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Abstract 22	

Machine learning improves geochemistry discriminant diagrams in classifying 23	

mineral deposit genetic types. However, the increasingly recognized ‘black box’ 24	

property of machine learning has been hampering the transparency of complex 25	

data analysis, leading to the challenge in deep geochemical interpretation. To 26	

address the issue, we revisited pyrite trace elements and propose to use ‘Decision 27	

Map’, a cutting-edge visualization technique for machine learning. This technique 28	

reveals mineral deposit classifications by visualizing the ‘decision boundaries’ of 29	

high-dimensional data, a concept crucial for model interpretation, active learning, 30	

and domain adaptation. In the context of geochemical data classification, it 31	

enables geologists to understand the relationship between geo-data and decision 32	

boundaries, assess prediction certainty, and observe the data distribution trends. 33	

This bridges the gap between the insightful properties of traditional discriminant 34	

diagrams and the high-dimensional efficiency of modern machine learning. Using 35	

pyrite trace element data, we construct a decision map for mineral deposit type 36	

classification, which maintains the accuracy of machine learning while adding 37	

valuable visualization insight. Additionally, we demonstrate two applications of 38	

decision maps. First, we show how decision maps can help resolve the genetic 39	

type dispute of a deposit whose data was not used in training the models. Second, 40	

we demonstrate how the decision maps can help understand the model, which 41	

further helps find indicator elements of pyrite. The recommended indicator 42	

elements by decision maps are consistent with geologists’ knowledge. This study 43	
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confirms the decision map's effectiveness in interpreting mineral genetic type 44	

classification problems. In geochemistry classification, it marks a shift from 45	

conventional machine learning to a visually insightful approach, thereby 46	

enhancing the geological understanding derived from the model. Furthermore, our 47	

work implies that decision maps could be applicable to diverse classification 48	

challenges in geosciences. 49	

Keywords: 50	

Decision map; Mineral deposit genesis; Machine learning classification; Pyrite trace 51	

element; Discriminant diagrams 52	

 53	

  54	
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Introduction 55	

The accelerating pace of data generation and computational power, coupled 56	

with the burgeoning interest of geoscientists in machine learning, is leading to 57	

significant breakthroughs in the applications and discoveries in Geosciences 58	

(Petrelli and Perugini, 2016; Bergen et al., 2019; Karpatne et al., 2019, Petrelli 59	

2021; Hou et al., 2024). The data-driven study in geosciences essentially aims at 60	

digging deep information from complex/huge data sets, rather than merely and 61	

simply producing classification or prediction models. The ‘black box’ nature of 62	

machine models, however, hinders our understanding of decision-making 63	

processes during machine learning (Lipton, 2018; Carvalho et al., 2019; Molnar, 64	

2020). Although pioneering explorations on the transparency of the working 65	

pathway of machine learning have emphasized the significance of the 66	

interpretability machine learning model (Lipton, 2018; Carvalho et al., 2019; 67	

Molnar, 2020; Yuang et al., 2021), such work is lacking in the classification of 68	

mineral deposit genetic environments.  69	

Understanding the mineral deposit genetic environments is important to 70	

explore the physio-chemical conditions that are responsible for the ore formation 71	

(Deng et al., 2016, 2020a, b; Qiu et al., 2024b). To improve the precision of the 72	

ore deposit classification environment, with a transparent and interpretable 73	

machine learning approach, we introduce and apply the innovative visualization 74	

technique of decision map, developed by Rodrigues et al. (2019) and Oliveira et 75	



	

–5–	

al. (2022). The visualization method reveals how various machine learning 76	

classifiers function by conducting dimensionality reduction and providing a clear, 77	

visual representation of decision zones, with each zone signifying a different 78	

inferred class (Rodrigues et al., 2019). This compelling visualization approach 79	

fosters a better understanding of the classification process. 80	

We underscore the potency of decision maps within a fundamental geological 81	

domain: the genesis of mineral deposits. The dwindling supply of near-surface ore 82	

deposits necessitates deeper exploration (Gregory et al., 2019). The ability to 83	

recognize the type of mineralization present in a given context can offer critical 84	

insights, thus streamlining exploration efforts and minimizing associated costs 85	

(Gregory et al., 2019). Trace elements measured in specific minerals, such as 86	

quartz, pyrite, apatite, and zircon, can serve as unique identifiers for understanding 87	

their genesis, revealing types of minerals deposits and host rock genetic 88	

environments (Belousova et al., 2002b; Chew et al., 2012; Rusk, 2012; O’Sullivan 89	

et al., 2020; Wang et al., 2021; Zhong et al., 2021; Zhu et al., 2022; Zhou et al., 90	

2023) 91	

Classification of mineral deposits environments has traditionally been 92	

studied using visual tools, including discriminant diagrams (Pearce & Cann, 1973; 93	

Bralia et al., 1979; Belousova et al., 2002a, 2002b; Rusk, 2012; Li et al., 2015; 94	

Breiter et al., 2020, Zhou et al., 2022), and, more recently, machine learning-95	

assisted approaches (Petrelli & Perugini, 2016; Gregory et al., 2019; Wang et al., 96	

2021; Zhong et al., 2021; Liu et al., 2023; Qiu et al., 2024c). However, striking a 97	



	

–6–	

balance between visual interpretability and accuracy is still a challenge. There 98	

have also been some attempts of using machine learning to optimize geochemistry 99	

discriminant diagrams (O’Sullivan et al., 2020; Wang et al., 2022). Such 100	

applications improve the quality of the patterns depicted by the diagrams but still 101	

do not take full advantage of high-dimensional information. Here, decision maps 102	

come to the fore, combining the high-accuracy of machine learning models with 103	

visual accessibility to decision boundaries, greatly promoting transparency and 104	

interpretability. This study represents the first application of visualization to 105	

elucidate machine learning classification in mineral deposit genetic types, 106	

highlighting the paramount role of visualization techniques in modern data 107	

interpretation and decision-making. 108	

Here, our contributions straddle both information visualization and 109	

mineralogy domains: (1) We offer a unique pyrite trace elements dataset 110	

comprising six genetic populations. (2) We illuminate the added value of the 111	

decision map technique in deciphering the machine learning classification results, 112	

opening up new avenues for using decision maps. (3) We introduce a method that 113	

seamlessly blends the merits of traditional 2D discriminant diagrams (visual 114	

interpretability) and machine learning methods (high accuracy), providing a 115	

robust framework for mineral genesis classification problems. This blend of 116	

visualization and machine learning underlines the evolving landscape of data 117	

science, championing transparency and interpretability. 118	
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Background 119	

Machine learning classifiers for mineral genetic type classification 120	

Machine learning is the emerging approach to solving geochemistry data 121	

classification problems (Gregory et al., 2019; O’Sullivan et al., 2020; Petrelli & 122	

Perugini, 2016; Wang et al., 2021). We start by introducing a few notations. Let 123	

D = {xi}⊂ ℝn, 1≤ i ≤N, be a dataset of n-dimensional data points 𝒙! =124	

{𝑥!", 𝑥!#, ⋯ , 𝑥!$}	with corresponding labels yi ∈ C, where C is the set of classes. Let	125	

𝒙% = ,	𝑥"
% , 𝑥#

% , ⋯ , 𝑥&
% -, 1	 ≤ 𝑗	 ≤ 𝑛, be the j-th feature of D. Thus, D can be seen as 126	

a table with N rows (samples) and n columns (dimensions or features), and y = {y1, 127	

y2, ···, yN} is the corresponding label vector. Simply put, given a dataset D, a 128	

machine learning classifier constructs a function f : ℝn → C so that f(xi) = yi for 129	

ideally all xi ∈ Dt , where Dt ⊆	D  is so the called training set. After training, one 130	

uses the model f to infer labels of unseen points xi. In the present work, we tested 131	

different machine learning classification algorithms, including Logistic 132	

Regression (Cox, 1958), Support Vector Machines (SVM) (Cortes & Vapnik, 133	

1995), Random Forests (Breiman, 2001), and Neural Networks. They represent 134	

distinct families of algorithms: Logistic Regression is a linear classification model; 135	

SVM stands as a maximum margin classifier; Random Forest embodies an 136	

ensemble method; and Neural Network signifies deep learning. Crucially, these 137	

classifiers are frequently examined in mineral classification studies (Gregory et 138	

al., 2019; Zhong et al., 2021). This frequent examination not only enables a 139	
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thorough comparative analysis but also underscores the relevance and robustness 140	

of our conclusions within the machine learning applications in geosciences. 141	

Although machine learning methods efficiently process high-dimensional 142	

data, enabling the accurate identification of numerous mineral classes with 143	

minimal human effort, they often face criticism for their black-box nature, which 144	

provides limited insight into the reasoning behind classifications. Our work aims 145	

to reveal the black box by extending machine learning classifiers with decision 146	

maps, which is elaborated in the following section. 147	

Decision Maps 148	

A decision map is a visualization technique designed to display the decision 149	

boundaries of classifiers. A decision boundary, in essence, is a surface that 150	

segregates high-dimensional data points xi ∈	ℝn into distinct regions or decision 151	

zones. Within each zone, all points receive the same label from the classifier f. 152	

Analyzing these zones provides insights into the classifier's behavior, such as 153	

pinpointing misclassification issues based on how labeled samples are distributed 154	

near decision boundaries and understanding the classifier's generalization based 155	

on the distribution of unlabeled samples. 156	

Historically, visualizing these decision zones was a challenge. To address 157	

this, Rodrigues et al. (2018, 2019) proposed Decision Boundary Map (DBM), 158	

which can visualize decision boundaries for any selected classifier. After a 159	

classifier f is trained on a high-dimensional dataset D, their method projects D to 160	
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a 2D scatterplot P(D) = {P(x) | x ∈ D}. This is done using dimensionality 161	

reduction, or projection, methods P such as PCA or t-SNE (Van der Maaten & 162	

Hinton, 2008). Next, every pixel p in the 2D bounding box of P(D) is inversely 163	

projected to Rn to create synthetic data points P−1(p). These are then classified by 164	

f and their corresponding pixels p are colored by the assigned class labels f(P−1(p)). 165	

To construct decision maps, one thus needs to have a projection method P: ℝn → 166	

ℝ2 and its inverse P−1 : ℝ2 → ℝn. Unavoidably, both the direct and inverse 167	

projections P and P−1 introduce errors – that is, in general, P−1 is not an exact 168	

inverse of P, i.e., P-1(P(x)) ≠ x for several data points x. However, such errors can 169	

be evaluated by metrics (see next section). 170	

To compute the P and P−1 pair, Espadoto et al. (2021) proposed Self-171	

Supervised Network Projections (SSNP), a deep learning method that jointly 172	

addresses P, P−1, and data clustering. Using SSNP, Oliveira et al. (2022) proposed 173	

Supervised Decision Boundary Map (SDBM), a method that increases both the 174	

speed and quality of the original DBM method. Thus, SDBM was employed to 175	

construct decision maps for all the following experiments. 176	

Methods 177	

Dataset collection 178	

The dataset used in this study is a compilation of published pyrite trace 179	

elements datasets. Pyrite is a ubiquitous mineral in the crust. Appearing in various 180	

mineral deposit types, its trace elements can fingerprint its forming environments 181	
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(Belousov et al., 2016; Zhong et al., 2021). In this study, we compiled a dataset 182	

with 3571 pyrite LA-ICP-MS analyses from different origins, including Ni-183	

Cu/platinum group element deposits (Ni-Cu-PGE, igneous deposits), porphyry 184	

deposits, orogenic deposits, Carlin-type Au, volcanic-hosted massive sulfide 185	

(VHMS) deposits, and barren sedimentary pyrite. Eleven trace elements (Co, Ni, 186	

Cu, Zn, Se, As, Ag, Sb, Au, Bi, Pb) are selected as features, or dimensions, for 187	

our study. Each trace element was measured in parts per million (ppm) and these 188	

measurements were used to train machine learning classifiers which are next 189	

explored using the decision map. Detailed information on the compiled dataset is 190	

shown in Table 1, including the used data sources. 191	

Workflow 192	

After assembling the dataset to be used for classification, the following 193	

workflow was conducted: data preprocessing, SDBM training, search for best 194	

classifiers, map building, and evaluation. 195	

Metrics. To select the best classifier-decision map pair, we use the following three 196	

metrics, which are core metrics for decision map evaluations (Wang et al., 2023). 197	

Classifier accuracy ACCc, computed traditionally, is the fraction of correct 198	

predictions in a high-dimensional dataset and its respective labels. It is defined as 199	

𝐴𝐶𝐶' =	
|{𝒙ᵢ	∈	.	|	'(𝒙ᵢ)	1	2(𝒙ᵢ)}|

|.|
,  (1) 200	
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where | · | denotes the size of a set, and D is the sample set (with labels in C) used for 201	

evaluation. 202	

Map accuracy ACCM is the proportion of correctly positioned data points 203	

in the decision zones for a given dataset. It is defined as  204	

𝐴𝐶𝐶4 =	 |{𝒙ᵢ	∈	.	|	'(𝒙ᵢ)	1	2(5⁻¹(5(𝒙ᵢ)))}||.|
.   (2) 205	

Data consistency Cons measures the proportion of samples that retain their 206	

predicted labels, as determined by the classifier f, after the direct-inverse 207	

projection cycle. It is defined as 208	

𝐶𝑜𝑛𝑠	 = 	
|8𝒙!∈	.	|		295"#:5(𝒙𝒊);<1	2(𝒙!)=|

|.|
.   	(3) 209	

Data preprocessing. The data were processed by the following steps: 210	

Data missing value imputation: Unless not measured, missing values in the 211	

input dataset indicate analyses below detection limits. Missing values were set to 212	

half the detection limit to keep the data distribution. 213	

Data transformation: Normality of the features is desired for downstream 214	

machine learning model training. Trace elements in minerals are lognormal 215	

distributed. A power transformation (Yeo & Johnson, 2000), given by 216	

𝑇9𝑥!
%: = 𝑙𝑜𝑔">9𝑥!

% + 1:  (4) 217	

was applied to each sample i in each dimension j to obtain this desired normality. 218	
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Data splitting: The whole dataset was randomly split into a training set Dt 219	

(80%) and a test set DT (20%) by stratified sampling while keeping each class’s 220	

proportions. Dt was used to train the classifier and SDBM, while the DT  was used 221	

to evaluate the performance of the classifier, the quality of the computed SDBM, 222	

and finally the classifier-SDBM combination. 223	

Oversampling: Decision functions would favor the class with the larger 224	

number of samples as our dataset is unbalanced. To correct this, the Synthetic 225	

Minority Oversampling Technique (SMOTE) (Chawla et al., 2002) was applied 226	

to Dt. Note that this does not affect our final results since we split DT before 227	

oversampling. 228	

Optimal decision boundary map construction. In the following, we describe 229	

the pipeline we use to construct the optimal decision map. The workflow is 230	

summarized in Figure 1. 231	

SDBM training: Building decision maps followed the SDBM pipeline 232	

(Oliveira et al., 2022), except that we trained SSNP, the technique used for 233	

constructing P and P−1 before training the classifier. This was needed because our 234	

aim next was to search for the best classifier among candidates evaluated using 235	

the same SSNP instance. 236	

Classifier search: Four classifiers were evaluated by stratified K-fold cross-237	

validation on the training set using the metrics described by Equations 1-3. These 238	

classifiers included Logistic Regression, SVM (with an RBF kernel), Random 239	
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Forests (200 estimators), and a Neural Network (3 hidden layers of 100 units each). 240	

All these models were constructed using scikit-learn (Pedregosa et al., 2011). The 241	

classifier with the highest cross-validation scores (Equations 1-3) was selected 242	

and retrained to build the final decision map. 243	

Map building: We created the final decision map following the procedure 244	

detailed in Oliveira et al. (2022). The decision map resolution was set to 3002 245	

pixels. Pixels p were colored by the class value f(P−1(p)). To represent confidence 246	

levels (prediction probability of f) on the decision map, we adjusted the brightness 247	

of each pixel. Pixels p in areas with lower confidence, typically near the 248	

boundaries where decisions change, are shown in darker shades. In contrast, p in 249	

high confidence areas, well inside a clear decision region, are shown in brighter 250	

shades. The visual approach allows users to quickly see where the model's 251	

predictions are more or less certain. 252	

Evaluation: The retrained classifier and SDBM were finally evaluated on DT 253	

with the metrics in Equations 1-3. 254	

Results 255	

The results of the classifier search are shown in Table 2. Random forests got 256	

the highest ACCC but the lowest ACCM, which can be considered a poor 257	

generalization; SVM ranked third in ACCC and first in both ACCM and Cons; 258	

Neural Network had slightly lower results than Random forests for all three 259	
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considered metrics; Logistic regression did not obtain competitive results in 260	

classifier accuracy compared to the other three models, its ACCC being 0.09 lower 261	

than the penultimate one (SVM). Based on all three metrics, we selected SVM as 262	

the best classifier for building the decision map. The resulting map of pyrite 263	

classification built for SVM is shown in Fig. 2 with samples of both the training 264	

and test set plotted. Test set samples are dots with black outlines; training set 265	

samples are dots without outlines. We see that most samples fall within their 266	

respective decision zones, which already indicates a good classification 267	

performance. 268	

For the evaluation on the test set DT, SVM got an overall accuracy ACCC = 269	

0.91 (Equation 1), while the SDBM got an overall accuracy ACCM = 0.88 270	

(Equation 2) and a consistency Cons = 0.90 (Equation 3). The confusion matrices 271	

of both the SVM and the SDBM are shown in Fig. 3. ACCM is 0.03 lower than 272	

ACCC. This minor discrepancy, which is nearly uniform across all classes, 273	

suggests that the SDBM's (inverse) projection process (P and P-1) introduces a 274	

minimal classification error for the SVM. This negligible drop of accuracy 275	

indicates that the SDBM faithfully represents the actual classifier’s decision 276	

boundaries. 277	

Applications 278	

We next present two applications of the decision maps to show their added-279	

value in classifier construction and analysis. First, we demonstrate how decision 280	
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maps work on samples from unseen locations and show their added-value in 281	

conjunction with regular machine learning methods. Second, we demonstrate how 282	

decision maps can help data exploration and model explanation. 283	

Unseen location application examples 284	

Case Study: Analysis of the Zaozigou Gold Deposit. The trained classifier and 285	

its decision map were applied to data of pyrite trace elements from a new location – 286	

the Zaozigou gold deposit, which is unseen by the models. Zaozigou is the largest gold 287	

deposit (118t Au) that is under operation in the Gannan area in the Triassic West 288	

Qinling orogenic belt in China (Qiu et al., 2020). Pyrite is the main gold-bearing 289	

mineral in this deposit, and its trace elements can be used to identify the 290	

physicochemical conditions of gold mineralization (Yu et al., 2022a; Qiu et al., 2023). 291	

The genetic classification however is still in debate, which hinders our understanding 292	

for ore formation and future explanation strategy (Qiu et al., 2020, 2024a). Sui et al. 293	

(2020) considered that the Zaozigou deposit is a reduced intrusion-related gold system 294	

(magmatic); Qiu et al. (2020) and Yu et al. (2022b) argued that this deposit is best 295	

classified as an epizonal orogenic Au-Sb deposit (metamorphic hydrothermal) based 296	

on in situ monazite geochronology. 297	

The fine-labeled pyrite trace element data from Sui et al. (2020) was analyzed 298	

using the trained classifier and decision map. The pyrites are categorized into three 299	

types: (1) Py1a: pyrites in sedimentary rocks, (2) Py1b: pyrites in dike-hosted ores, 300	

and (3) Py2: pyrite grains in quartz-sulfide-ankerite veinlets. We believe that this 301	
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example demonstrates our new approach’s utility in solving real scientific 302	

problems. 303	

Classifying Pyrite from Zaozigou. The data from the Zaozigou deposits yield 304	

results in two parts: the regular machine learning classifier (SVM) results (Table 3) 305	

and the decision map (SDBM) results (Table 4, Fig. 4). (1) For the samples labeled 306	

Py1a (pyrite sedimentary rocks), the SVM classified 56% of them as orogenic pyrite 307	

and 44% as pyrite in Carlin-type deposits; on the decision map, 46% of these samples 308	

were plotted in the sedimentary zone, 39% in the orogenic zone, and 15% in the Carlin 309	

zone. (2) For samples labeled Py1b (dike-hosted ores), most are classified as orogenic 310	

(94% and 84% for SVM and SDBM, respectively). (3) Most samples labeled Py2 311	

(grains in quartz-sulfide-ankerite veinlets) are also classified as orogenic (70% and 78% 312	

for SVM and SDBM, respectively). In summary, SVM and SDBM yield similar results: 313	

Py1b and Py2 samples are classified as orogenic class; Py1a samples, however, exhibit 314	

ambiguity between Carlin, orogenic, and sedimentary types. The decision map tends 315	

to classify Py1a samples as sedimentary more than the SVM.  316	

Focusing on the decision map (Fig. 4), Py1b and Py2 samples are mainly 317	

plotted in the orogenic zone, as expected. However, intriguingly, Py1a samples 318	

are divided into two clusters. One cluster is within the orogenic domain, while the 319	

other is located around the boundaries of the orogenic, Carlin, and sedimentary 320	

zones. From the geological perspective, this bifurcation suggests that the first 321	

cluster may have interacted with ore fluids, resulting in a distinct geochemical 322	

signature. Consequently, their intricate geochemical features make these data to 323	
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be a challenge to be classified. As a result, they landed near the decision 324	

boundaries of several related decision zones, which are areas of low confidence 325	

from the perspective of machine learning classification. 326	

In summary, decision maps offer two significant pieces of additional 327	

information beyond mere agreement with the classifier: First, they reveal data 328	

clusters, which are crucial for interpreting the data, as demonstrated above; 329	

Second, the decision maps demonstrate information for each individual sample, 330	

not as an aggregate score. This includes the level of classification confidence, for 331	

example, whether a sample is close to a decision boundary. Such detailed 332	

information offers a more granular understanding than an overall and general 333	

aggregate score.  334	

Exploratory data analyses and model explanation using decision maps 335	

Feature Inverse Projection. The decision maps shown so far are useful to show 336	

how all samples spread over the decision zones inferred by the trained model and also 337	

allow interpretation of the classification confidence in terms of the distance from a 338	

sample to its closest decision boundary in the map. However, they do not show which 339	

features are most responsible for the emergence of the respective decision zones. 340	

Understanding this is essential to further explain the studied phenomenon. To address 341	

this goal, we propose a new visualization called feature inverse projection. 342	

To see the relationship between each feature and the decision 343	

zones/boundaries, we created a corresponding map to each feature (pyrite trace 344	
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elements). For the map of each feature j, j ∈ {Co, Ni, Cu, Zn, Se, As, Ag, Sb, Au, 345	

Bi, Pb}, each pixel p was colored by T−1 (P−1(p)j), which is the value of the 346	

respective feature j, where T−1(t) = 10t − 1 is the inverse function of the power 347	

transformation given by Equation 4.  348	

Ranking the features. To better guide a better reading of the maps, we propose 349	

to rank the features quantitatively. While there are multiple ways to rank the features 350	

based on their importance, here we suggest two options: (1) permutation feature 351	

importance (Breiman, 2001) for global ranking (all classes), and (2) mutual 352	

information (Ross 2014) for local ranking (user selected class).	353	

The permutation feature importance of the classifier gives an intuition of 354	

the importance ranking of these trace elements in pyrite genetic type classification 355	

globally. The rank of the permutation feature importance of the SVM classifier on 356	

the test set is Ni > Au > Sb > Pb > As > Se > Co > Bi > Cu > Ag > Zn (Fig. 357	

5a). The importance value of each feature is the decrease in SVM accuracy on DT 358	

when a single feature value is randomly shuffled. All the importance scores are 359	

above zero, which means that all these trace elements are helpful in the 360	

classification.  361	

The permutation importance provides a glimpse of the overall feature 362	

ranking. However, when the users are interested in how much a feature helps with 363	

distinguishing a certain class from all the others, a better option is to design an 364	

algorithm to rank for this specific class. Therefore, we tailor mutual information 365	
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to our decision map case. For each feature j, we calculate the mutual information 366	

I(Sc(f(P-1(p))), P-1(p)j) for all pixel p, where Sc is a function that masks off all 367	

labels which are not c (the class label selected by users ). Mutual information is a 368	

non-negative value. Simply put, it measures the dependence of the feature j and 369	

the user-selected class c. It equals 0 if feature j and label c are independent. The 370	

higher the value, the stronger the dependency, and thus the visual pattern of the 371	

feature aligns better with selected decision zone c and its decision boundaries 372	

(discussed below). This quantitative measurement is particularly useful when 373	

multiple features show similar patterns.	374	

Note that the ranking methods are to provide the users (geologists) with 375	

clues for exploring the data. Geologists’ knowledge is still crucial in interpreting 376	

the data in this human-centered application case. 377	
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Visualizing feature patterns. The resulting inverse projected features are 378	

displayed in the permutation importance order (Fig. 5b-l). Black lines in these images 379	

show the decision boundaries. Actual feature values of the high-dimensional samples 380	

corresponding to every pixel are color-coded on an ordinal colormap (blue=low, 381	

red=high feature values). We used a banded colormap having a small number of 382	

discrete levels. This way, color changes in the images indicate the actual isolines 383	

(equal-feature-value contours) of the respective features in the data. Simply put, if a 384	

color band created by the above colormap for value v of feature f has a shape that 385	

matches well the shape of a decision zone for class c it is plotted over, it means that the 386	

value v of f is a strong predictor of class c. Conversely, if all color bands of feature f 387	

have shapes that do not match well any of the decision zones, it means that f is not a 388	

strongly useful feature for the classification. This can be exemplified by either 389	

permutation importance or mutual information ranking: (1) Ni, which is ranked as the 390	

most important feature for prediction, shows three color bands (dark blue, light blue, 391	

red) which match quite well the Porphyry, VHMS, and Ni-Cu-PGE zones, respectively 392	

(Fig. 5b). In contrast, Zn, the least important feature for prediction, shows color bands 393	

that match far less well than any of the six decision zones (Fig 5l). While permutation 394	

importance gives us an initial understanding of feature relevance, mutual information 395	

can provide a more nuanced view, especially in terms of how specific features align 396	

with a certain class. (2) For instance, in mutual information ranking, the features with 397	

the highest and lowest scores for the orogenic class are Pb and Au, respectively (Fig. 398	

6). The isolines of Pb align well with the shape of the orogenic decision zone (Fig 5e), 399	
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highlighting Pb is a strong indicator for predicting orogenic class. Conversely, the 400	

isolines of Au, being roughly perpendicular to the orogenic decision zone (Fig. 5c), 401	

indicate that Au is less useful for discriminating this class. 402	

Let us explore in detail how the feature inverse maps show the relationships 403	

between pyrite trace elements and their forming environment types learned from 404	

the model. We consider both visual patterns (relations between color bands and 405	

decision zones) and feature ranking. We do this in order of permutation 406	

importance: (1) The color bands show that Ni > 1000 ppm can distinguish Ni-Cu-407	

PGE from other classes, and Ni < 1 ppm can distinguish porphyry from other 408	

classes (Fig. 5b); Mutual information feature ranking confirms the importance of 409	

Ni for both Ni-Cu-PGE and porphyry classes (Fig. 6). (2) Au > 100 ppm 410	

characterizes pyrites from orogenic and Carlin-type deposits. Au < 0.1 ppm is the 411	

character of pyrites from barren sedimentary and Ni-Cu-PGE (magmatic) deposits 412	

(Fig. 5c); However, Au is not a strong predictor for any single class, as indicated 413	

by its lower mutual information scores (Fig. 6). (3) Pyrite with Sb < 0.1 ppm is 414	

more likely from Ni-Cu-PGE or porphyry deposits, while pyrite with Sb > 10 ppm 415	

is more likely from the other four classes (Fig. 5d); The mutual information score 416	

robustly supports the visual pattern indicating the importance of Sb for the 417	

porphyry class (Fig. 6). (4) Pyrites from VHMS deposits, sedimentary and Carlin-418	

type deposits tend to have Pb values > 100 ppm (Fig. 5e); Moreover, as mentioned 419	

above, the color band of Pb concentration ranging 10 - 100 ppm aligns well with 420	

the shape of the orogenic decision zone, the significance of which is also 421	



	

–22–	

confirmed by mutual information score for orogenic class (Fig.6). (5) Pyrite from 422	

Carlin, orogenic and VHMS deposits have high As values. Most Carlin pyrite and 423	

some orogenic pyrite could have As > 10000 ppm (Fig. 5f); When focusing on a 424	

single class, As appears to be an efficient predictor for only Carlin class (Fig. 6). 425	

(6) Pyrites with Se < 10 ppm are more likely to be from porphyry or orogenic 426	

deposits (Fig. 5g); Se, however, does not have a significant mutual information 427	

score for distinguishing any single class, as shown in Figure 6. (7) Co > 1000 ppm 428	

characterizes Ni-Cu-PGE pyrite (Fig. 5h); Figure 6 highlights Co as the most 429	

significant element for the Ni-Cu-PGE class. (8) VHMS and part of the Ni-Cu-430	

PGE zone have Bi > 10 ppm (Fig. 5i); However, Bi's insignificance for single-431	

class discrimination is evident in Figure 6. (9) Cu < 10 ppm is the character of 432	

porphyry pyrite. Pyrites in the other four classes have Cu varying from 10 to 433	

10000 ppm (Fig. 5j); The significance of Cu for identifying porphyry class is also 434	

strongly confirmed by the mutual information score (Fig.6) (10) The color band 435	

of Ag < 1 ppm fairly align with the porphyry zone(Fig. 5k); However, similar to 436	

Au, Ag is overall also not efficient for identifying any class, as it never ranks in 437	

the top 3 for any class in mutual information score (Fig. 6). (11) The Zn value 438	

color bands do not match the decision zones well, except for the band of Zn > 100 439	

ppm, which matches the VHMS zone fairly well (Fig. 5l); And Zn is indeed the 440	

most efficient element for distinguishing VHMS from other classes according to 441	

mutual information score for VHMS class (Fig.6). 442	
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Discussion 443	

Interpretability and limitations of decision maps 444	

Based on the evaluation metrics (Equations 1-3), we established the optimal 445	

decision map for the pyrite genetic type classification task. As shown in the results, 446	

the SVM has an ACCC of 0.91, while the decision map for the aforementioned 447	

SVM has an ACCM of 0.88 and a Cons of 0.90, on the test set DT. This means that 448	

decision maps can be used to accurately predict how a classifier works. From a 449	

visual perspective, there is only a slight overlap of data points in the center of the 450	

map (Fig. 2), a property with which no existing 2D discriminant diagram can 451	

compete. 452	

Decision maps provide a novel way to get insight into how machine learning 453	

classifiers work and where each data point lands in the context of decision 454	

boundaries. They should not be seen as a replacement, but rather an enhancement, 455	

of traditional classifier metrics (e.g., accuracy): Classifier metrics give a highly 456	

aggregated quality score (for the entire problem or per class), but do not tell how 457	

specific instances (train, test, or new) get classified. This is exactly the addition 458	

that decision maps provide. More specifically, the actual shapes of the decision 459	

zones and the spread of instances over them tell how easy is for a given classifier 460	

to handle a given data distribution, e.g., which classes are easily separable from 461	

the others and/or which parts of the data distribution are easily classifiable. 462	
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On top of the samples being categorized into a major class label, Decision 463	

maps show how samples are similar to certain other classes via their distances to 464	

the closest decision boundaries. Samples near decision boundaries are more 465	

uncertain about the predicted label and thus more likely to be misclassified. 466	

Feature inverse maps (discussed below) provide additional insights into why these 467	

samples may have such problems. However, all these tools need to be 468	

complemented by an expert’s knowledge to lead to effective interpretations and 469	

understanding of the studied phenomenon. Decision maps provide thus a way to 470	

combine human knowledge with machine learning predictions when interpreting 471	

classification results in a way that cannot be obtained from regular machine 472	

learning classification routines. The application of the decision map on the 473	

Zaozigou pyrite data discussed next further illustrates the added-value of our 474	

visualizations (detailed in the next subsection). 475	

Besides observation-centric interpretation (seeing how samples spread with 476	

respect to each other and the inferred decision zones), our new addition to decision 477	

maps – the feature inverse projections – provides a class-centric interpretation, 478	

i.e., allows analysts to understand which features and feature values are key 479	

responsible for the appearance of specific decision zones or even separate sample 480	

groups. These feature inverse projections can be seen as a summary of real-world 481	

complex data that show what the model learned and how it decides when values 482	

vary. We further discuss this in the next subsection. 483	
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Our visual analysis techniques scale well with both the number of samples 484	

and the number of dimensions.	As shown in Figure 7, the computation time of 485	

SDBM is minimally affected by changes in either the number of dimensions or 486	

the number of samples. It consistently remains at approximately 3-10 seconds on 487	

a standard desktop computer with a consumer-level graphics card. This contrast 488	

is particularly noticeable when compared to machine learning classifiers such as 489	

SVM, LDA, and QDA, which can be highly sensitive to changes in data 490	

dimensionality (Fig. 7). In general, using SDBM to obtain a decision map for a 491	

given classifier requires only a few additional seconds after the classifier is trained. 492	

Every sample point is reduced to a single 2D scatterplot point. While overplotting 493	

does occur, this does not affect, we argue, the usability of our proposal. Indeed, in 494	

most applications, one is interested in reasoning about groups of similar samples 495	

and not every single individual. Such groups become actually better visible when 496	

large amounts of samples are plotted. Decision maps also inherit by construction 497	

the scalability of the underlying projection techniques to tens or even hundreds of 498	

dimensions. Feature inverse projections are less scalable in this sense since we 499	

need to plot (and study) one map per feature. However, as discussed above, such 500	

maps can be ordered by feature ranking methods (e.g. permutation feature 501	

importance, mutual information), so that analysts can focus on a small set of most 502	

relevant features. Similar techniques have been used for explaining projections of 503	

high-dimensional data for 3D projections (Coimbra et al., 2016).  504	
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Decision maps and their proposed extensions are also generically deployable 505	

and easy to use: They can be computed fully automatically given any trained 506	

classifier and any datasets (training, test, new) of interest. Exploring the created 507	

visualizations also does not require any complex interaction from the user except 508	

the optional brushing of points to show details in a tooltip. While the standard 509	

implementation of SDBM (Oliveira et al., 2022) does not provide this feature, 510	

adding it is very simple. Note that this functionality can target both existing points 511	

from the projected dataset D used to construct the SDBM, and more interestingly, 512	

new points that correspond to pixels in the decision map to which no actual data 513	

point projects. These effectively generate new, unseen, data points in the high-514	

dimensional space (via the inverse projection P−1) which allow the analyst to 515	

reason about how the classifier, or more generally phenomenon under study, 516	

would behave for data outside the actually measured dataset one has. 517	

However, decision maps also have some limitations. As explained earlier, 518	

both direct and inverse projections have inevitable errors which cannot be fully 519	

eliminated in the generic case.	We address this issue by quantifying the magnitude 520	

of errors and demonstrating that, for classifier analysis, these errors are minimal 521	

and do not significantly impact the interpretability of the decision maps. If desired, 522	

one can easily extend our proposal by visualizing errors locally in the decision 523	

maps following Espadoto et al. (2021). Studying how such more refined error 524	

views can help interpret classifiers is an important future work topic. A separate 525	

limitation of decision maps is that they do not explicitly depict individual 526	
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dimensions along the two axes of the map, unlike classical discrimination 527	

diagrams. Combined with the nonlinear nature of the projections used to create 528	

the maps, this asks analysts to deploy more effort to understand how dimensions 529	

vary across the map. For example, the pyrite decision zones in Fig. 2 show a trend 530	

from the high-temperature forming environment to the low-temperature forming 531	

environment in sequence: Ni-Cu-PGE – Porphyry – Orogenic – Carlin. The 532	

feature inverse projections help this analysis by mapping the feature variations, 533	

one by one, to the respective maps. An interesting future work direction is to 534	

summarize several such feature inverse projection images in a single map, thereby 535	

reducing the number of different visualizations one needs to study to interpret a 536	

decision map. 537	

Implications for mineral deposit genesis classification studies 538	

The dataset used in our work includes Carlin-type pyrite and Ni-Cu-PGE 539	

pyrite trace elements, which fills the gap of previous pyrite machine learning 540	

related work (Gregory et al., 2019; Zhong et al., 2021). This dataset provides a 541	

more comprehensive view of pyrite from magmatic to hydrothermal origins. More 542	

importantly, we present a solution to the current problem of the lack of visual 543	

interpretability of machine learning in geochemical data classification work. 544	

Visual interpretability is a valuable property of traditional geochemistry 545	

discriminant diagrams, and it is also a desire for geochemistry data exploration 546	

and analysis. Our decision maps solution provides a unique perspective to reveal 547	
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the structure and properties of data hidden from regular machine learning routines, 548	

offering new opportunities for analyzing and explaining geological problems. 549	

More specifically, the decision map application on Zaozigou pyrite trace elements 550	

shows how seeing the data clusters and their locations on the decision map can 551	

help interpretation compared to regular machine learning routines; the feature 552	

inverse projections application shows how the decision map can uncover what the 553	

model learned from the mapping of pyrite trace elements to pyrite forming 554	

environments, and displays how the model decides the type of pyrite when the 555	

trace element values vary. 556	

We now discuss the specific findings we obtained using decision maps for 557	

our specific use-case of studying mineral deposit genesis. Pyrite trace element 558	

data of the Zaozigou deposit from Sui et al. (2020) are plotted mainly in the 559	

orogenic zone on the decision map. Within this zone, the plotted data clusters are 560	

closer to the Carlin and sedimentary zones than the porphyry and Ni-Cu-PGE 561	

zones. From the view of pyrite trace elements, Zaozigou shows little similarity to 562	

magmatic-related (Ni-Cu-PGE, Porphyry) deposits. Instead, it shows some more 563	

similarity to low-temperature Carlin-type deposits. Therefore, it is reasonable that 564	

Py1a are plotted around the boundaries of the orogenic zone, Carlin zone, and 565	

sedimentary zone (Fig. 4): Since Py1a samples are pyrites in sedimentary within 566	

the gold deposit district, Py1a shares similarities to pyrite in barren sedimentary 567	

geologically; Carlin-type deposits, which were first found in Nevada, USA, are 568	

sediment-hosted, disseminated Au deposits. So, they also share some similarities 569	
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to pyrite in barren sedimentary. Most of the Carlin-type samples in the dataset are 570	

from gold deposits near the edge of the Yangtze craton, in southeast China. These 571	

deposits are also argued to be epizonal orogenic gold deposits (Bodnar et al., 572	

2014). If we regard the Carlin class as an epizonal orogenic class, Py1a pyrites are 573	

more similar to pyrite from epizonal orogenic deposits than from classic orogenic 574	

deposits; Pyrites from Py1b and Py2 are more similar to pyrites from classic 575	

orogenic deposits. The conclusion from pyrite trace elements and the decision map 576	

method closely agrees with the monazite geochronology conclusion from Qiu et 577	

al. (2020). 578	

According to the feature inverse projections (Fig. 5, Fig. 6), some trace 579	

elements can be considered indicator elements in discriminating the mineral-580	

forming environments. For example, the model learned that Co, Ni, and Pb are 581	

efficient features when classifying Ni-Cu-PGE from others. This model learned 582	

knowledge is consistent with geologists’ experience that Co, Ni, and their ratio in 583	

pyrite are considered reliable indicators and geochemical tools in ore deposit 584	

genesis (Bajwah et al., 1987; Bralia et al., 1979). Knowing what the model learned 585	

for classifying the pyrite genetic types makes it easy to find other elements as 586	

indicators. For example, Pb, which is less discussed in the literature, could be an 587	

indicator for discriminating Ni-Cu-PGE, porphyry, and orogenic pyrites from the 588	

other classes. In Figure 5, we can observe that the model considers pyrites of Ni-589	

Cu-PGE and porphyry classes to have the feature that Pb < 10 ppm, while 590	

orogenic pyrite has Pb roughly between 10 to 100 ppm; Cu could be another 591	
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indicator for discriminating porphyry pyrite from the other classes, i.e., the model 592	

considers porphyry pyrite has the feature that Cu < 10 ppm (Fig. 5j). The 593	

effectiveness of Pb and Cu as indicators remains to be further proven in practice. 594	

Implications 595	

The union of information visualization and mineralogy, as presented in this 596	

study, heralds a transformative era in geoscience research. By harnessing the 597	

capabilities of enhanced decision maps, we have illuminated a novel approach to 598	

interpret classification models, deepening our comprehension of multifaceted 599	

geochemistry data dimensions. 600	

The introduction of inverse projections is particularly groundbreaking for 601	

geology. This feature unravels the depth of understanding models extracting from 602	

complex geochemical data, enabling researchers to directly correlate predictions 603	

with specific mineralogical features or value-ranges. In the realm of mineral 604	

geochemical discrimination, this research signifies a monumental shift. 605	

Transitioning from traditional machine learning classification to the advanced 606	

visual analytics of machine learning, we're effectively merging the precision and 607	

scalability of modern computational methods with the rich, interpretative legacy 608	

of discriminant diagrams. 609	

As it continues to lean into data-driven methodologies, our work offers a 610	

robust toolset for enhanced mineral genesis classification and exploration. Beyond 611	
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the immediate applications, this study promises to influence a range of 612	

geochemistry sub-disciplines, driving more informed, nuanced, and efficient 613	

research and exploration endeavors in the future. 614	
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List of figure captions 901	

Figure 1. Workflow of the optimal decision map construction and evaluation. Abbreviation: 902	

LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; NN, Neural 903	

Network. 904	

Figure 2. Decision Map built from the training set and the trained SVM. Training set samples 905	

are plotted as colored dots without outlines. Test set samples are plotted as colored dots with 906	

black outlines. Darker pixels in the map (mainly pixels close to the decision boundaries) show 907	

lower classification confidence. 908	

Figure 3. (a) Confusion matrix for the actual SVM classifier. (b) Confusion matrix for the 909	

trained decision map for this classifier. 910	

Figure 4. Zaozigou pyrite trace element data plotted on the trained decision map. The pyrite 911	

trace element data is from Sui et al. (2020). 912	

Figure 5. (a) Permutation feature importance of the SVM classifier. (b-l) Feature inverse 913	

projections for all the 11 features of the considered dataset that explain which features and 914	

feature-values are most responsible for the appearance of the learned decision zones. 915	

Figure 6. Mutual information scores ranking feature importance for each class respectively.  916	

Figure 7. Plot showing the time taken by SDBM and 5 common classifiers, utilizing synthetic 917	

datasets of varying dimensionality and number of samples (n_samples). The time recorded for 918	

SDBM includes the duration for fitting training samples and inverse projecting grids (grid size: 919	

3002); whereas, for classifiers, it records the time for fitting and predicting labels for the 920	

training samples. Abbreviation: RF, Random Forest; SVM, Support Vector Machine NN, 921	

Neural Network; LDA, Linear Discriminant Analysis; QDA, Quadratic Discriminant Analysis. 922	
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 923	

Appendix 924	

The data and source codes to reproduce this work are available for download at the link: 925	

https://github.com/wuyuyu1024/SDBM_for_Pyrite (accessed on Feb. 18  2024). 926	

  927	
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Tables 928	

Table 1. Published pyrite trace element datasets used in this study. 929	

Class No. of samples References 

Ni-Cu-PGE 263 (Mansur et al., 2021) 

Porphyry 658 (Hong et al., 2018; Keith et al., 2022; Li et al., 

2017; Liu et al., 2020; Mavrogonatos et al., 

2020; Sheng, 2022) 

Orogenic 615 (Zhong et al., 2021) 

Carlin 487 (He et al., 2021; Large et al., 2009; Liang et al., 

2021; Lin et al., 2021; Xie et al., 2018) 

VHMS 150 (Revan et al., 2014; Zhong et al., 2021) 

Sedimentary 1421 (Zhong et al., 2021) 

 930	

  931	
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Table 2. Search results of the classifiers for building the Decision Boundary Map. The highest 932	

value per metric type is indicated in bold. 933	

Model Classifier accuracy Map accuracy Consistency 

 ACCC ACCM Cons 

Logistic Regression 0.855176 0.917917 0.870568 

Support Vector Machine (SVM) 0.942248 0.925539 0.922167 

Random Forest 0.984317 0.885665 0.885665 

Neural Network 0.977870 0.874088 0.875261 

  934	

  935	
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Table 3. Zaozigou pyrite trace element data classification result from the SVM 936	

 Ni-Cu-PGE Porphyry Orogenic Carlin VMS Sedimentary 

Py1a 0 (0.00%) 0 (0.00%) 18 (43.90%) 23 (56.10%) 0 (0.00%) 0 (0.00%) 

Py1b 0 (0.00%) 0 (0.00%) 30 (93.75%) 2 (6.25%) 0 (0.00%) 0 (0.00%) 

Py2 0 (0.00%) 2 (5.41%) 26 (70.27%) 7 (18.92%) 2 (5.41%) 0 (0.00%) 

Total 0 (0.00%) 2 (1.82%) 74 (67.27%) 32 (29.09%) 2 (1.82%) 0 (0.00%) 

  937	

 938	

Table 4. Zaozigou pyrite trace element data classification result from the SDBM 939	

 Ni-Cu-PGE Porphyry Orogenic Carlin VMS Sedimentary 

Py1a 0 (0.00%) 0 (0.00%) 16 (39.02%) 6 (14.63%) 0 (0.00%) 19 (46.34%) 

Py1b 0 (0.00%) 2 (6.25%) 27 (84.38%) 2 (6.25%) 0 (0.00%) 1 (3.12%) 

Py2 0 (0.00%) 0 (0.00%) 29 (78.38%) 5 (13.51%) 2 (5.41%) 1 (2.70%) 

Total 0 (0.00%) 2 (1.82%) 72 (65.45%) 13 (11.82%) 2 (1.82%) 21 (19.09%) 

 940	
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