 

mixtures is important for the accurate measurement of mixture components by volume 272 

percentage. 273 

 274 
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Mineral-Mineral Mixtures 275 

This work relies on two types of binary mixtures: paired mineral-mineral mixtures and 276 

mixtures of each mineral with diamond powder. The binary mineral-mineral mixtures serve two 277 

purposes; they act as a training set for the PLS multivariate analysis models, and they aid in the 278 

testing of unmixing performance of unseen data from the Raman cross-section proxy method. A 279 

total of 187 binary mineral-mineral mixtures were made from pairings of the 20 mineral end-280 

members. Samples were weighed into ratios of 50:50, 20:80, or 5:95 volume% depending on the 281 

Raman cross-sections of the paired phases. The ratios of components in the mixtures were 282 

customized for each pair to ensure that each mineral would have characteristic spectral features 283 

with sufficient peak areas for their individual detection. 284 

 285 

Diamond-Mineral Mixtures 286 

Binary diamond-mineral mixtures of synthetic diamond powder with 18 of the mineral 287 

end-members (all except hematite and ilmenite) were created to enable calculation of Raman 288 

cross-section proxies for quantitative modeling. Binary mixtures of pure minerals with a 289 

reference material (here, diamond) provide an empirical and practical method for calculating 290 

cross-section proxies that relate the Raman peak areas of minerals to a diamond standard.  291 

Synthetic diamond (Eastwind Diamond Abrasives) was chosen as the reference material 292 

for the Raman cross-section proxies because it has a simple spectrum with a strong peak at 293 

~1332 cm-1 that does not overlap with peaks in most common rock-forming minerals. When the 294 

~1332 cm-1 diamond feature overlaps with diagnostic mineral features, an alternative 295 

quantification method is suggested. The particle size of the diamond powder was selected to fall 296 
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within the particle size range of the paired mineral sample. Synthetic diamond powder can be 297 

purchased at a variety of particle size ranges at a relatively low cost. 298 

To evaluate the strength of the diamond signal, we prepared several mixtures of diamond 299 

and forsterite, including ratios of 20:80, 15:85, 10:90, 5:95, and 1:99 volume% (Figure 2). It is 300 

apparent that the ~1332 cm-1 diamond peak dwarfs the Raman features in most mineral samples. 301 

Therefore, this trend was used to determine a diamond to mineral volume ratio of 5:95 volume% 302 

for each diamond-mineral mixture to enable easy peak-fitting for both components in each 303 

mixture. In these calculations, it was generally assumed that forsterite was representative of most 304 

mineral samples. This ratio resulted in spectra with the presence of Raman features for both 305 

diamond and the mineral end-members. 306 

 307 

Raman Spectral Measurements 308 

All samples (end-member minerals, mineral-mineral mixtures, and diamond-mineral 309 

mixtures) were run on a Bruker BRAVO Raman spectrometer using its dual laser system. This is 310 

accomplished through the excitation of two lasers simultaneously (785 and 852 nm) with a 311 

patented fluorescence mitigation strategy involving successive laser heating (Cooper et al., 312 

2014). Raman measurements utilized standard linear polarized laser light with a spot size of 2 313 

mm in diameter. Each sample was scanned for 10 seconds over a range from 300-3200 cm-1. The 314 

laser power of the BRAVO instrument is fixed and does not exceed 100 mW, reducing the risk 315 

of material alteration. Samples were stored in glass vials and were shaken prior to all Raman 316 

measurement to minimize sample inhomogeneity. Each sample was run three times and the 317 

spectra were averaged. Baselines were removed using the adaptive iteratively reweighted 318 

penalized least-squares (AirPLS) technique (Zhang et al., 2010). AirPLS uses the sum of the 319 
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difference between the signal and the baseline to adjust weights intelligently. The smoothness 320 

parameter was set to 100. Ultimately, a single Raman spectrum associated with each physical 321 

sample (20 pure minerals, 187 binary mineral mixtures, 18 diamond-mineral mixtures) was 322 

utilized in this investigation. 323 

 324 

Multivariate Data Analysis 325 

We model modal mineralogy (volume%) using partial least square (PLS) multivariate 326 

modeling (Geladi and Kowalski, 1986; Wold et al., 1983, 2001). Sample characterization 327 

techniques like laser-induced breakdown spectroscopy (e.g., Tucker et al., 2010; Dyar et al., 328 

2016a), X-ray absorption spectroscopy (e.g., Dyar et al., 2012b; 2016b), mid-infrared 329 

spectroscopy (e.g., Pan et al., 2015; Breitenfeld et al., 2021) and many other methods have 330 

utilized multivariate methods like PLS. The use of PLS in the analysis of geologic materials 331 

using Raman spectroscopy is common (e.g., Lopez-Reyes et al., 2014; Breitenfeld et al., 2018a; 332 

Bonoldi et al., 2018; Sowoidnich et al., 2023). Other workers have also explored different 333 

multivariate analysis techniques, machine learning algorithms, and the combination of multiple 334 

methods simultaneously (e.g., Ishikawa and Gulick, 2013; Carey et al., 2015a; Jahoda et al., 335 

2021). Here, we utilize PLS and hope to explore additional avenues in future work (as in 336 

Boucher et al., 2015a; 2015b). 337 

PLS (Geladi and Kowalski, 1986; Wold et al., 1983, 2001) predictions exploit all 338 

channels of the spectral range, assigning a coefficient to every channel associated with each 339 

metadata category (e.g., mineral volume%). For spectral data, PLS utilizes all spectral data 340 

channels and finds the channels with maximal covariance between X (feature matrix) and Y 341 

(response matrix). This is accomplished by regressing one or multiple response variables against 342 
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multiple explanatory variables (p) (Wold et al., 2001). While finding covariance, PLS reduces 343 

the p-dimensional matrix with a shrinkage penalty to q dimensions. Finally, the response on q is 344 

regressed with ordinary least squares, minimizing the residual sum of squared error (Wold et al., 345 

2001). 346 

The number of components for each of the PLS models were tested from 2-15. The 347 

number of components was selected that resulted in the minimum cross-validated root-mean-348 

square error value. In this investigation, p is equivalent to the number of channels in each 349 

spectrum and q is the number of components that is chosen during the cross-validation step. 350 

 351 

Raman Cross-Section Proxy Data Analysis 352 

We establish the novel methodology of Raman cross-section proxies in this investigation. 353 

It is accomplished by using Raman spectral data from a suite of diamond-mineral mixtures. The 354 

goal of this approach is to use a reference material (here diamond powder) to compare all 355 

minerals of interest. Making this quantitative comparison to the reference then allows for a 356 

mixing relationship to be established for all investigated minerals. Ultimately, this permits 357 

complex mineral mixtures to be quantified. 358 

For the Raman cross-section proxy calculations, areas were calculated for the peaks 359 

arising from the diamond feature at ~1332 cm-1 and also from a diagnostic feature of the other 360 

mineral end-member in the pair. Each Raman feature was peak fitted with a Lorentzian curve at 361 

the spectral resolution of the data allowing for the extraction the curve fit parameters. Resultant 362 

peak positions and areas were tabulated. The ratio of these peak areas is termed a “Raman cross-363 

section proxy” (Equation 1). A normalization parameter is included within the equation to 364 
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account for the volume percentage of diamond given that different proportions could be chosen 365 

when making a diamond-mineral mixture.  366 

  (Equation 1) 367 

A visual representation comparing the Raman spectral features of two diamond mixtures 368 

(anhydrite versus forsterite) is provided in Figure 3. With spectra normalized to the ~1332 cm-1 369 

diamond feature, the diagnostic anhydrite feature (~1017 cm-1) overpowers the forsterite feature 370 

(~855 cm-1) resulting in a comparatively higher Raman cross-section proxy for anhydrite. Note, 371 

the areas of the diagnostic mineral feature and the diamond feature are utilized (through peak 372 

fitting) in the calculation of each Raman cross-section proxy value. There is no assumption that 373 

the area of the diamond feature is constant across different diamond-mineral mixtures. 374 

The modal mineralogy of mixtures can theoretically be calculated for any sample that 375 

consists only of components with calculated Raman cross-section proxies. Equation 2 allows for 376 

modal mineralogy predictions where area represents Raman peak area and RCP represents 377 

Raman cross-section proxies for mixing components A, B, etc.  378 

  (Equation 2) 379 

Equation 1 provides the fundamental calculation for the Raman cross-section proxy, 380 

introduced in this investigation. Equation 2 is a tool that allows workers to quantify modal 381 

mineralogy of mineral mixtures with unknown abundances. The principal of the Raman cross-382 

section proxy can be extended to other reference materials beyond diamond if necessary and at 383 

different volume ratios. 384 

 385 

Error Analysis 386 
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Root-mean-square errors (RMSE), which compare predicted versus true values by taking 387 

the square root of their summed differences, are used to evaluate accuracies of various models in 388 

three ways, using nomenclature from Dyar and Ytsma (2021). RMSE-C is the internal error of 389 

the calibrated model (typically reported in the literature). RMSE-CV is the cross-validated 390 

RMSE, in which successive randomly selected portions of the data (folds) are held out and the 391 

model is built from the remaining folds. The cross-validated accuracy is then evaluated as the 392 

average RMSE of all the fold models. The number of folds is selected to equal the square root of 393 

the total number of spectra within a given model. Finally, RMSE-P error is test RMSE of held-394 

out data that are not used within the model (unseen data). 395 

RMSE-C and the more robust RMSE-CV are used in this investigation to evaluate the 396 

performance of the PLS models because the datasets are not large enough to hold out test data. It 397 

is not possible to calculate an equivalent RMSE-C or RMSE-CV values for the Raman cross-398 

section proxy method because the underlying data consists of a single Raman spectrum that 399 

cannot be internally modeled. However, RMSE-P is used in the analyses of Raman cross-section 400 

proxies by predicting the known mineral abundances of the mineral-mineral mixtures. Given that 401 

the Raman cross-section proxy values are derived from only the diamond-mineral mixtures, the 402 

mineral-mineral mixtures act as unseen data. 403 

 404 

Dataset Size 405 

Figure 4 summarizes the number of spectra utilized in evaluating the two mineral 406 

quantification methods. Of the total number of mineral-mineral mixture spectra (n= 187), all 407 

were used in the multivariate models and a subset was used for evaluating the performance of the 408 

Raman cross-section proxies. Differences in these datasets prohibit a perfect comparison 409 
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between these two techniques. Raman spectra without diagnostic features due to sample heating, 410 

fluorescence, or noise were eliminated. In certain cases, spectral quality was observed to 411 

diminish through the combination of mixing components (e.g., signal-to-noise ratio for samples 412 

with augite), removing the possibility of peak fitting these spectra. For the Raman cross-section 413 

proxy method, spectra with overlapping features that were unresolvable through peak fitting 414 

were also eliminated. This resulted in more spectra utilized in the multivariate models than in the 415 

Raman cross-section proxy method. Although the PLS method is tested with more spectra (more 416 

robust), a RMSE-CV value is utilized (less robust) compared to the RMSE-P value for the 417 

Raman cross-section proxy method. In the future, we plan to make additional mixtures solely for 418 

the purpose of testing these two methodologies equivalently. 419 

 420 

Results 421 

Raman Spectra 422 

Figures 5 and 6 depict Raman spectra of pure non-silicate and silicate mineral end-423 

members in order by Dana Class. Raman spectral features of the 20 mineral samples are 424 

consistent with their mineralogy based upon chemical data from the microprobe compared 425 

against published literature compositions and Raman data for those phases.  For example, Raman 426 

spectral features of hematite occur at ~411 cm–1, ~493 cm–1, and ~612 cm–1 (Marshall et al., 427 

2020). The ilmenite spectrum has a symmetric stretching feature at 685 cm–1 (Vennari and 428 

Williams, 2021). All of the carbonate spectra have features around ~712-739 cm–1 and ~1086-429 

1095 cm–1 as well as additional bands (Dufresne et al., 2018). The position of the dominant 430 

sulfate feature from the symmetric stretching vibration of the SO4 tetrahedra varies between 431 

~989-1024 cm–1 (Buzgar et al., 2009; Maubec et al., 2012; Košek et al., 2020) as seen for 432 
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anhydrite, gypsum, rozenite, and alunite. The rozenite band position may be shifted due to the 433 

Cu impurity. Forsterite spectra have the diagnostic doublet at ~823 and ~855 cm–1 (Iishi, 1978; 434 

Chopelas, 1991; Kolesov and Geiger, 2004; McKeown et al., 2010). All of the pyroxene spectra 435 

display both the ~662-667 cm–1 and the ~1011-1013 cm–1 features (Huang et al., 2000). 436 

Phyllosilicate spectra show Raman features around ~679-706 cm–1 for both chlorite and smectite 437 

group samples (Wang et al., 2015). In tectosilicates, the labradorite and bytownite spectra have 438 

diagnostic features at ~508 and ~506 cm–1 (Freeman et al., 2008), whereas the chabazite 439 

spectrum has a feature at ~466 cm–1 (Tsai et al., 2021). 440 

Although the Raman spectra of the 20 samples were collected under identical conditions, 441 

differences in the Raman intensity values for these data (e.g., carbonates versus phyllosilicates) 442 

demonstrate variations in the Raman cross-sections of the minerals. Overall, the signal intensities 443 

are greater for the non-silicate minerals compared to the silicate minerals. 444 

 445 

Multivariate Analysis Models 446 

Figure 7 summarizes the PLS multivariate models for each mineral using R2, RMSE-C, 447 

and the more robust RMSE-CV values. The R2 values derive from the calibration model. Figure 448 

8 demonstrates the accuracy of the partial least squares multivariate predictions for individual 449 

samples for each mineral. Generally, the lower RMSE-CV values for the carbonates, sulfates, 450 

and phyllosilicates indicate better model performance compared to oxides, nesosilicate, 451 

inosilicates, and tectosilicates. However, model performance is dependent on the individual 452 

mineral species. In other words, the accuracies of the predictions of modal percentages by 453 

multivariate analysis vary between minerals within the same mineral group. For example, calcite 454 
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and magnesite have high accuracies with high R2 values and low RMSE-CV values, whereas 455 

siderite has a relatively lower R2 value and higher RMSE-CV value. 456 

 457 

Raman Cross-Section Proxies 458 

 As an alternative to the partial least squares multivariate technique, we utilize Raman 459 

cross-section proxies (Table 2) for quantitative measurements of abundance based on Raman 460 

spectra. Each Raman cross-section proxy corresponds to a specific Raman band feature at a 461 

specific wavenumber position. The most prominent (greatest intensity) Raman feature of each 462 

sample is chosen for the calculation of the Raman cross-section proxies. If that feature differs for 463 

samples within the same mineral group, a different peak resulting from the same Raman mode is 464 

selected. Raman cross-section proxies apply only to the Raman features from which they are 465 

derived. For example, using the olivine Raman cross-section proxy from the ~855 cm-1 feature 466 

would yield incorrect abundance if applied to the olivine doublet feature near ~815–825 cm–1. 467 

The highest Raman cross-section proxy values are associated with the non-silicate 468 

minerals. Except for the rozenite sample, the Raman cross-section proxy values are all greater 469 

than one for the non-silicate minerals. All silicate minerals have a Raman cross-section proxy 470 

value of less than one. Note that Raman cross-section proxy values could not be calculated for 471 

the oxide minerals hematite and ilmenite because their unusually broad Raman features (Figure 472 

5) would incorrectly inflate the Raman cross-section proxy values. A more detailed discussion of 473 

this issue is provided below. 474 

 Derived Raman cross-section proxies are utilized to unmix the modal mineralogy of the 475 

mineral-mineral mixtures (Figure 9). The predictions of the mineral-mineral mixture spectra 476 

provide RMSE-P values that describe the prediction accuracies for each mineral species. Calcite 477 
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predictions are most accurate (RMSE-P = 3.2 volume%), while siderite predictions are least 478 

accurate (RMSE-P = 17.0 volume%). Although the RMSE-P values are helpful to understand the 479 

prediction performance for each mineral, their accuracy is interdependent because this unmixing 480 

technique relies on each mixing component (Equation 2). 481 

 482 

Discussion 483 

Performance and Recommendations for Quantification Methods 484 

It is common within planetary science to use quantitative methodologies like linear-least 485 

squares models (often used for mid-infrared spectroscopy) and modified gaussian models (often 486 

used for visible and near-infrared spectroscopy) to quantify modal (volume) abundances of 487 

planetary materials. These two techniques have accuracies of 5–10% when applied to 488 

laboratory data (e.g., Sunshine and Pieters, 1993; Feely and Christensen, 1999), respectively. 489 

Depending on the mineral, accuracies of the quantitative methodologies presented in this paper 490 

are comparable to or underperform compared to these popular techniques for other types of 491 

spectroscopy. 492 

 493 

Multivariate Analysis Models. This work uses mixtures made from 20 end-member 494 

mineral samples. Although the high number of mineral end-members is useful in representing the 495 

complex geology of Mars and other planetary surfaces, the size of the metadata categories then 496 

requires a larger training dataset, the creation of which is time-intensive. For planetary surfaces 497 

with complex mineralogy like Mars, creating multivariate models for specific geologic units 498 

(e.g., Máaz and Séítah) would reduce the required number of end-members, resulting in a more 499 
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efficient model construction with likely higher accuracy. This would however also reduce the 500 

general applicability. 501 

Figure 7 summarizes the multivariate models for each mineral using R2, RMSE-C, and 502 

the more robust RMSE-CV values. For multivariate analysis models, performance should be 503 

evaluated using RMSE-P values or alternatively RMSE-CV values when only small datasets are 504 

available. RMSE-C values can be deceptively low and may produce overly optimistic accuracies 505 

for the model performance (e.g., calcite, magnesite, diopside, augite, and nontronite). In addition 506 

to considering RMSE values that represent absolute error, R2 values that represent percentage 507 

error can also be considered. Here, RMSE-CV values are utilized to evaluate error compared to 508 

RMSE-P values for the Raman cross-section proxy method. RMSE-P values are more robust that 509 

RMSE-CV values. Future work (creation of an additional set of complex mineral mixtures) is 510 

needed to compare the two quantification methodologies equivalently.  511 

Generally, there is better model performance for the carbonates, sulfates, and 512 

phyllosilicates than for the oxides, nesosilicate, inosilicates, and tectosilicates (Figure 7). 513 

Performance also varies within mineral groups, such as for calcite versus siderite or nontronite 514 

versus saponite. Although crystal structure affects where Raman features occur, spectra are also 515 

influenced by composition, which in turn affects bond strength and covalency for different 516 

minerals within the same group. Additional work is needed to investigate these relationships. 517 

Mineral mixtures from this work represent a huge advance in the number of intimate mixtures 518 

available for further study of Raman unmixing, and they may be freely loaned upon request. 519 

Diversifying the mixtures beyond the three mixing ratios utilized in this work (50:50, 520 

20:80, and 5:95 volume%) to fill in gaps for each mineral phase will likely improve each 521 

multivariate model. Currently, there is only one observation of each mineral pair combination 522 
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(e.g., one sample containing olivine and calcite). This prevents the model from observing 523 

multiple examples of pairs of minerals. Multiple observations of the same mineral pairings in 524 

different proportions will greatly improve model performance. 525 

 526 

Raman Cross-Section Proxies. Raman cross-section proxies calculated in this work are 527 

empirical formulations that reflect the many factors affecting peak intensity and provide a 528 

relationship between peak area and mineral abundance in mixtures. These data form the basis for 529 

simple calculations of mineral abundances in mixtures of powdered phases and lay the 530 

groundwork for quantifying many minerals across the Dana classification system when they are 531 

present in mixtures. 532 

Peak intensities are higher for non-silicate minerals compared to the silicate minerals as 533 

expected due to the varying contributions from ionic versus covalent bonding in their structures. 534 

The division in Raman cross-section proxy values between the non-silicate and silicate minerals 535 

(Table 2) demonstrates a relationship between Raman signal strength and the inherent mineral 536 

properties. It shows quantitatively the effect of mineral structure and chemistry on bond 537 

polarizability and in turn on the Raman cross-section. The trend of the Raman cross-section 538 

proxy values (Table 2) is likely related to the detection and quantification limits for the given 539 

minerals. 540 

Raman cross-section proxies are not calculated for the oxide minerals hematite and 541 

ilmenite. Masking or obscuring of the diamond signal due to the oxide within the sample volume 542 

may impact relative signal strengths, and further work is needed to address this issue to improve 543 

quantification of mixing components. Additionally, hematite and ilmenite Raman cross-section 544 

proxy values would be artificially high due to the breadth of their Raman spectral features 545 
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(Figure 5). These broad features are likely due to sample heating effects (e.g., Chio et al., 2003). 546 

Future work should explore controls for the calculation of Raman cross-section proxies, such as 547 

normalizing cross-section proxies by peak full-width half maximum (FWHM), that account for 548 

broad spectral features. Additional alternative solutions include reducing the power of the laser 549 

or increasing the particle size fraction of the diamond-mineral mixture to reduce the likelihood of 550 

Raman line broadening. 551 

Although the Raman cross-section proxies calculated here are tied to specific examples of 552 

individual mineral species, creating a more general model using intermediate compositions (e.g., 553 

mineral solid solutions) should prove useful. Accuracy will also improve when multiple Raman 554 

cross-section proxies are measured and averaged for different samples of the same mineral. 555 

Multiple Raman measurements of the diamond-mineral mixtures should also improve the 556 

accuracy of Raman cross-section proxies. These improvements will help mitigate factors that 557 

reduce the accuracy of this technique such as physical mineral clumping, sample variations, and 558 

peak fitting error. 559 

Figure 9 provides results of unmixing the modal mineralogy of the mineral-mineral 560 

mixtures using the Raman cross-section proxies. As previously discussed, this unmixing 561 

technique relies on each mixing component (Equation 2) and therefore accuracy is 562 

interdependent. Instead of testing Raman cross-section proxies on a diverse dataset (many end-563 

members) as is done here, testing on a greater number of samples with a fewer number of end-564 

members will aid in the interpretation of this interdependency. As with the multivariate models, 565 

mixtures that represent specific geologic units (fewer end-members) should be considered. 566 

 567 

Comparison of Raman Quantification Methods 568 
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Different scenarios may favor the use each of the two Raman quantitative methods 569 

compared in Figure 10. Multivariate analysis techniques like partial least squares require training 570 

data. Due to the effect of Raman cross-section on mineral mixture spectra, we argue that training 571 

sets should rely on real physical samples rather than synthetic spectra calculated through pure 572 

minerals. In the case of this work, both physical samples and spectral measurements are utilized. 573 

Creating multivariate analysis models is a laborious process requiring both the 574 

availability of components in appropriate grain sizes for mixing, accurate calculation of density 575 

for each phase, and arduous weighing on a high-accuracy balance before spectra can be acquired. 576 

In the context of planetary exploration, a training set must also have a wide variety of minerals to 577 

encompass unexpected materials encountered during a mission. Although multivariate models 578 

like PLS are typically quick to produce, the physical sample mixtures and spectral training set it 579 

relies on are time-consuming to create. These obstacles are diminished for the Raman cross-580 

section proxy technique because only one physical sample is needed for every end-member 581 

mineral of interest and synthetic diamond is easily purchased in a variety of grain sizes. 582 

Another concern relating to broader applications of the multivariate analysis method is an 583 

inability to make predictions when encountering unexpected materials (i.e., peaks that arise from 584 

minerals not in the training set). For the Raman cross-section proxy method, one new diamond-585 

mineral mixture can be made for the unexpected material. It is possible to augment the 586 

multivariate analysis method but if it relies on physical samples, it is more arduous. 587 

A challenge of the Raman cross-section proxy method includes the requirement of a 588 

knowledgeable worker to perform the Raman peak-fitting and mineral identification. 589 

Additionally, the mixing components are dependent on each other for quantitative predictions 590 

and overlapping spectral features can also be prohibitive (e.g., Figure 4). The multivariate 591 
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analysis method can also utilize a wide energy range of the spectra to leverage the information 592 

within multiple diagnostic Raman peaks whereas the Raman cross-section proxy relies on a 593 

single mineral feature. Major benefits of both quantification techniques are their easy, fast, and 594 

non-invasive application for mineral quantification. 595 

With the groundwork laid by this study, future work will expand to include additional 596 

end-member samples as well as to provide representation from multiple samples of the same 597 

mineral species. Additionally, we will test quantification methodologies on solid samples and 598 

more complex mineral mixtures to better simulate planetary surfaces. We will also undertake a 599 

direct comparison (identical test datasets) between the two quantitative methods. 600 

 601 

Implications 602 

Quantifying mineral abundances on planetary surfaces provides information regarding 603 

ancient starting materials, altered rocks, processes, and conditions that can aid in answering 604 

critical geologic questions. Additionally, the ability to estimate modal mineralogy is particularly 605 

important for understanding the history of water and habitable environments for planetary 606 

bodies. 607 

Martian crust and surface evolution is often assessed based on the degree of alteration 608 

(primary versus secondary mineralogy) (Ehlmann et al., 2014). Assessing the amount and 609 

distributions of primary and secondary materials can inform the degree of alteration and the 610 

spatial nature of processes on the surface of the planet. Martian mineralogy records information 611 

about the planet’s formation history, geologic evolution, and past atmospheric properties. 612 

Quantifying the modal mineralogy of rocks on Mars provides context about past conditions (e.g., 613 
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fluid and atmosphere properties) and processes (e.g., weathering, aqueous alteration) that 614 

changed the planet’s surface. 615 

In addition to Mars applications, this work is applicable to the unmixing of common 616 

rock-forming minerals present on Earth and elsewhere, and to mixtures of non-geological 617 

materials. This research investigates methodologies useful in the interpretation of handheld 618 

Raman spectrometer data for terrestrial field work or future crewed planetary missions. Raman 619 

spectroscopy is a powerful tool for providing mineral identification and chemistry information as 620 

well as abundance information through the quantitative solutions presented here. The chief 621 

liability of these quantitative techniques lies in the lack of available well-characterized individual 622 

pure minerals suitable for making mixtures, and in the labor-intensive nature of creating those 623 

mixtures. Availability of mixtures is of paramount importance in creating the fundamental data 624 

needed to improve the accuracy of these methods further. 625 
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List of Figure Captions 1026 

Figure 1. Raman spectra of three binary mixtures consisting of forsterite, calcite, labradorite, and 1027 

diopside. Raman intensity variations arise because the Raman cross-sections (numerical metrics 1028 

associated with inherent signal strength) of these materials all vary. Spectra were collected on 1029 

Bruker’s BRAVO handheld spectrometer (dual 785 and 852 nm excitation lasers) with three 1030 

sample scans for 10 s of integration time over the wavenumber range of 300-3200 cm-1. 1031 

 1032 

Figure 2. Raman spectra of mixtures of olivine and diamond in variable volume percentages 1033 

(e.g., 95 vol% olivine, 5 vol% diamond) distinguished by color. 1034 

 1035 

Figure 3. Normalized Raman spectra of mixtures of anhydrite with diamond (red) and forsterite 1036 

with diamond (blue) at 95:5 volume ratios. The dominant ~1017 cm-1 anhydrite feature 1037 

compared to the ~855 cm-1 forsterite feature indicates a higher Raman cross-section proxy. 1038 

 1039 

Figure 4. Number of spectra utilized in multivariate analysis models (green) and in assessing the 1040 

Raman cross-section proxy error calculations (purple). 1041 

 1042 

Figure 5. Raman spectra of non-silicate mineral end-members including oxides (top), carbonates 1043 

(middle), and sulfates (bottom). 1044 

 1045 
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Figure 6. Raman spectra of silicate mineral end-members including nesosilicates/ inosilicates 1046 

(top), phyllosilicates (middle), and tectosilicates (bottom). 1047 

 1048 

Figure 7. RMSE-CV (top), RMSE-C (middle), and R2 values (bottom) for partial least squares 1049 

multivariate analysis for each mineral. 1050 

 1051 

Figure 8. Partial least squares multivariate predictions versus actual abundances (volume%) for 1052 

each prediction variable. 1053 

 1054 

Figure 9. Raman cross-section proxy RMSE-P values (top left) and predictions versus actual 1055 

abundances (volume%) for each prediction variable. RMSE-P calculations were made using 1056 

mineral-mineral mixtures. 1057 

 1058 

Figure 10. Pros (+, green) and cons (–, red) of the Raman cross-section proxy and the 1059 

multivariate analysis technique. 1060 

 1061 

Tables 1062 

Table 1. Sample suite of twenty end-member minerals including sample names, particle size ranges, and localities.  
Dana 
Class 

Mineral 
Species 

Ideal Chemical 
Formula 

Sample 
Name 

Particle Size 
(μm) Locality Supplier 

4 
hematite Fe2O3 ICOSA-11 25-45 Custer County, South 

Dakota, USA Ward’s  

ilmenite (Fe,Ti)2O3 ICOSA-12 25-45 Unknown Mount Holyoke 
College 

14 

calcite CaCO3 ICOSA-5 25-45 Rossie, New York, USA Smithsonian 
Institution 

magnesite 
MgCO3 

ICOSA-16 25-45 
Pomba Pit, Serra das 

Eguas, Brumado, Bahia, 
Brazil 

Mount Holyoke 
College 

siderite FeCO3 ICOSA-21 25-45 Unknown Mount Holyoke 
College 

28 anhydrite CaSO4 ICOSA-2 25-45 Naica, Mexico  Metropolis Family 

29 gypsum 
 

CaSO4•2(H2O) 
 

ICOSA-10 25-45 Naica, Mexico  Rock and Bone 
Mineral Shop 



 
 

48 

rozenite 
Fe2+SO4•4(H2O) 

ICOSA-15 25-45 
Tulsequah Chief Mine, 

Mount Eaton, BBC, 
Canada 

Mount Holyoke 
College 

30 alunite KAl3(SO4)2(OH)6 ICOSA-1 25-45 Synthetic Mount Holyoke 
College 

51 forsterite (Mg,Fe)2SiO4 ICOSA-9 38-63 San Carlos, Arizona, 
USA 

Mount Holyoke 
College 

65 

enstatite Mg2Si2O6 ICOSA-8 25-45 Kilosa, Tanzania Mount Holyoke 
College 

diopside MgCaSi2O6 ICOSA-7 38-63 Herschel, Ontario, 
Canada 

Mount Holyoke 
College 

augite (Ca,Na)(Mg,Fe,Al,Ti)(S
i,Al)2O6 

ICOSA-3 25-45 Harcourt, Ontario, 
Canada 

Mount Holyoke 
College 

71 

montmorillonite (Na,Ca)0.33(Al,Mg)2(Si4

O10)(OH)2•n(H2O) ICOSA-18 25-45 SCa-2 Clay Mineral 
Society 

nontronite Na0.3Fe3+
2(Si,Al)4O10(O

H)2•n(H2O) ICOSA-19 25-45 NAu-2 Clay Mineral 
Society 

saponite Ca0.25(Mg,Fe)3(Si,Al)4O
10(OH)2•n(H2O) ICOSA-20 25-45 Bumo Creek, Arizona, 

USA Janice Bishop 

clinochlore (Mg,Fe2+)5Al(Si3Al)O10(
OH)8 

ICOSA-6 25-45 CCa-2 Clay Mineral 
Society 

76 
labradorite (Ca,Na)(Si,Al)4O8 ICOSA-14 25-45 Chihuahua, Mexico Mount Holyoke 

College 

bytownite (Ca,Na)(Si,Al)4O8 ICOSA-4 25-45 Crystal Bay, Minnesota, 
USA 

Mount Holyoke 
College 

77 chabazite 
(Ca,Na2,K2)2[Al4Si8O24]

•12H2O ICOSA-24 25-45 
Wasson Bluff, 

Parrsboro, Nova Scotia, 
Canada  

Rock and Bone 
Mineral Shop 

 1063 

Table 2. Raman cross-section proxy values for each mineral sample.  
Dana 
Class Mineral Species Sample 

Name 
Diamond 

Percentage Raman Band Position (cm–1) Raman Cross-
Section Proxies 

14 
calcite DM-25 5 1086.21 ± 0.01 2.00 

magnesite DM-36 5 1094.50 ± 2.39e-3 2.33 
siderite DM-41 5 1085.97 ± 4.14e-3 6.06 

28 anhydrite DM-22 5 1017.01 ± 3.83e-3 2.41 

29 gypsum DM-30 5 1007.87 ± 4.24e-3 1.69 
rozenite DM-35 5 1024.93 ± 0.05 0.40 

30 alunite DM-21 5 989.48 ± 0.01 1.07 
51 forsterite DM-29 5 854.85 ± 0.01 0.80 

65 
enstatite DM-28 5 1009.06 ± 0.02 0.19 
diopside DM-27 5 1012.10 ± 0.01 0.49 
augite DM-23 5 1012.25 ± 0.01 0.61 

71 

montmorillonite DM-38 5 706.51 ± 0.01 0.20 
nontronite DM-39 5 688.88 ± 0.02 0.16 
saponite DM-40 5 683.73 ± 0.01 0.24 

clinochlore DM-26 5 683.50 ± 0.03 0.47 

76 labradorite DM-34 5 509.02 ± 0.01 0.57 
bytownite DM-24 5 505.00 ± 0.01 0.39 

77 chabazite DM-44 5 466.79 ± 0.05 0.61 
 1064 

Figures 1065 
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 1067 

Figure 1. Raman spectra of three binary mixtures consisting of forsterite, calcite, labradorite, and 1068 

diopside. Raman intensity variations arise because the Raman cross-sections (numerical metrics 1069 

associated with inherent signal strength) of these materials all vary. Spectra were collected on 1070 

Bruker’s BRAVO handheld spectrometer (dual 785 and 852 nm excitation lasers) with three 1071 

sample scans for 10 s of integration time over the wavenumber range of 300-3200 cm-1. 1072 

 1073 

 1074 

Figure 2. Raman spectra of mixtures of olivine and diamond in variable volume percentages 1075 

(e.g., 95 vol% olivine, 5 vol% diamond) distinguished by color. 1076 

 1077 
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1078 

Figure 3. Normalized Raman spectra of mixtures of anhydrite with diamond (red) and forsterite 1079 

with diamond (blue) at 95:5 volume ratios. The dominant ~1017 cm-1 anhydrite feature 1080 

compared to the ~855 cm-1 forsterite feature indicates a higher Raman cross-section proxy. 1081 

 1082 

 1083 
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 1084 

Figure 4. Number of spectra utilized in multivariate analysis models (green) and in assessing the 1085 

Raman cross-section proxy error calculations (purple). 1086 

 1087 



 
 

52 

 1088 

Figure 5. Raman spectra of non-silicate mineral end-members including oxides (top), carbonates 1089 

(middle), and sulfates (bottom). 1090 
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 1091 

Figure 6. Raman spectra of silicate mineral end-members including nesosilicates/ inosilicates 1092 

(top), phyllosilicates (middle), and tectosilicates (bottom). 1093 

 1094 
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 1095 

Figure 7. RMSE-CV (top), RMSE-C (middle), and R2 values (bottom) for partial least squares 1096 

multivariate analysis for each mineral. 1097 
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 1098 

Figure 8. Partial least squares multivariate predictions versus actual abundances (volume%) for 1099 

each prediction variable. 1100 

 1101 
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 1102 

Figure 9. Raman cross-section proxy RMSE-P values (top left) and predictions versus actual 1103 

abundances (volume%) for each prediction variable. RMSE-P calculations were made using 1104 

mineral-mineral mixtures. 1105 
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 1106 

 1107 

Figure 10. Pros (+, green) and cons (–, red) of the Raman cross-section proxy and the 1108 

multivariate analysis technique. 1109 
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